Searching for Ultralight Scalar Dark Matter with Muonium and Muonic Atoms

Yevgeny Stadnik

Australian Research Council DECRA Fellow

University of Sydney, Australia

PSAS 2024, ETH Zurich, Switzerland, 10-14 June 2024

Strong astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter)

$$\varphi(t) \sim \varphi_0 \cos(m_{\varphi} c^2 t/\hbar)$$

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' = -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f}\bar{f}f$$

 φ^2 interactions also exhibit the same oscillating-in-time signatures as above (except at frequency $2m_{\varphi}$), as well as ...

* φ^2 interactions may arise in models with a Z_2 symmetry ($\varphi \rightarrow -\varphi$)

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^2}{\left(\Lambda_{\gamma}'\right)^2} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' = -\frac{\varphi^2}{\left(\Lambda_{f}'\right)^2} m_f \bar{f}f$$
 \Rightarrow $\begin{cases} \frac{\Delta\alpha}{\alpha} \propto \frac{\Delta m_f}{m_f} \propto \Delta\rho_{\varphi} \propto \Delta\varphi_0^2 \\ \frac{\Delta\alpha}{m_f} \approx \frac{\omega}{m_f} \approx \frac{\omega}{m_f} \approx \frac{\omega}{m_f} \end{cases}$

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \\
\mathcal{L}_{f}' = -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f} \bar{f} f \end{cases} \Rightarrow \begin{cases} \frac{\Delta \alpha}{\alpha} \propto \frac{\Delta m_{f}}{m_{f}} \propto \Delta \rho_{\varphi} \propto \Delta \varphi_{0}^{2} \\
\delta m_{\varphi}(\rho_{\text{matter}}) \\
\downarrow \end{cases}$$

Screening of φ field in and around matter if $\delta m_{\varphi} > 0$

Probes of Oscillating Fundamental Constants **10**⁻¹⁹ 10^{-15} 10^{-23} 10^{-11} 10^{-7} Scalar mass (eV/c^2) Atomic spectroscopy (clocks) Cavities Atom interferometry Optical interferometry **10⁻⁹ 10**³ **10**⁷ 10^{-1} 10^{-5}

Compton frequency (Hz)

Constraints on Linear Scalar-Photon Coupling

Summary plot from FIPs 2022 workshop report: [Antel et al., EPJ C 83, 1122 (2023)]

• What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?

- What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?
- Possible flavour/generational dependence of scalar couplings in the lepton sector

- What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?
- Possible flavour/generational dependence of scalar couplings in the lepton sector
- Extra potential motivation from persistence of anomalies in muon physics, such as:
 - Proton radius puzzle

-
$$(g-2)_{\mu}$$
 puzzle

- What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?
- Possible flavour/generational dependence of scalar couplings in the lepton sector
- Extra potential motivation from persistence of anomalies in muon physics, such as:
 - Proton radius puzzle
 - $(g-2)_{\mu}$ puzzle
- No stable terrestrial sources of muons (unlike electrons), offering a qualitatively different phenomenology as compared to, e.g., scalar-electron couplings

Probing Oscillations of m_{μ} with Muonium Spectroscopy [Stadnik, *PRL* **131**, 011001 (2023)]

Muonium = $e^{-\mu^{+}}$ bound state, $m_{r} = \frac{m_{e}m_{\mu}}{m_{e}+m_{\mu}} \approx m_{e}(1-m_{e}/m_{\mu})$ F = 1 F = 0 F = 0 F = 1 F = 0 F = 1 F = 0

See Patrick Strasser's talk (later today), as well as posters (Wednesday) of Svenja Geissmann, Evans Javary, Marcus Mähring and Edward Thorpe-Woods

Probing Oscillations of m_{μ} with Muonium Spectroscopy [Stadnik, *PRL* **131**, 011001 (2023)]

Muonium = $e^-\mu^+$ bound state, $m_r = \frac{m_e m_\mu}{m_e + m_\mu} \approx m_e (1 - \frac{m_e}{m_\mu})$

$$E_n^{\text{Rydberg}} = -\frac{m_r \alpha^2}{2n^2} \implies \frac{\Delta v_{1S-2S}}{v_{1S-2S}} \approx 2\frac{\Delta \alpha}{\alpha} + \frac{\Delta m_e}{m_e} + \frac{m_e}{m_\mu}\frac{\Delta m_\mu}{m_\mu}$$

