ETHzürich

Institute for Particle Physics and Astrophysics

Production of a 6keV antihydrogen beam in the GBAR experiment

Philipp Blumer on behalf of the GBAR collaboration Group of Prof. Dr. Paolo Crivelli, ETHZ

12. June 2024

Antihydrogen – a blossoming field of research

- SM doesn't explain baryon asymmetry in the Universe
- New frameworks: e.g. Standard Model Extension (SME)
	- − Built from SM, General Relativity and includes Lorentz- and CPT violating operators
	- − Coefficients to be determined experimentally
	- − Probe CPT by measuring the Lamb Shift of antihydrogen (\overline{H})
- Direct test of Weak Equivalence Principle with antimatter \rightarrow Free fall experiment
	- $-$ ALPHA-g: $(0.75 \pm 0.13(stat. +syst.) \pm 0.16(sim.))g$ [*]
	- BASE collaboration extracted \bar{g} from gravitational redshift to $\frac{\Delta \bar{g}}{\bar{g}}$ $\frac{\Delta g}{\bar{g}}=3\%$ [**]

ALPHA, Nature 592, 35-42 (2021) **ALPHA**, Nature 578, 375-380 (2020) **ALPHA**, Nature 561, 211-215 (2018) **ALPHA**, Nature 557, 71-75 (2018) **AEgIS**, Commun Physics 4, 19 (2021) **ATRAP**, Phys. Rev. Lett. 110, 130801 (2013) **ASACUSA**, Nature 475, 484-488 (2011)

[*] ALPHA, Nature 621, 716-722 (2023) **[**] BASE**, Nature 601, 53-57 (2022)

ETHzürich

GBAR main goal and principle

- 1. Produce \overline{H}^+ and trap in Paul trap, pre-filled with Be⁺ ions
- 2. Sympathetically cool anti-ions to 10μ K, cool Be⁺ with 313 nm laser
- 3. Photo-detach excess positron with 1640 nm laser
- 4. Measure time of flight and annihilation position of \overline{H} with trackers

GOAL: first step $\frac{\Delta \bar{g}}{\bar{g}}$ \bar{g} ≤ 1%, later to 10^{-5} with "quantum free fall"

ETHzürich

GBAR principle and schematic

(1) $\overline{p} + Ps \rightarrow \overline{H} + e^-$

- \cdot \bar{p} : antiprotons from the ELENA ring at 100 keV energy 110 s
- Ps: bound state of electron and positron

(2) $\overline{H} + Ps \rightarrow \overline{H}^+ + e^-$

- Unique approach of GBAR
- Threshold for reaction: 6keV

Status by the end of 2022

Positron and Positronium formation

- LINAC e −:
	- − Impinges on a tungsten target, which leads to high energy γ 's \rightarrow e⁺ formation via pair production
	- − During 2022 running at 200 Hz \rightarrow 2.9 \times 10⁷ e⁺/s
- e^+ :
	- $-$ Routinely trapping and accumulating 1.5×10^8 e⁺ per AD cycle
	- Maximum achieved: $1.4(2) \times 10^9$ e⁺/1100 s
- Ps: bound state of electron and positron
	- − Short lifetimes of 125 ps (p-Ps) and 142 ns (o-Ps)
	- $-$ During 2022 \rightarrow no cavity but simpler flat target

M. Charlton et al., NIMA, 985, 164657 (2021) **P. Blumer et al.,** NIMA, 1040, 167263 (2022)

Antiproton beam line and deceleration

- Extra Low ENergy Antiproton (ELENA) ring:
	- 7×10^6 per AD cycle at 100 keV kinetic energy
- Drift tube: 100 keV to $1 10$ keV
	- Deceleration to $6.1 + 0.05$ keV
- Antiproton flux interacting in the \overline{H} production
	- − Determination with a CMOS sensor
	- − Count number of traversing pions from antiproton annihilations
	- $-$ (3.1 \pm 0.6) \times 10⁶ \overline{p} per AD cycle
- Antiproton trap:
	- − Currently being commissioned
	- Cold \bar{p} can be focused through a denser Ps cloud yielding a higher charge exchange rate

Expected time of flight of Antihydrogen

- MCP measures electric signal with precise timing information and visualizes with a fast phosphor screen
- \cdot \bar{p} pass in front of e^+ target and pass through a collimator/deflector (Ø 5mm)
- Measured time distribution of undeflected \bar{p} defining signal window of neutral \overline{H} : $t = 5.37 \pm 2 \times 0.096 \,\mu s$

Antihydrogen production scheme

Estimation of antihydrogen production – Monte Carlo simulation

• Charge exchange reaction: $\bar{p} + Ps \rightarrow \bar{H} + e^-$

- With a realistic MC simulation considering:
	- e^+ and \bar{p} bunch distribution
	- $-$ Ps decay and diffusion from $SiO₂$
	- $-$ Overlap between Ps and \bar{p}
	- $-N_{Ps} = (6.8 \pm 1.5) \times 10^6$ Ps
	- $-N_{\overline{p}} = (3.1 \pm 0.75) \times 10^6 \overline{p}$
	- $\sigma_{\overline{H}} = 13.4 \times 10^{-16}$ cm²
		- $N_{\overline{H}} = 0.011 \pm 0.003$

