

# ETHzürich

# **Spin-Rovibrational Structure of the** Molecular Hydrogen Ion from Spectroscopy of Rydberg States

Ioana Doran<sup>a</sup>, Maximilian Beyer<sup>b</sup>, Frédéric Merkt<sup>a</sup>

<sup>a</sup> Institute for Molecular Physical Science, ETH Zürich, Switzerland <sup>b</sup> Laboratory of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands

PSAS 2024, 12.06.2024



## Precision measurements in H<sub>2</sub><sup>+</sup> for benchmarking *ab-initio* calculations

- \* H<sub>2</sub>+: Simplest molecular three-body system: determination of physical constants ( $\mu_p$  [1],  $r_p$  [2])
- No permanent electric dipole moment => no pure rotational / vibrational spectra (within electric-dipole approximation)
- \* Alternatively: **drive transitions to Rydberg series** converging to different rovibrational / hyperfine levels of the ion & extrapolate to their ionization limits; => energy intervals in the molecular ion.

[1] Karr et al., Phys. Rev. A **94**, 050501 (R) (2016) [2] Puchalski et al., Phys. Rev. Lett. **122**, 103003 (2019)



n: principal quantum number

PRL 118, 233001 (2017)

### PHYSICAL REVIEW LETTERS

### **Fundamental Transitions and Ionization Energies of the Hydrogen Molecular Ions** with Few ppt Uncertainty

Vladimir I. Korobov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

L. Hilico and J.-Ph. Karr

Laboratoire Kastler Brossel, UPMC-Université Paris 6, ENS, CNRS, Collège de France 4 place Jussieu, F-75005 Paris, France and Université d'Evry-Val d'Essonne, Boulevard François Mitterrand, F-91000 Evry, France (Received 23 March 2017; published 8 June 2017)

We calculate ionization energies and fundamental vibrational transitions for  $H_2^+$ ,  $D_2^+$ , molecular ions. The nonrelativistic quantum electrodynamics expansion for the energy in terms structure constant  $\alpha$  is used. Previous calculations of orders  $m\alpha^6$  and  $m\alpha^7$  are improved by second-order contributions due to the vibrational motion of nuclei. Furthermore, we evaluate

corrections at the order  $m\alpha^8$ . That allows us to reduce the fractional uncertainty to the level of 7. for fundamental transitions and to  $4.5 \times 10^{-12}$  for the ionization energies.

DOI: 10.1103/PhysRevLett.118.233001

dependence of transition lines on the masses and on the proton and deuteron charge radii

$$\begin{split} \nu(\mathrm{H}_2^+) &= \nu_0(\mathrm{H}_2^+) + \frac{\Delta R_\infty}{R_\infty} \nu_0(\mathrm{H}_2^+) + 2(R_\infty c) \\ &\times [-2.55528 \times 10^{-6} \Delta \mu_p - 8.117 \times 10^{-12} \Delta r_p], \end{split}$$

## The fundamental vibrational interval of $H_2^+$ — ab-initio calculations

week ending 9 JUNE 2017

| and HD <sup>+</sup>  |
|----------------------|
| of the fine          |
| including            |
| the largest          |
| $.6 \times 10^{-12}$ |
|                      |

$$E = E^{(0)} + \alpha^2 E^{(2)} + \alpha^3 E^{(3)} + \alpha^4 E^{(4)} + \dots$$

TABLE IV. Fundamental transition frequencies  $\nu_{01}$  for H<sub>2</sub><sup>+</sup>,  $D_2^+$ , and HD<sup>+</sup> molecular ions (in kHz). CODATA14 recommended values of constants. The first error is the theoretical uncertainty, the second error is due to the uncertainty in mass ratios.

|                            | $H_2^+$                  | $D_2^+$                | $HD^+$                  |
|----------------------------|--------------------------|------------------------|-------------------------|
| $\overline{\nu_{nr}}$      | 65 687 511 047.0         | 47 279 387 818.4       | 57 349 439 952.4        |
| $\nu_{\alpha^2}$           | 1 091 040.5              | 795 376.3              | 958 151.7               |
| $\nu_{\alpha}^{3}$         | -276 545.1               | -200278.0              | -242 126.3              |
| $\nu_{\alpha^4}$           | -1952.0(1)               | -1413.4(1)             | -1708.9(1)              |
| $\nu_{\alpha}^{5}$         | 121.8(1)                 | 88.1(1)                | 106.4(1)                |
| $\mathcal{V}_{\alpha}^{6}$ | -2.3(5)                  | -1.7(4)                | -2.0(5)                 |
| $\nu_{\rm tot}$            | 65 688 323 710.1(5)(2.9) | 47 279 981 589.8(4)(8) | 57 350 154 373.4(5)(1.7 |