Probing Oscillations of m_{μ} with Muonium Spectroscopy [Stadnik, *PRL* **131**, 011001 (2023)]

Muonium = $e^-\mu^+$ bound state, $m_r = \frac{m_e m_\mu}{m_e + m_\mu} \approx m_e (1 - m_e / m_\mu)$ $2^{2}S_{1/2}$ $1 {}^{2}S_{1/2}$ $\tau_{\mu} \approx 2.2 \ \mu s$ $E_n^{\text{Rydberg}} = -\frac{m_r \alpha^2}{2n^2} \Rightarrow \frac{\Delta v_{1S-2S}}{v_{1S-2S}} \approx 2\frac{\Delta \alpha}{\alpha} + \frac{\Delta m_e}{m_e} + \frac{m_e}{m_\mu}\frac{\Delta m_\mu}{m_\mu}$ $\Delta E_{\rm Fermi} = \frac{8m_r^3 \alpha^4}{3m_e m_{\mu}} \implies \frac{\Delta \nu_{\rm HFS}}{\nu_{\rm HFS}} \approx 4 \frac{\Delta \alpha}{\alpha} + 2 \frac{\Delta m_e}{m_e} - \frac{\Delta m_{\mu}}{m_{\mu}}$

Estimated Sensitivities to Scalar Dark Matter with $\varphi \bar{\mu} \mu / \Lambda_{\mu}$ Coupling

[Stadnik, PRL 131, 011001 (2023)]

Up to 7 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF and RAL in 1990s)

Estimated Sensitivities to Scalar Dark Matter with $\varphi^2 \bar{\mu} \mu / (\Lambda'_{\mu})^2$ Coupling

[Stadnik, PRL 131, 011001 (2023)]

Up to 12 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF and RAL in 1990s)

Scalar-Mediated New Forces (Not necessarily DM)

[Karshenboim, PRL 104, 220406 (2010)], [Frugiuele, Perez-Rios, Peset, PRD 100, 015010 (2019)]

See Lei Cong's poster (Wednesday)

Probing Scalar-Muon Coupling with Muonium Free-fall [Stadnik, PRL 131, 011001 (2023)]

Local value of g measured in free-fall experiments using muonium would differ from experiments using non-muon-based test masses

Weak equivalence principle violation (lepton flavour dependent)

Probing Scalar-Muon Coupling with Muonium Free-fall [Stadnik, PRL 131, 011001 (2023)]

Local value of g measured in free-fall experiments using muonium would differ from experiments using non-muon-based test masses

Recently started LEMING experiment at PSI aims to measure *g* with a precision of $\Delta g/g \sim 10^{-2} - 10^{-1}$ using muonium

Probing Scalar-Muon Coupling with Muonium Free-fall [Stadnik, PRL 131, 011001 (2023)]

Probing Scalar-Muon Coupling with Muonium Free-fall

[Stadnik, PRL 131, 011001 (2023)]

Up to 5 orders of magnitude improvement possible with ongoing measurements! (Recently started LEMING experiment at PSI targets a precision of $\Delta g/g \sim 0.1$)

Summary

- Recent searches for ultralight scalar DM have focused on the electromagnetic (photon) and electron couplings
- Muonium spectroscopy offers a powerful probe of ultralight scalar dark matter via interactions with muons leading to apparent oscillations of muon mass
 - With existing datasets, up to ~10⁷ improvement possible for $\varphi \bar{\mu} \mu$ coupling (up to ~10¹² improvement for the $\varphi^2 \bar{\mu} \mu$ coupling over an even broader range of scalar DM masses)
- Ongoing muonium free-fall experiments to measure g offer up to ~10⁵ improvement in sensitivity for the combination of $\varphi \bar{\mu} \mu$ and $\varphi \bar{e} e$ couplings by searching for φ -mediated forces

Back-Up Slides

Complementary Probes of Low-mass Scalars

Interconversion with ordinary particles

Larmor radiation

 $\mathcal{M} \propto g \text{ (or } g^2)$

 $\mathcal{O} \propto g^2$ (or g^4)