Antihydrogen production campaign – Analysis on electrical signal

- \bar{p} only: 8468 spills
	- − main background due to charged pions from \bar{p} annihilations upstream
- Mixing: 6897 spills
- Ps background negligible
- Expected production rate at 6keV $1.1 \pm 0.3 \overline{\text{H}}$ per 100 spills
	- $-N_{Ps} = (6.8 \pm 1.5) \times 10^6$ Ps
	- $-N_{\overline{p}} = (3.1 \pm 0.75) \times 10^6 \overline{p}$

Short term outlook

- Increase antihydrogen production rate
	- New positron trapping scheme with SiC remoderator and improvements on the e^+ transfer efficiency
	- Antiproton trap will confine \bar{p} better and allow to intersect with a denser Ps cloud
	- − Antihydrogen ion production
- First attempt of \overline{H} Lamb shift measurement
	- $-$ GBAR uniquely producing $\overline{H}(2S)$; at 6keV 10%
	- Finite size effects (affects primarily S state)
	- $\Delta E_{\text{nucl}} = \frac{2}{3}$ 3 $(Z\alpha)^4$ $\frac{(2a)^4}{n^3} m_\text{R}^3 R_\text{p}^2$
	- − At level of 100 ppm determine the antiproton charge radius at 10% level

P. Crivelli, D. Cooke, M. W. Heiss, "Antiproton charge radius", Phys. Rev. D 94, 052008 (2016)**ETH**zürich Philipp Blumer – on behalf of the GBAR collaboration 12.06.2024 12

e^+ $\bar{\mathbf{H}}^+$ Lya detector **Reaction Chamber** \Lya **HFS** selector **Microwave** \overline{H} (1S, 2S) \overline{H} (2S \rightarrow 1S) Ps Ħ \bar{p} **MCP** \overline{H}^+ ; \overline{p} Quenching Mesoporous SiO₂ electrodes \bar{p}

Lya detector

- Lamb shift setup commissioned in 2021 with hydrogen and currently running with ELENA H⁻ beam trough a C-foil
- Geant4 MC simulation, validated with H and M at PSI:
	- − Estimated detection efficiency: $\varepsilon_{LyA} \times \varepsilon_{Geo/Qnch} = 16\%$
		- $\varepsilon_{\text{LyA}} = \varepsilon_{\text{MCP}} \times \varepsilon_{\text{QE}} = 40\%$ Measurement ETH
		- $-\varepsilon_{\text{Geo/Qnch}} = 40\%$ SIMION simulation
- Assuming reaction tube, 3×10^6 p and 10^8 Ps per spill:
	- $\overline{H}(2S)$: 0.3 per spill

Lamb shift measurement

- − Assume duty cycle of ELENA of 80%
- − Measure LS to 10MHz precision within 35 days

Long term outlook - "Quantum free fall" of Antihydrogen

 e_x

d

Parabolas: classical motion with rebounds above mirror Dashed horizontal lines: paths through different quantum states which interfere in the detection pattern

- Height of free fall must be much larger than dispersion of wave packet
	- Acts as diffraction process, translates the interaction time and momentum after interference zone into space and time positions of annihilation event
- Expected precision $\frac{\Delta \bar{g}}{\bar{g}}$ \bar{g} $~10^{-5}$

ETHzürich

Phys. Rev. A 99, 042119 (2019)

Summary

- During 2022 (2nd GBAR beamtime) first time coherent operation of GBAR experiment
	- − First in-flight production of antihydrogen at 6keV
	- − Results consistent with calculated expected rate
- Increase \overline{H} yield
	- − Installation and operation of antiproton trap
	- − Increase positron number
- Measure \overline{H} Lamb Shift transition in 2024-2025
- After LS3 attempt synthesizing antihydrogen ion
	- Design study of "quantum free fall" in progress

Acknowledgments – GBAR collaboration

P. Adrich¹, P. Blumer², G. Caratsch², M. Chung³, P. Cladé⁴, P. Comini⁵, P. Crivelli², O. Dalkarov⁶, P. Debu⁵, A. Douillet^{4,7}, D. Drapier⁴, P. Froelich^{8,*}, S. Guellati-Khelifa^{4,9}, J. Guyomard⁴, P-A. Hervieux¹⁰, L. Hilico^{4,7}, P. Indelicato⁴, S. Jonsell⁸, J-P. Karr^{4,7}, B. Kim¹¹, S. Kim¹², E-S. Kim¹³, Y.J. Ko¹¹, T. Kosinski¹, N. Kuroda¹⁴, B.M. Latacz^{5,**}, B. Lee¹², H. Lee¹², J. Lee¹¹, E. Lim¹³, L. Liszkay⁵, D. Lunney¹⁵, G. Manfredi¹⁰, B. Mansoulié⁵, M. Matusiak¹, V. Nesvizhevsky¹⁶, F. Nez⁴, S. Niang^{15,**}, B. Ohayon², K. Park¹⁰, N. Paul⁴, P. Pérez⁵, C. Regenfus², S. Reynaud⁴, C. Roumegou¹⁵, J-Y. Roussé⁵, Y. Sacquin⁵, G. Sadowski⁵, J. Sarkisyan², M. Sato¹⁴, F. Schmidt-Kaler¹⁷, M. Staszczak¹, K. Szymczyk¹, T. Tanaka¹⁴, B. Tuchming⁵, B. Vallage⁵, D.P. van der Werf¹⁸, A. Voronin⁶, D. Won¹², S. Wronka¹, Y. Yamazaki¹⁹, K-H. Yoo³, P. Yzombard⁴

This work is supported by the Swiss National Foundation under the grants 197346 and 216673.

