

Recent results @ $\vec{\mu}TEx$

Annabelle Kaiser^a, Stefan Dickopf^a, Anton Gramberg^a, Philipp Justus^a, Ankush Kaushik^a, Marius Müller^a, Stefan Ulmer^{b,c}, Bastian Sikora^a, Vladimir A. Yerokhin^a, Zoltan Harman^a, Christoph H. Keitel^a, Andreas Mooser^a und Klaus Blaum^a

a - Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, Germany b - RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, Japan c - Institute for Experimental Physics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany

PSAS Zürich, 10.06.2024 11:20-11:45

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

 μ_{e}

$\vec{\mu}$ TEx = magnetic moment ($\vec{\mu}$) Trap Experiment

Content:

1.

Ground-state Zeeman + hyperfine splittings

2. measurement principle

3.
helium-3 campaign
beryllium-9 campaign
helium-4 campaign

Ground-state Zeeman/hyperfine splitting measurements (in a Penning trap)

 g_e – Bound electron g-factor

PSAS, A. Kaiser, 10.06.24

The diamagnetic shielding of nuclear magnetic moments

Orbiting electrons effectively reduce the magnetic moment $g_I \rightarrow g'_I = g_I(1 - \sigma)$

The transfer of magnetic moments from one charge state to another requires accurate theoretical calculations of shielding parameters!

Example

 $\overrightarrow{\mu_I}$

 $g'_{I}(^{3}\text{He}^{+}) = -4.2550996069(35)$

A. Schneider et al., Nature **606**, 878–883 (2022)

However, $g_I({}^{3}\text{He})$ is needed for accurate NMR magnetometry

 $\sigma(^{3}\text{He}^{+}) = 35.507427(10) \text{ ppm}$ $\sigma(^{3}\text{He}) = 59.966512(24) \text{ ppm}$ M. Farooq et al, Phys. Rev. Lett. 124, 223001 (2020)

K. Pachucki, PRA. 108, 062806 (2023)

Currently no sufficiently accurate experimental test of shielding available...

Ideal candidate: 9Be

⁹Be⁺ magnetic moments and HFS via laser-microwave double resonance

- Shielding and HFS
- Extract $g_I({}^9Be^{4+})$ with 30 ppb
- Calculation of $E_{\rm HFS}$ limited at $\sim 500 \rm \; kHz$ due to nuclear structure

N. Shiga et al., Phys. Rev. A 84, 012510 (2011)

K. Pachucki, M. Puchalski, Opt. Commun. 283, 5 (2010)

M. Puchalski et al., Phys. Rev. A 89, 032510 (2014)

 $^9Be^{3+}$ measurement @ $\vec{\mu}TEx$

• Measure v_i transitions and extract

 $v_i (g_e \mu_B, g_I \mu_N, \Delta E_{\text{HFS}}; B)$

- Test of shielding via nuclear magnetic moments
- Test of HFS by specific difference

~140-160 GHz e⁻ spin transitions

Penning trap measurements with single ions

Radial confinement: $B = B_0 e_z$

Axial confinement: $\Phi(\rho, z) = V_0 C_2 (z^2 - \frac{\rho^2}{2})$

$$v_z = \sqrt{2V_0C_2q/m}$$

$$\boldsymbol{\nu_c} = \sqrt{\nu_+^2 + \nu_-^2 + \nu_z^2} = \frac{1}{2\pi} \frac{q}{m} \boldsymbol{B}$$

Typical values: $\nu_{+} = 30 \text{ MHz} \simeq \nu_{c}$ $\nu_{-} = 5 \text{ kHz}$ $\nu_{z} = 500 \text{ kHz}$

Single-shot precision: $\sigma(\nu_c) \sim 50$ ppt Measure all eigenfrequencies with image current detection method (10^{-9}) or phase sensitive method ($5x10^{-11}$)

Penning trap spin-state detection

Magnetic bottle inside separate analysis trap:

$$B_z = B_0 + B_2 z^2 \rightarrow \Delta \Phi(z) = -2 \frac{B_2}{m} \mu_i z^2$$

Spin-state *i* dependent axial frequency

 $\Delta \nu_{z,e} \approx 11 \; \mathrm{Hz}$

 $\Delta v_{z,I} \approx 100 \mathrm{mHz} \ll v_z$ fluctuations

Ferromagnetic ring electrode

Use electronic probe transitions to identify spin-state

Measurement scheme

1. Spin-state determination in AT

2. v_c measurement and SF drive

3. Spin-state determination in AT

Experimental setup

- Non-destructive detection of eigenfrequencies at 4 K
- MW with 140-170 GHz
- Nuclear transition can be driven at MHz-12 GHz
- Laser access
- Optical detection in progress
- Loading single ions (in-trap)
- Ionization up to 7+
- Magnetic field extremely stable dB/B/h = 3(2)ppt/h and 100ppt shot-to-shot [S. Dickopf, thesis 2024]
- ultra-high vacuum, ion lifetimes > 1y