 $\mathcal{M} \propto g$

 $\mathcal{O} \propto g^2$

В

φ

Equivalence-Principle-Violating Forces

• Different mass-energy components of an atom generally scale differently with proton number *Z* and atomic number A = Z + N:

$$M_{\rm atom} \approx (A - Z)m_n + Zm_p + Zm_e + 100Z(Z - 1)\alpha/A^{1/3} \text{ MeV} + \cdots$$

 Different atoms and isotopes would generally experience different accelerations, implying violation of the equivalence principle

Light-shining-through-a-wall Experiments

[ALPS Collaboration, PLB 689, 149 (2010)], [OSQAR Collaboration, PRD 92, 092002 (2015)]

 $q = |\mathbf{k}_{\gamma} - \mathbf{k}_{\varphi}|$ is the momentum transfer during interconversion

$$\mathcal{L}_{\text{scalar}} \propto \varphi F_{\mu\nu} F^{\mu\nu} \propto \varphi \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \Rightarrow \text{Need } \mathbf{E}_{\gamma}^{\text{lin}} \perp \mathbf{B}$$

 $\mathcal{L}_{\text{pseudoscalar}} \propto \varphi F_{\mu\nu} \tilde{F}^{\mu\nu} \propto \varphi \boldsymbol{E} \cdot \boldsymbol{B} \Rightarrow \text{Need } \boldsymbol{E}_{\gamma}^{\text{lin}} \parallel \boldsymbol{B}$

Astrophysical Emission (Hot Media)

[Raffelt, Phys. Rept. 198, 1 (1990)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \varepsilon_{\gamma\gamma \to \varphi} \sim \frac{T^{7}}{\Lambda_{\gamma}^{2}}$$

Emission possible for $m_{\varphi} \leq \mathcal{O}(T)$

Primakoff-type conversion

Excessive energy loss via additional channels would contradict stellar models and observations

Increased heating in active stars (e.g., Sun and main sequence stars, HB stars, red giants)

$$\langle E_{\text{mech}} \rangle = \langle E_{\text{kin}} \rangle + \langle E_{\text{grav}} \rangle = \langle E_{\text{grav}} \rangle / 2 < 0$$

 $\langle E_{\text{mech}} \rangle \downarrow \Rightarrow - \langle E_{\text{grav}} \rangle / 2 = \langle E_{\text{kin}} \rangle \uparrow$

Astrophysical Emission (Hot Media)

[Raffelt, Phys. Rept. 198, 1 (1990)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \varepsilon_{\gamma\gamma\to\varphi} \sim \frac{T^7}{\Lambda_{\gamma}^2}$$

Emission possible for $m_{\varphi} \leq \mathcal{O}(T)$

Primakoff-type conversion

Excessive energy loss via additional channels would contradict stellar models and observations

Increased cooling in dead stars (e.g., white dwarves, neutron stars)

Astrophysical Emission (Compact Binaries)

[Kumar Poddar et al., PRD 100, 123923 (2019)], [Dror et al., PRD 102, 023005 (2020)]

• Scalar Larmor radiation possible if $m_{\varphi} < \Omega$ (higher-order modes also possible for an elliptical orbit if $m_{\varphi} < n\Omega$, n = 2, 3, ...):

$$\frac{dE_{\varphi}}{dt} \sim \left(\frac{m_f}{\Lambda_f}\right)^2 (aM)^2 \Omega^4 \left(\frac{Q_{\rm A}}{M_{\rm A}} - \frac{Q_{\rm B}}{M_{\rm B}}\right)^2, \text{ for } \Omega a \ll 1$$

• Dipole nature requires $Q_A/M_A \neq Q_B/M_B$, which is readily satisfied, e.g., for neutron-star/white-dwarf binary systems in the case of $f = n, e, \mu$
• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

Damped harmonic oscillator with a time-dependent frictional term (*H* = Hubble parameter, *a* = scale factor)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

 $\ddot{\varphi} + 3H(t)\dot{\varphi} + m_{\varphi}^{2}\varphi \approx 0$ $m_{\varphi} \sim 3H(t) \sim 1/t$

