ETH zürich

Institute for Particle Physics and Astrophysics

Production of a 6keV antihydrogen beam in the GBAR experiment

Philipp Blumer on behalf of the GBAR collaboration Group of Prof. Dr. Paolo Crivelli, ETHZ

12. June 2024

Antihydrogen – a blossoming field of research

- SM doesn't explain baryon asymmetry in the Universe
- New frameworks: e.g. Standard Model Extension (SME)
 - Built from SM, General Relativity and includes Lorentz- and CPT violating operators
 - Coefficients to be determined experimentally
 - Probe CPT by measuring the Lamb Shift of antihydrogen (\overline{H})
- Direct test of Weak Equivalence Principle with antimatter → Free fall experiment
 - ALPHA-g: $(0.75 \pm 0.13(stat. + syst.) \pm 0.16(sim.))g$ [*]
 - BASE collaboration extracted \bar{g} from gravitational redshift to $\frac{\Delta \bar{g}}{\bar{g}} = 3\%$ [**]

ALPHA, Nature 592, 35-42 (2021) ALPHA, Nature 578, 375-380 (2020) ALPHA, Nature 561, 211-215 (2018) ALPHA, Nature 557, 71-75 (2018) AEgIS, Commun Physics 4, 19 (2021) ATRAP, Phys. Rev. Lett. 110, 130801 (2013) ASACUSA, Nature 475, 484-488 (2011)

[*] ALPHA, Nature 621, 716-722 (2023) [**] BASE, Nature 601, 53-57 (2022)

ETH zürich

GBAR main goal and principle

- 1. Produce \overline{H}^+ and trap in Paul trap, pre-filled with Be⁺ ions
- 2. Sympathetically cool anti-ions to $10 \ \mu$ K, cool Be⁺ with 313 nm laser
- 3. Photo-detach excess positron with 1640 nm laser
- 4. Measure time of flight and annihilation position of \overline{H} with trackers

GOAL: first step $\frac{\Delta \bar{g}}{\bar{g}} \le 1\%$, later to 10^{-5} with "quantum free fall"

GBAR principle and schematic

(1) $\overline{p} + Ps \rightarrow \overline{H} + e^{-}$

- p: antiprotons from the ELENA ring at 100 keV energy 110 s
- Ps: bound state of electron and positron

(2) $\overline{H} + Ps \rightarrow \overline{H}^+ + e^-$

- Unique approach of GBAR
- Threshold for reaction: 6keV

Status by the end of 2022

Positron and Positronium formation

- LINAC e⁻:
 - Impinges on a tungsten target, which leads to high energy γ 's \rightarrow e⁺ formation via pair production
 - During 2022 running at 200 Hz \rightarrow 2.9 × 10⁷ e⁺/s
- e⁺:
 - Routinely trapping and accumulating $1.5\times10^8 e^+$ per AD cycle
 - Maximum achieved: $1.4(2) \times 10^9 \text{ e}^+/1100 \text{ s}$
- Ps: bound state of electron and positron
 - Short lifetimes of 125 ps (p-Ps) and 142 ns (o-Ps)
 - During 2022 \rightarrow no cavity but simpler flat target

M. Charlton et al., NIMA, 985, 164657 (2021) **P. Blumer et al.**, NIMA, 1040, 167263 (2022)

Antiproton beam line and deceleration

- Extra Low ENergy Antiproton (ELENA) ring:
 - 7 × 10⁶ \overline{p} per AD cycle at 100 keV kinetic energy
- Drift tube: 100 keV to 1 10 keV
 - Deceleration to 6.1 ± 0.05 keV
- Antiproton flux interacting in the $\overline{\mathrm{H}}$ production
 - Determination with a CMOS sensor
 - Count number of traversing pions from antiproton annihilations
 - $-~(3.1\pm0.6)\times10^6\bar{p}$ per AD cycle
- Antiproton trap:
 - Currently being commissioned
 - Cold \overline{p} can be focused through a denser Ps cloud yielding a higher charge exchange rate

Expected time of flight of Antihydrogen

- MCP measures electric signal with precise timing information and visualizes with a fast phosphor screen
- p
 pass in front of e⁺ target and pass through a collimator/deflector (Ø 5mm)
- Measured time distribution of undeflected \overline{p} defining signal window of neutral \overline{H} : $t = 5.37 \pm 2 \times 0.096 \,\mu s$

Antihydrogen production scheme

y [pixels]

Philipp Blumer - on behalf of the GBAR collaboration

12.06.2024 9

Estimation of antihydrogen production – Monte Carlo simulation

• Charge exchange reaction: $\overline{p} + Ps \rightarrow \overline{H} + e^-$

- With a realistic MC simulation considering:
 - e^+ and \overline{p} bunch distribution
 - Ps decay and diffusion from SiO₂
 - Overlap between Ps and \overline{p}
 - $N_{Ps} = (6.8 \pm 1.5) \times 10^6 Ps$
 - $N_{\overline{p}} = (3.1 \pm 0.75) \times 10^{6} \overline{p}$
 - $\sigma_{\overline{H}} = 13.4 \times 10^{-16} \text{cm}^2$
 - $N_{\rm \bar{H}} = 0.011 \pm 0.003$