Experimental upgrades for ⁹Be³⁺

Production of ⁹Be³⁺ ions

- In-trap Laser ablation produces ⁹Be⁺
- Subsequent ionization by electron beam
- Can be used for other targets

U. Beutel, Bachelor thesis (2024)

Coherent drive of nuclear transitions

Experimental upgrades for ⁹Be³⁺

Production of ⁹Be³⁺ ions

- In-trap Laser ablation produces ⁹Be⁺
- Subsequent ionization by electron beam
- Can be used for other targets

Coherent drive of nuclear transitions

 7-pole Penning trap for compensation of higher order electrostatic field inhomogeneities
UV laser incoupling for laser cooling ⁹Be⁺ Magnetic shielding coils

Re

PSAS, A. Kaiser, 10.06.24

Measurement of nuclear transitions

Detection via electron spin transitions

Systematics budget

$\Gamma_{\rm e}({}^{9}{\rm Be}^{3+}) = \frac{g_{e}({}^{9}{\rm Be}^{3+})}{2}$	$\frac{e}{q} \frac{m({}^{9}\text{Be}^{3+})}{m_e}$, Γ_{I}	$({}^{9}\text{Be}^{3+}) = \frac{g_I({}^{9}\text{Be}^{3+})}{g_e({}^{9}\text{Be}^{3+})}\frac{m}{m}$	<u>е</u> р	
$v_{\rm MW} - v_i(v_c \Gamma_e, \Gamma_I, v_{HFS}) = 0, \qquad i = \{1, 2, 3\}$				
$\nu_i (g_e \mu_B, g_I \mu_N, \Delta E_{\text{HFS}}; B)$				
	Γe	$\sim \Gamma_I$	v _{HFS}	
Statistical result	-5479.86334 (11)	2.13547538 (11)×10 ⁻⁴	-12796971342.5 (50) Hz	
Systematic shifts	/10 ⁻⁷	$/10^{-14}$	/mHz	
Field imperfections	-1(<1)	0(<1)	0(<1)	
Relativistic	0(<1)	0(1)	50(3)	
Image charge	-5(<1)	-	-	
Dip	0(19)	-	-	
Time reference	0(1)	0(3)	0(15)	
Quadrupole moment	-5(<1)	-15(<1)	11(< 1)	
Total shifts	-11(19)	-15(3)	61(15)	
Corrected result	-5479.86334 (22)	2.13547538 (11)×10 ⁻⁴	-12796971342.6 (52) Hz	
Fractional uncertainty	0.39 ppb	0.54 ppb	4.0 ppt	

Simultaneous extraction requires careful treatment of correlations/covariances!

S. Dickopf et al., submitted (2024)

Results derived from the nuclear transitions

$$\Gamma_{\rm e}({}^{9}{\rm B}{\rm e}^{3+}) = \frac{g_{\rm s}({}^{9}{\rm B}{\rm e}^{3+})}{2} \frac{e}{q} \frac{m({}^{9}{\rm B}{\rm e}^{3+})}{m_{e}}, \qquad \Gamma_{\rm I}({}^{9}{\rm B}{\rm e}^{3+}) = \frac{g_{\rm I}({}^{9}{\rm B}{\rm e}^{3+})}{g_{\rm s}({}^{9}{\rm B}{\rm e}^{3+})} \frac{m_{\rm e}}{m_{p}}$$
$$E_{HFS}({}^{9}{\rm B}{\rm e}^{3+}) = E_{\rm F}(A_{1\rm S} - 2\alpha Z r_{Z} + \delta_{\rm recoil} 1S + \delta_{\rm OED} 1S)$$

	Accepted value	Our value
$g_I({}^9\mathrm{Be}{}^{4+})$	-0.784 954 39(2) _{theo}	$-0.784954422xx(45)_{exp}(11)_{theo}$
r_Z	4.03(5)fm	4.04x(2) fm
<i>m</i> (⁹ Be)	9.012 183 06(8)u	9.012 183 03 <i>xx</i> (35)u

Profit from improved theory for hydrogen-like ions to gain orders of magnitude in precision