Critically damped regime

t

 $\bullet t_{\rm osc}$

 $\phi_{\rm osc} \sim \phi_i$

 $3H(t_{\rm osc}) = m_{\phi}$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

 $\ddot{\varphi} + 3H(t)\dot{\varphi} + m_{\varphi}^{2}\varphi \approx 0$ $m_{\varphi} \gg 3H(t) \sim 1/t$

"Vacuum misalignment" mechanism – non-thermal production, ρ_{φ} governed by initial conditions (φ_i), redshifts as $\rho_{\varphi} \propto 1$ /Volume, with $\langle p_{\varphi} \rangle \ll \rho_{\varphi}$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\rm DM,local} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

•
$$\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$$

 \downarrow
 $v_{\rm DM} \sim 300 \,\rm km/s$
 $Q_{\rm DM} \sim 10^6$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$

Evolution of φ_0 with time

$$\varphi(t) \sim \sum_{i=1}^{N} \frac{\varphi_0}{\sqrt{N}} \cos\left(m_{\varphi}t + \frac{m_{\varphi}v_i^2 t}{2} + \theta_i\right)$$

 v_i follow quasi-Maxwell-Boltzmann distribution (in the standard halo model)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$

Probability distribution function of φ_0 (Rayleigh distribution)

Evolution of φ_0 with time

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$

^{*} Pauli exclusion principle rules out sub-eV *fermionic* dark matter

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$
- $10^{-21} \text{ eV} \lesssim m_{\varphi} \lesssim 1 \text{ eV} \iff 10^{-7} \text{ Hz} \lesssim f_{\text{DM}} \lesssim 10^{14} \text{ Hz}$ $T_{\text{osc}} \sim 1 \text{ month}$ IR frequencies

Lyman-α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

[Related figure-of-merit: $\lambda_{dB,\varphi}/2\pi \le L_{dwarf\,galaxy} \sim 100 \,\mathrm{pc} \Rightarrow m_{\varphi} \gtrsim 10^{-21} \,\mathrm{eV}$]

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \lesssim 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\text{dB},\varphi}/2\pi)^3 \gg 1$
- $10^{-21} \,\mathrm{eV} \lesssim m_{\varphi} \lesssim 1 \,\mathrm{eV} \iff 10^{-7} \,\mathrm{Hz} \lesssim f_{\mathrm{DM}} \lesssim 10^{14} \,\mathrm{Hz}$

Lyman- α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

Wave-like signatures [cf. particle-like signatures of WIMP DM]

Fifth Forces: Linear vs Quadratic Couplings

Fifth Forces: Linear vs Quadratic Couplings

Gradients + amplification/screening

Gradients + amplification/screening

Fifth Forces: Linear vs Quadratic Couplings

Fifth Forces: Linear vs Quadratic Couplings

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

Atomic spectroscopy (including clocks) has been used for decades to search for "slow drifts" in fundamental constants **Recent overview:** [Ludlow, Boyd, Ye, Peik, Schmidt, *Rev. Mod. Phys.* 87, 637 (2015)]

"Sensitivity coefficients" K_X required for the interpretation of experimental data have been calculated extensively by Flambaum group
 Reviews: [Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$\frac{\nu_{\rm opt,1}}{\nu_{\rm opt,2}} \propto \frac{\left(m_e e^4/\hbar^3\right) F_{\rm rel,1}^{\rm opt}(Z\alpha)}{\left(m_e e^4/\hbar^3\right) F_{\rm rel,2}^{\rm opt}(Z\alpha)}$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$\nu_{\text{opt}} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\text{rel}}^{\text{opt}}(Z\alpha)$$
$$\frac{\nu_{\text{opt,1}}}{\nu_{\text{opt,2}}} \propto \frac{\left(m_e e^4/\hbar^3\right) F_{\text{rel,1}}^{\text{opt}}(Z\alpha)}{\left(m_e e^4/\hbar^3\right) F_{\text{rel,2}}^{\text{opt}}(Z\alpha)}$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

$$|\boldsymbol{p}_e|_{\text{near nucleus}} \sim Z \alpha m_e c$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