Antihydrogen production campaign – Analysis on electrical signal

- \overline{p} only: 8468 spills
 - main background due to charged pions from \overline{p} annihilations upstream
- Mixing: 6897 spills
- Ps background negligible
- Expected production rate at 6keV 1.1 \pm 0.3 \overline{H} per 100 spills
 - $N_{Ps} = (6.8 \pm 1.5) \times 10^{6} Ps$
 - $N_{\overline{p}} = (3.1 \pm 0.75) \times 10^6 \overline{p}$

Short term outlook

- Increase antihydrogen production rate
 - New positron trapping scheme with SiC remoderator and improvements on the e⁺ transfer efficiency
 - Antiproton trap will confine \overline{p} better and allow to intersect with a denser Ps cloud
 - Antihydrogen ion production
- First attempt of \overline{H} Lamb shift measurement
 - GBAR uniquely producing $\overline{H}(2S)$; at 6keV 10%
 - Finite size effects (affects primarily S state)
 - $\Delta E_{\rm nucl} = \frac{2}{3} \frac{(Z\alpha)^4}{n^3} m_{\rm R}^3 R_{\rm p}^2$
 - At level of 100 ppm determine the antiproton charge radius at 10% level

P. Crivelli, D. Cooke, M. W. Heiss, "Antiproton charge radius", Phys. Rev. D 94, 052008 (2016) ETH zürich Philipp Blumer – on behalf of the GBAR collaboration

e⁺ $\overline{\mathbf{H}}^+$ Lya detector Reaction Chamber ∖ Lya **HFS** selector Microwave $\overline{\mathrm{H}}$ (2S \rightarrow 1S) Ps **H** (1S, 2S) Ħ p **H**⁺;**p** Mesoporous SiO₂ Quenching electrodes p

Lya detector

- Lamb shift setup commissioned in 2021 with hydrogen and currently running with ELENA H⁻ beam trough a C-foil
- Geant4 MC simulation, validated with H and M at PSI:
 - Estimated detection efficiency: $\varepsilon_{LyA} \times \varepsilon_{Geo/Qnch} = 16\%$
 - $\varepsilon_{LyA} = \varepsilon_{MCP} \times \varepsilon_{QE} = 40\%$ Measurement ETH
 - $\varepsilon_{\text{Geo/Qnch}} = 40\%$ SIMION simulation
- Assuming reaction tube, $3 \times 10^6 \overline{p}$ and $10^8 Ps$ per spill:
 - $\overline{H}(2S)$: 0.3 per spill

ETH zürich

Lamb shift measurement

- Assume duty cycle of ELENA of 80%
- Measure LS to 10MHz precision within 35 days

MCP

Long term outlook - "Quantum free fall" of Antihydrogen

 e_x

d

Parabolas: classical motion with rebounds above mirror Dashed horizontal lines: paths through different quantum states which interfere in the detection pattern

- Height of free fall must be much larger than dispersion of wave packet
 - Acts as diffraction process, translates the interaction time and momentum after interference zone into space and time positions of annihilation event
- Expected precision $\frac{\Delta \bar{g}}{\bar{g}} \sim 10^{-5}$

ETH zürich

Summary

- During 2022 (2nd GBAR beamtime) first time coherent operation of GBAR experiment
 - First in-flight production of antihydrogen at 6keV
 - Results consistent with calculated expected rate
- Increase \overline{H} yield
 - Installation and operation of antiproton trap
 - Increase positron number
- Measure \overline{H} Lamb Shift transition in 2024-2025
- After LS3 attempt synthesizing antihydrogen ion
 - Design study of "quantum free fall" in progress

Acknowledgments – GBAR collaboration

P. Adrich¹, P. Blumer², G. Caratsch², M. Chung³, P. Cladé⁴, P. Comini⁵, P. Crivelli²,
O. Dalkarov⁶, P. Debu⁵, A. Douillet^{4,7}, D. Drapier⁴, P. Froelich^{8,*}, S. Guellati-Khelifa^{4,9},
J. Guyomard⁴, P-A. Hervieux¹⁰, L. Hilico^{4,7}, P. Indelicato⁴, S. Jonsell⁸, J-P. Karr^{4,7},
B. Kim¹¹, S. Kim¹², E-S. Kim¹³, Y.J. Ko¹¹, T. Kosinski¹, N. Kuroda¹⁴, B.M. Latacz^{5,**},
B. Lee¹², H. Lee¹², J. Lee¹¹, E. Lim¹³, L. Liszkay⁵, D. Lunney¹⁵, G. Manfredi¹⁰,
B. Mansoulié⁵, M. Matusiak¹, V. Nesvizhevsky¹⁶, F. Nez⁴, S. Niang^{15,**}, B. Ohayon²,
K. Park¹⁰, N. Paul⁴, P. Pérez⁵, C. Regenfus², S. Reynaud⁴, C. Roumegou¹⁵,
J-Y. Roussé⁵, Y. Sacquin⁵, G. Sadowski⁵, J. Sarkisyan², M. Sato¹⁴, F. Schmidt-Kaler¹⁷,
M. Staszczak¹, K. Szymczyk¹, T. Tanaka¹⁴, B. Tuchming⁵, B. Vallage⁵, D.P. van der
Werf¹⁸, A. Voronin⁶, D. Won¹², S. Wronka¹, Y. Yamazaki¹⁹, K-H. Yoo³, P. Yzombard⁴

This work is supported by the Swiss National Foundation under the grants 197346 and 216673.