## 3 kHz uncertainty for H<sub>2</sub>+ dominated by uncertainty in $\mu_p$

Last experimental determination: Herzberg & Jungen (1972) 0.2 cm<sup>-1</sup> (6 GHz) uncertainty

S. Alighanbari, 12.06.2024, 2 pm

\* D. Holzapfel, 12.06.2024, 2.50 pm



## Excitation scheme & experimental setup

### Driving transitions to Rydberg states:



Ioana Doran, 12.06.2024



## Theoretical description of Rydberg states in atoms and molecules

5

![](_page_5_Figure_1.jpeg)

## Theoretical description of Rydberg states in atoms and molecules

![](_page_5_Figure_5.jpeg)

![](_page_5_Figure_6.jpeg)

![](_page_5_Figure_8.jpeg)

### MQDT Extrapolation: low-*l* Rydberg series

![](_page_6_Figure_2.jpeg)

Relies on the theoretical description of the \* optically accessible low-*l* Rydberg states

# ZQD Method

Zero-Quantum-Defect (ZQD) Method: Stark maps

![](_page_6_Figure_7.jpeg)

- Precise minimization of residual electric fields \* not necessary
- Uncertainties of the low-*l* quantum defects: \* smaller, indirect effect on manifold positions

Hölsch et al., J. Mol. Spectrosc. 387, 111648 (2022)

![](_page_6_Picture_12.jpeg)

# ZQD Method for the fundamental vibrational interval of H<sub>2</sub>+

![](_page_7_Figure_1.jpeg)

Ioana Doran, 12.06.2024

![](_page_8_Figure_1.jpeg)

## Stark spec

![](_page_9_Figure_1.jpeg)

Ioana Doran, 12.06.2024

![](_page_9_Figure_3.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Figure_1.jpeg)

## Stark spectra: fit of line positions with 2 parameters: $E_{\rm I}$ ( $\nu^+$ ,0) and $F_{\rm z}$

![](_page_11_Figure_2.jpeg)

# Determination of $E_{I}(0,0)$ and $E_{I}(1,0)$

![](_page_11_Figure_4.jpeg)

![](_page_11_Picture_6.jpeg)

![](_page_11_Picture_7.jpeg)

TABLE I. Error budget and frequency corrections for the determination of the binding energy of the GK(0,2) [GK(2,2)] state from the measurement of transitions to the Rydberg-Stark manifold for one value of n and one value of the electric field strength. All values and uncertainties are reported in kHz.

|                                  | $\Delta u$ | $\sigma_{ m stat}$ | $\sigma_{ m sys}$ |
|----------------------------------|------------|--------------------|-------------------|
| Least-squares fit of ZQD method  |            | $< 500^{a}$        |                   |
| Residual 1st order Doppler shift |            |                    | 250 <sup>b</sup>  |
| Line-shape model                 |            |                    | $100(200)^{c}$    |
| 2nd order Doppler shift          | +2         |                    | 0.5               |
| ac Stark shift                   |            |                    | ~5                |
| Zeeman shift                     |            |                    | ~10               |
| Pressure shift                   |            |                    | ~1                |
| Photon-recoil shift              | $-160^{d}$ |                    |                   |

<sup>a</sup>Dependent on the measurement.

<sup>b</sup>Averages out upon multiple realignments.

<sup>c</sup>For 
$$v^+ = 0$$
 ( $v^+ = 1$ )

<sup>d</sup>Corresponds to  $\tilde{\nu}_{\text{laser}} = 12701.365 \text{ cm}^{-1}$ .

![](_page_12_Figure_7.jpeg)

## Determination of the fundamental vibrational interval in H<sub>2</sub>+

![](_page_12_Figure_10.jpeg)

13

![](_page_12_Picture_12.jpeg)

![](_page_12_Picture_13.jpeg)

![](_page_13_Figure_1.jpeg)

Doran et al., Phys. Rev. Lett. **132**, 073001 (2024)

| Energy interval                 | Value (cm <sup>-1</sup> )                 | Ref.    |
|---------------------------------|-------------------------------------------|---------|
| $\overline{X^+(0,0) - GK(0,2)}$ | $12723.7574407(18)_{stat}(40)_{sys}$      | This Le |
| $X^+(0,0) - GK(0,2)$            | 12 723.757 461(23)                        | [1]     |
| $X^{+}(1,0) - GK(2,2)$          | $13138.046319(5)_{\rm stat}(8)_{\rm sys}$ | This Le |
| GK(2,2) - GK(0,2)               | 1776.837 736 1(14)                        | [2]     |
| $X^+(1,0) - X^+(0,0)$           | $2191.126614(5)_{stat}(12)_{sys}$         | This Le |
| $X^+(1,0) - X^+(0,0)$           | 2191.2(2)                                 | [3]     |
| $X^{+}(1,0) - X^{+}(0,0)$       | 2191.126 626 344(17)(100) <sup>a</sup>    | [4]     |