For transitions between closely spaced energy levels that arise due to the near cancellation of contributions of different nature, the K_{α} sensitivity coefficients can be greatly enhanced, e.g.:

- $-|K_{\alpha}(Cf^{15+})| \approx 50$ [Dzuba *et al.*, *PRA* **92**, 060502(R) (2015)]
- $|K_{\alpha}(^{229}\text{Th})| \sim 10^4$ [Flambaum, *PRL* **97**, 092502 (2006)]

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$v_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$\nu_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$
$$K_{\alpha}({\rm H}) = 2.0, K_{\alpha}({\rm Rb}) = 2.3, K_{\alpha}({\rm Cs}) = 2.8$$
Increasing Z

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$K_{m_e/m_N} = 1$$

$$v_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$

 $K_{\alpha}(H) = 2.0, K_{\alpha}(Rb) = 2.3, K_{\alpha}(Cs) = 2.8$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$K_{m_e/m_N} = 1$$

$$\nu_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu \longleftarrow K_{m_q/\Lambda_{\rm QCD}} \neq 0$$

$$K_{\alpha}(H) = 2.0, K_{\alpha}(Rb) = 2.3, K_{\alpha}(Cs) = 2.8$$

Increasing Z

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

- Dy/Cs [Mainz]: [Van Tilburg et al., PRL 115, 011802 (2015)], [Stadnik, Flambaum, PRL 115, 201301 (2015)]
 - Rb/Cs [SYRTE]: [Hees et al., PRL 117, 061301 (2016)], [Stadnik, Flambaum, PRA 94, 022111 (2016)]
 - Al⁺/Yb, Yb/Sr, Al⁺/Hg⁺ [NIST + JILA]: [BACON Collaboration, *Nature* **591**, 564 (2021)]
 - Yb/Cs [NMIJ]: [Kobayashi *et al.*, *PRL* **129**, 241301 (2022)]
 - Yb⁺(E3)/Sr [PTB]: [Filzinger et al., PRL 130, 253001 (2023)]

Constraints on Scalar Dark Matter with $\varphi F_{\mu\nu}F^{\mu\nu}/4\Lambda_{\gamma}$ Coupling

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)], [*PRL* **130**, 253001 (2023)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

5 orders of magnitude improvement!

Constraints on Scalar Dark Matter with $\varphi F_{\mu\nu}F^{\mu\nu}/4\Lambda_{\gamma}$ Coupling

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)], [*PRL* **130**, 253001 (2023)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

5 orders of magnitude improvement!

BBN Constraints on 'Slow' Drifts in Fundamental Constants due to Dark Matter [Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Largest effects of DM in early Universe (highest $\rho_{\rm DM}$)
- Big Bang nucleosynthesis ($t_{\text{weak}} \approx 1 \text{ s} t_{\text{BBN}} \approx 3 \text{ min}$)
- Primordial ⁴He abundance sensitive to n/p ratio (almost all neutrons bound in ⁴He after BBN)

Constraints on Scalar Dark Matter with $\varphi^2 F_{\mu\nu} F^{\mu\nu} / 4 (\Lambda'_{\gamma})^2$ Coupling

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* **115**, 201301 (2015); *PRA* **94**, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* **98**, 064051 (2018)]

15 orders of magnitude improvement!

Estimated Sensitivities to Scalar Dark Matter with $\varphi \bar{\mu} \mu / \Lambda_{\mu}$ Coupling

[Stadnik, PRL 131, 011001 (2023)]

Up to 7 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF and RAL in 1990s)

Estimated Sensitivities to Scalar Dark Matter with $\varphi^2 \bar{\mu} \mu / (\Lambda'_{\mu})^2$ Coupling

[Stadnik, PRL 131, 011001 (2023)]

Up to 12 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF and RAL in 1990s)

Screening Mechanisms and Environmental Effects
Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings ($\varphi \overline{X}X$)

 $\Box \varphi + m_{\varphi}^2 \varphi = \pm \kappa \rho$ Source term

Profile outside of a spherical body

Fifth Forces: Linear vs Quadratic Couplings

Chameleon Mechanism

[Khoury, Weltmann, PRL 93, 171104 (2004); PRD 69, 044026 (2004)]

low $\rho \Rightarrow \text{low } m_{\text{eff},\varphi}$

Chameleon Mechanism

[Khoury, Weltmann, PRL 93, 171104 (2004); PRD 69, 044026 (2004)]