S. Dickopf et al., submitted (2024)

Direct comparison with ⁹Be¹⁺ cancels nuclear structure

Test of shielding

$$1 - \sigma({}^{9}\mathrm{Be}^{1+}) = (1 - \sigma({}^{9}\mathrm{Be}^{3+})) \frac{\Gamma_{I}({}^{9}\mathrm{Be}^{1+})}{\Gamma_{I}({}^{9}\mathrm{Be}^{3+})} \frac{g_{s}({}^{9}\mathrm{Be}^{1+})}{g_{s}({}^{9}\mathrm{Be}^{3+})}$$

Our work: $\sigma({}^{9}\text{Be}^{1+}) = 141.8xxx(12)(10) \cdot 10^{-6}$ Theory: $\sigma({}^{9}\text{Be}^{1+}) = 141.85(3) \cdot 10^{-6}$

First high-precision test of multi-electron shielding

Specific difference of zero-field splitting

 $E_{HFS}({}^{9}\text{Be}^{3+}) = E_{F,1S}(A_{1S} - 2\alpha Z r_Z + \delta_{\text{recoil},1S} + \delta_{\text{QED},1S})$ $E_{HFS}({}^{9}\text{Be}^{+}) = E_{F,2S}(A_{2S} - 2\alpha Z r_Z + \delta_{\text{recoil},2S} + \delta_{\text{QED},2S})$

Directly cancel nuclear structure contributions

 $\Delta v_{HFS} = v_{HFS}(^{9}\text{Be}^{+}) - \xi v_{HFS}(^{9}\text{Be}^{3+})$

Our work: $\Delta v_{HFS} = -274. xxxxxx(12) \text{ kHz}$ **Theory:** $\Delta v_{HFS} = -271. x(3.6) \text{ kHz}$

Complementary to ²⁰⁹Bi^{80/82+}

High Z: Fully relativistic I.o. with expansion of electroncorrelation and h.o. effectsLow Z: Fully correlated I.o. with expansion of relativistic and h.o. effects

Next candidate: helium-4

$$\mu_B = \frac{e\hbar}{2m_e}$$

$$H = -g_e \,\mu_B \boldsymbol{S} \cdot \boldsymbol{B} - g_I \mu_N \boldsymbol{I} \cdot \boldsymbol{B} - \Delta E_{\rm HFS} \boldsymbol{S} \cdot \boldsymbol{I}$$

- Most precise m_e measurement reached 3x10⁻¹¹[1]
- Our magnet more stable
- m_e fundamental constant
- Used for the determination of the fine-structure constant α in atomic recoil experiments^[2]

$$\alpha^2 = \frac{2R_\infty}{c} \frac{m}{m_e} \frac{h}{m}$$

[1]S. Sturm et al., Nature 506, 467 (2014), F. Köhler, PhD thesis (2015)[2] L. Morel, et al., Nature 588, 61 (2020)

Future measurements: nuclear *g*-factor of helium-3

 Integrate Josephson voltage standard for creating the trap potential → higher axial stability

• Sympathetic laser cooling to reduce ion cyclotron energy

Beryllium-9

extract $g_I, \Delta v_{HFS}, g_e$

compare to ⁹Be⁺ for first experimental, high precision shielding test for multiple electrons

cancel nuclear structure uncertainties with specific difference for Δv_{HFS}

helium-4

most stable magnet

improve precision for more stringent tests of QED

bare helium-3

implement sympathetic laser cooling scheme implement Josephson voltage standard

> Thank you! Questions?

Thank you for your attention and thanks to all collaborators!

μΤΕχ:

- Annabelle Kaiser
- Stefan Dickopf
- Marius Müller
- Andreas Mooser
- Anton Gramberg
- Ankush Kaushik
- Philipp Justus
- Klaus Blaum

PTB:

- Ralf Behr
- Luis Palafox

Pentatrap:

- Menno Door
- Kathrin Kromer
- Sergey Eliseev

Theory:

- Bastian Sikora
- Zoltan Harman
- Vladimir A. Yerokhin
- Christoph H. Keitel

Penning trap frequency detection

Modified cyclotron frequency detection

Thermal detection: Double dip

 $\sigma(\nu_+) \propto 1/\sqrt{T}$

Phase space distribution for many realizations

 $\sigma(\nu_+) \propto 1/T$

1. Penning trap principles

3. Josephson voltage standards

Experimental realization:

PSAS, A. Kaiser, 10.06.24

FFT spectrum:

1. Penning trap principles

3. Josephson voltage standards

 $dip @ v_z$ double dip:

Josephson Array as programmable voltage reference

Taken from talk by Luis Palafox (PTB) @ MPIK 2020