[1] Beyer et al., Phys. Rev. Lett. **123**, 163002 (2019)

[2] Hölsch et al., Phys. Chem. Chem. Phys. 20, 26837 (2018)

[3] Herzberg and Jungen, J. Mol. Spectrosc. **41**, 425 (1972)

[4] Korobov et al., Phys. Rev. Lett. **118**, 233001 (2017)

![](_page_13_Figure_11.jpeg)

![](_page_13_Figure_12.jpeg)

# Determination of the fundamental vibrational interval in H<sub>2</sub>+

### nature physics

**Article** 

https://doi.org/10.1038/s41567-023-02320-z

## Laser spectroscopy of a rovibrational transition in the molecular hydrogen ion $H_2^+$

![](_page_14_Figure_5.jpeg)

 $(1, N = 0) \rightarrow (v' = 3, N' = 2)$ Ioana Doran, 12.06.2024

### PHYSICAL REVIEW LETTERS 132, 073001 (2024)

### Zero-Quantum-Defect Method and the Fundamental Vibrational Interval of H<sup>+</sup><sub>2</sub>

I. Doran,<sup>1</sup> N. Hölsch,<sup>1</sup> M. Beyer,<sup>2</sup> and F. Merkt<sup>1,3,4,\*</sup>

![](_page_14_Figure_10.jpeg)

Exp.: 65'688'323.3(0.5) MHz Th.: 65'688'323.7101(5)(29) MHz (Korobov et al., PRL **118**, 233001 (2017))

![](_page_14_Picture_13.jpeg)

![](_page_14_Picture_14.jpeg)

## ZQD Method: Further applications

## The spin-rotational interval of para-H<sub>2</sub>+:

![](_page_15_Figure_2.jpeg)

Th.:Korobov et al., Phys. Rev. A 74, 040502 (R) (2006)

### <u>Current status</u> — MQDT Extrapolation f series

| $N^+$ | $\gamma_{\rm SR}$ (MHz) (This work) | $\gamma_{\rm SR}$ (MHz) (Korobov et al., 2006 |
|-------|-------------------------------------|-----------------------------------------------|
| 2     | 42.21(4)                            | 42.1625                                       |
| 4     | 41.26(8)                            | 41.2942                                       |
| 6     | 40.04(8)                            | 39.99 * 🗸                                     |

I. Doran, M. Beyer, F. Merkt, unpublished

\*using McEachran et al., 1978

![](_page_15_Figure_9.jpeg)

16

![](_page_15_Picture_11.jpeg)

## The hyperfine structure of ortho-D<sub>2</sub>+:

![](_page_16_Figure_2.jpeg)

Th.:Danev et al., Phys. Rev. A 103, 012805 (2021)

![](_page_16_Figure_4.jpeg)

## ZQD Method: Further applications

Work done together with Leon Jeckel

# ZQD Method: Further applications

## <u>The hyperfine structure of ortho-D<sub>2</sub>+:</u>

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_4.jpeg)

Work done together with Leon Jeckel

## Thank you for your attention!

![](_page_18_Picture_1.jpeg)

## The Merkt group

## Special thanks: \* Dr. Nicolas Hölsch

- \* Leon Jeckel
- \* Josef Agner
- \* Hansjürg Schmutz

![](_page_18_Picture_7.jpeg)

### Summary: para-H<sub>2</sub>, $N^+ = 0$

 $\hat{H} =$ 

- 1) Build Hamiltonian matrix in a basis set of choice \*here, Hund's case (d):  $|nlN_{N,M_N}^+\rangle$ 2) Diagonal elements  $(\hat{H}_0) \Longrightarrow \ast$  low-*l* states: MQDT (*l* up to 5) high-l states: polarization model (ab initio, no channel interactions)
- 3) Off-diagonal elements (eFz)

$$\langle nlN_{N,M_N}^+ | eFz | n'l'N_{N'M_{N'}}^{\prime +} \rangle = eF(-1)^{N-M_N+l+N^++N'+1} \sqrt{(2N+1)(2N'+1)} \\ \times \begin{pmatrix} N & 1 & N' \\ -M_N & 0 & M_N \end{pmatrix} \begin{cases} l & N & N^+ \\ N' & l' & 1 \end{cases} \langle nl||r||n'l' \rangle \,\delta_{N^+N^+}$$

4) Diagonalize the Hamiltonian matrix at each value of electric field

para-H<sub>2</sub>:

I = 0 (no nuclear spin)

S = 0(only access singlet states)

$$\hat{H}_0 + eFz$$

 $\langle nl||r||n'l'\rangle$ (Wigner-Eckart theorem)  $\langle nl|r|n'l'\rangle$  (Numerov algorithm)