• Going from a low-density environment (e.g., vacuum) to a high-density environment (e.g., terrestrial), the effective scalar mass increases, effectively reducing the interaction range $\lambda_{\rm eff} \sim 1/m_{{\rm eff},\varphi}$, and the value of φ diminishes

- Scalar field φ tends to be screened inside of dense bodies

Atom Interferometry Probes of Chameleons

[Burrage *et al.*, *JCAP* **03** (2015) 042], [Hamilton *et al.*, *Science* **349**, 849 (2015)], [Jaffe *et al.*, *Nat. Phys.* **13**, 938 (2017)], [Sabulsky *et al.*, *PRL* **123**, 061102 (2019)]

- Need $\lambda_{eff} \leq R_{body}$ inside a dense body for strong screening to occur
- Small test bodies (e.g., atoms) can evade strong screening

Atom Interferometry Probes of Chameleons

[Burrage *et al.*, *JCAP* **03** (2015) 042], [Hamilton *et al.*, *Science* **349**, 849 (2015)], [Jaffe *et al.*, *Nat. Phys.* **13**, 938 (2017)], [Sabulsky *et al.*, *PRL* **123**, 061102 (2019)]

$$V_{\rm eff}(\varphi) = \frac{\Lambda^5}{\varphi} + \frac{\rho\varphi}{M}$$

[Olive, Pospelov, PRD 77, 043524 (2008)], [Stadnik, PRD 102, 115016 (2020)]

$$\mathcal{L}_{\gamma}' = \frac{\varphi^2}{\left(\Lambda_{\gamma}'\right)^2} \frac{F_{\mu\nu}F^{\mu\nu}}{4} - \frac{\varphi^2}{\left(\Lambda_f'\right)^2} m_f \bar{f} f$$

[Olive, Pospelov, PRD 77, 043524 (2008)], [Stadnik, PRD 102, 115016 (2020)]

 Z_2 symmetry: $\varphi \rightarrow -\varphi$

[Olive, Pospelov, PRD 77, 043524 (2008)], [Stadnik, PRD 102, 115016 (2020)]

• Scalar field φ tends to be screened in dense environments

[Olive, Pospelov, PRD 77, 043524 (2008)], [Stadnik, PRD 102, 115016 (2020)]

Low ρ (vacuum breaks Z₂ symmetry)

High ρ (vacuum respects Z₂ symmetry)

- Scalar field φ tends to be screened in dense environments
- $\alpha[\varphi^2(\rho)], m_f[\varphi^2(\rho)] \Rightarrow$ Environmental dependence of "constants"

[Stadnik, PRD 102, 115016 (2020)]

• Variations of "constants" with height above a dense body

$$\mathcal{L}_{\gamma} = \frac{\varphi^2}{\left(\Lambda_{\gamma}'\right)^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \quad \text{cf.} \quad \mathcal{L}_{\gamma}^{\text{SM}} = -\frac{F_{\mu\nu} F^{\mu\nu}}{4} - eJ_{\mu} A^{\mu} \quad \Rightarrow \quad \alpha(\varphi^2) \approx \alpha_0 \left[1 + \left(\frac{\varphi}{\Lambda_{\gamma}'}\right)^2\right]$$

[Stadnik, PRD 102, 115016 (2020)]

- Variations of "constants" with height above a dense body
- Can search for these spatial variations with:
 - 1. Equivalence-principle-violating forces: $\delta a_{\text{test}} = -\nabla [m_{\text{test}}(\alpha)]/m_{\text{test}}$
 - 2. Compare clocks at different heights: $\Delta v / v \propto \Delta \alpha / \alpha$
 - 3. Compare laboratory and low-density ($\sim 10^{-3} \text{ cm}^{-3}$) astrophysical spectra

[Stadnik, PRD 102, 115016 (2020)]

- Variations of "constants" with height above a dense body
- Can search for these spatial variations with:
 - 1. Equivalence-principle-violating forces: $\delta a_{\text{test}} = -\nabla [m_{\text{test}}(\alpha)]/m_{\text{test}}$
 - 2. Compare clocks at different heights: $\Delta v / v \propto \Delta \alpha / \alpha$
 - 3. Compare laboratory and low-density ($\sim 10^{-3} \text{ cm}^{-3}$) astrophysical spectra

[Stadnik, PRD 102, 115016 (2020)]

- Variations of "constants" with height above a dense body
- Can search for these spatial variations with:

1. Equivalence-principle-violating forces: $\delta a_{\text{test}} = -\nabla [m_{\text{test}}(\alpha)]/m_{\text{test}}$

- 2. Compare clocks at different heights: $\Delta v / v \propto \Delta \alpha / \alpha$
- 3. Compare laboratory and low-density ($\sim 10^{-3}$ cm⁻³) astrophysical spectra

[Stadnik, PRD 102, 115016 (2020)]

- Variations of "constants" with height above a dense body
- Can search for these spatial variations with:

I. Equivalence-principle-violating forces: $\delta a_{test} = -\nabla [m_{test}(\alpha)]/m_{test}$

- 2. Compare clocks at different heights: $\Delta \nu / \nu \propto \Delta \alpha / \alpha$
- 3. Compare laboratory and low-density ($\sim 10^{-3}$ cm⁻³) astrophysical spectra

Interpretation of Single-Clock-Type Experiments [Stadnik, PRD 102, 115016 (2020)]

- The Tokyo Skytree experiment measured the gravitational potential difference between a pair of Sr optical clocks separated by a height difference of Δh ≈ 450 m; for details, See: [Takamoto *et al.*, *Nature Photonics* 14, 411 (2020)]
- To distinguish the effects of a scalar field φ from the usual gravitational redshift effect, can "reference" a single pair of clocks against a combination of laser-ranging and gravimeter measurements (which provide an independent prediction of the clock frequency shift within the framework of relativity)

$$\frac{\Delta \nu_{\rm Sr} \propto \Delta (m_e \alpha^2)}{\Delta a_{\rm grav} \propto \nabla m_N} \right\} \Rightarrow \left(\frac{\Delta \nu_{\rm Sr}}{\nu_{\rm Sr}} \right)_{\rm eff} \approx \Delta (\varphi^2) \left[\frac{2}{\left(\Lambda_{\gamma}'\right)^2} + \frac{1}{\left(\Lambda_{e}'\right)^2} - \frac{1}{\left(\Lambda_{N}'\right)^2} \right]$$

[Stadnik, PRD 102, 115016 (2020)]

- Variations of "constants" with height above a dense body
- Can search for these spatial variations with:

I. Equivalence-principle-violating forces: $\delta a_{\text{test}} = -\nabla [m_{\text{test}}(\alpha)]/m_{\text{test}}$

- 2. Compare clocks at different heights: $\Delta \nu / \nu \propto \Delta \alpha / \alpha$
- 3. Compare laboratory and low-density ($\sim 10^{-3} \text{ cm}^{-3}$) astrophysical spectra

[Stadnik, PRD 102, 115016 (2020)]

- Variations of "constants" with height above a dense body
- Can search for these spatial variations with:
 - 1. Equivalence-principle-violating forces: $\delta a_{\text{test}} = -\nabla [m_{\text{test}}(\alpha)]/m_{\text{test}}$
 - 2. Compare clocks at different heights: $\Delta v / v \propto \Delta \alpha / \alpha$
 - 3. Compare laboratory and low-density ($\sim 10^{-3} \text{ cm}^{-3}$) astrophysical spectra

Bounds on Symmetron Model

[Stadnik, PRD 102, 115016 (2020)]

$$V_{\rm eff}(\varphi) = \frac{\lambda}{4} \left(\varphi^2 - \varphi_0^2\right)^2 + \frac{\rho_e \varphi^2}{(\Lambda'_e)^2}$$

Opportunities for Space-Based Experiments

[Schkolnik et al., Quantum Sci. Technol. 8, 014003 (2023)]

$$V_{\rm eff}(\varphi) = \frac{\lambda}{4} \left(\varphi^2 - \varphi_0^2\right)^2 + \frac{\rho_e \varphi^2}{(\Lambda'_e)^2}$$