 $\mathbf{N} = \mathbf{N}^+ + \ell$ 

 $N^+$ : Rotational angular momentum of ion core

 $\ell$  : Orbital angular momentum of Rydberg electron

**N** : Total angular momentum excluding spin

![](_page_19_Figure_22.jpeg)

![](_page_19_Figure_23.jpeg)

## Laser Stark maps at $v^+ = 0$ (para-H<sub>2</sub>)

**Sensitivity analysis**: Effect on manifold of shifting the low-*l* states positions by 1 MHz w.r.t. MQDT-predicted values

$$E_{nn_1n_2m} = -\frac{E_{\rm h}}{2n^2} + \frac{3}{2}nkFea_0 \Longrightarrow \Delta E_{n,|\Delta k|=1} \propto nF$$

![](_page_20_Figure_3.jpeg)

Ioana Doran, 12.06.2024

 $n = n_1 + n_2 + |m| + 1$  $k = n_1 - n_2$ 

### Need to determine binding energies of $nd0_2$ (and $70p0_1$ ) states experimentally!

$$\Delta\nu(F) = a_0 + a_2 F^2 + a_4 F^4$$

![](_page_21_Figure_2.jpeg)

# Laser Stark maps at $v^+ = 0$ (para-H<sub>2</sub>)

### **Sensitivity analysis**: Effect on manifold of shifting the low- *l* states positions by 1 MHz w.r.t. MQDT-predicted values

![](_page_22_Figure_2.jpeg)

Estimated error of quantum defects < 10%

Ioana Doran, 12.06.2024

![](_page_23_Figure_1.jpeg)

# Stark spectra

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_24_Figure_1.jpeg)

## Fano profiles ( $v^+=1$ ) & q-reversal

## **Fano lineshape:** one closed + one open channel

### Effects of Configuration Interaction on Intensities and Phase Shifts\*

U. FANO National Bureau of Standards, Washington, D. C. (Received July 14, 1961)

The interference of a discrete autoionized state with a continuum gives rise to characteristically asymmetric peaks in excitation spectra. The earlier qualitative interpretation of this phenomenon is extended and revised. A theoretical formula is fitted to the shape of the 2s2p P resonance of He observed in the inelastic scattering of electrons. The fitting determines the parameters of the 2s2p <sup>1</sup>P resonance as follows: E = 60.1 ev,  $\Gamma \sim 0.04 \text{ ev}, f \sim 2 \text{ to } 4 \times 10^{-3}$ . The theory is extended to the interaction of one discrete level with two or more continua and of a set of discrete levels with one continuum. The theory can also give the position and intensity shifts produced in a Rydberg series of discrete levels by interaction with a level of another configuration. The connection with the nuclear theory of resonance scattering is indicated.

<u>Cause of asymmetry:</u>

Destructive interference between transition moments from the initial state to i) the **discrete contribution** to the final state ii) the **continuum contribution** to the final state

=> transition probability vanishes on one side of the resonance.

## Fano profiles ( $v^+=1$ ) & q-reversal

![](_page_25_Figure_10.jpeg)

![](_page_25_Figure_11.jpeg)

FIG. 1. Natural line shapes for different values of q. (Reverse the scale of abscissas for negative q.)

### *q*-reversal: at least two closed + one open channel

![](_page_26_Figure_2.jpeg)

FIG. 3. Expanded ion-pair-production spectrum of H<sub>2</sub> between the  $N^+ = 1$  and  $N^+ = 3$  series limits showing the fitted Fano line profiles: Solid curves, calculated profile; circles, experimental points; and arrows, fitted line center positions.

Kung et al., 1986: First observation of *q*-reversal in H<sub>2</sub>

Ioana Doran, 12.06.2024

### In our case:

![](_page_26_Figure_8.jpeg)

### **Interacting channels:**

(i) the Rydberg-Stark states with predominantly high-  $\ell$ character that are only very weakly coupled to the  $v^+=0$ continua,

(ii) the low- $\ell$  states that are strongly coupled to both the high- $\ell$  Rydberg-Stark states and the  $\nu^+=0$  continua, and

(iii) the  $v^+=0$  continua

# Doppler shift compensation

![](_page_27_Figure_1.jpeg)

responding relative weights (gray traces).

Figure 2. Upper panels: spectra of the  $70f_{03}$   $(v^+=0) \leftarrow$ GK(0,2) (a) and  $70f0_3$  ( $v^+=1$ )  $\leftarrow$  GK(2,2) (b) transitions (dots) and fits using a Voigt line-shape model (solid lines). The vertical dashed lines indicate the Doppler-free transition frequencies. Lower panels: weighted residuals and their cor-