

Precision Spectroscopy of Helium Atoms

Yu Sun 孙羽

International Conference on Precision Physics of Simple Atomic Systems ETH Zurich 2024/6/11

>> Introduction : Simple Atom, Fundamental Physics

Simple, Calculable, Systems

- ➢ Full quantum, ab initio, no tunable parameters
- Fine structure constant, $\alpha \approx 1/137$
- Electron-Proton mass ratio, $\mu = m_e/m_p \approx 1/1836$
- Rydberg constant, R_{∞}
- Nuclear charge radii, $r_{\rm p}$, $r_{\rm He}$

- > Determination of $R_{\infty}(r_p)$, α , m_p/m_e
- > New Physics?

$$E_{n\ell j} = R_{\infty} \left[-\frac{1}{n^2} + f_{n\ell j}(\alpha, \frac{m_e}{m_p}, \cdots) + \delta_{\ell 0} \frac{C_{NS}}{n^3} r_p^2 \right]$$

$$X_{20} \alpha^2 + X_{30} \alpha^3 + \cdots$$

Beyer et al., Science 2017

H, He, H₂, Li^+ , Be^{2+}

>> Introduction : Simple Atom, Fundamental Physics

Nature (2021) 589 527

Nuclear Radius of µ-He⁺

μ -He⁺/He

Testing fundamental interactions on the helium atom

Krzysztof Pachucki,¹ Vojtěch Patkóš,² and Vladimir A. Yerokhin³

• Physical Review A **95**,062510 (2017)

Test of fundamental physics can be obtained not only from the hydrogenic systems **but also from the few body atomic Systems, such as He and He-like ions**.

Find New Physics in He and He-like System

>> Introduction : Simple Atom, Fundamental Physics

• Isotope Shift and Squared Nuclear Charge Radius Difference

$$\succ \delta r^2 = r_{\text{He-3}}^2 - r_{\text{He-4}}^2$$

> Sufficient to Compare with μ -He⁺

> Results from 2S-2P different from $2^{1}S-2^{3}S$

> Need more independent experiment to verify

Laser cooling based atomic beam system

Front. Phys. China, **4(2)**, 165 (2009) Physical Review A **91**, 030502(R) (2015)

Uncertainty Budget of 2S-2P transition frequency Measurement

Uncertainty	Correction	uncertainty	Rel.uncertainty
	[kHz]	[kHz]	[10⁻¹²]
Statistics	-	0.50	1.8
Frequency calibration	-	0.55	2.0
First-Order Doppler	-	1.00	3.6
Line-Profile	-	0.40	1.2
Second-order Doppler	+0.70	0.15	0.5
Laser Power	-	0.10	0.3
Quantum	+0.60	0.10	0.3
Interference			
Scattering light	-	0.05	0.2
Zeeman effect	-	0.01	0.04
Light-force-induced shift	+0.5	0.8	3
Recoil shift	-42.20	-	
Total	-40.90	1.6	5.0
Physical Review Letters 119 , 263002 (2017)			

Design New Experiment Method

- Systematic effect:
- First Order Doppler Effect
- Light Force shift

>> 氦原子精密谱测量实验研究--2S-2P跃迁测量

Longitude velocity:50m/s to 500m/s
reduce one order of first order doppler
Speed-adjustable atomic beam
Better determine the uncertainty

J.-J. Chen

J.-L.Wen

Uncertainty Budget of 2S-2P transition frequency Measurement

Uncertainty	Correction	uncertainty	Rel.uncertainty
	[kHz]	[kHz]	[10 ⁻¹²]
Statistics	-	0.50	1.8
Frequency calibration	-	0.55	2.0
First-Order Doppler	-	1.00	3.6
Line-Profile	-	0.40	1.2
Second-order Doppler	+0.70	0.15	0.5
Laser Power	-	0.10	0.3
Quantum Interference	+0.60	0.10	0.3
Scattering light	-	0.05	0.2
Zeeman effect	-	0.01	0.04
Light-force-induced shift	+0.5	0.8	3
Recoil shift	-42.20	-	
Total	-40.90	1.6	5.0

Physical Review Letters **105**,123001 (2010)

Systematic effect : First Order Doppler Effect

$$\Delta f = \vec{k} \cdot \vec{v}$$

- ➤Tune to different velocity
- ≻Better estimate the effect of

doppler

- ≻Consistent with each other
- ≻The derivation is not from

doppler effect

Uncertainty Budget of 2S-2P transition frequency Measurement

Uncertainty	Correction	uncertainty	Rel.uncertainty
	[kHz]	[kHz]	[10 ⁻¹²]
Statistics	-	0.50	1.8
Frequency calibration	-	0.55	2.0
First-Order Doppler	-	1.00	3.6
Line-Profile	-	0.40	1.2
Second-order Doppler	+0.70	0.15	0.5
Laser Power	-	0.10	0.3
Quantum Interference	+0.60	0.10	0.3
Scattering light	-	0.05	0.2
Zeeman effect	-	0.01	0.04
Light-force-induced shift	+0.5	0.8	3
Recoil shift	-42.20	-	
Total	-40.90	1.6	5.0

• Light Force Induce Shift

25

Systematic effect :Light-Force-Shift

Systematic effect :Light-Force-Shift

Stand-Wave vs Traveling-Wave

>Estimate Light-Force-Shift

≻The derivation is not from Light-

Force-Shift

Uncertainty Budget of 2S-2P transition frequency Measurement

Uncertainty	Correction	uncertainty	Rel.uncertainty
	[kHz]	[kHz]	[10 ⁻¹²]
Statistics	-	0.50	1.8
Frequency calibration	-	0.55	2.0
First-Order Doppler	-	1.00	3.6 🔨
Line-Profile	-	0.40	1.2
Second-order Doppler	+0.70	0.15	0.5
Laser Power	-	0.10	0.3
Quantum Interference	+0.60	0.10	0.3
Scattering light	-	0.05	0.2
Zeeman effect	-	0.01	0.04
Light-force-induced shift	+0.5	0.8	3 🔨
Recoil shift	-42.20	-	
Total	-40.90	1.6	5.0

Systematic effect :Geometry effect from the slit

Move Slit Position

Systematic effect :Geometry effect from the slid

C.-L Zou Y.-N. Lv Initial State:

 $|\psi_{i}\rangle = |\pm 1\rangle \otimes |\psi_{i}(p)\rangle$ $|\psi_{\rm i}(p)\rangle$ $|\psi_f(p)\rangle$ p 0 |e> N N N |-1> 0> |1>

Coupling: $H = \delta \sigma_{ee} + \left(g_a e^{i\vec{k}\cdot\vec{r}}a^+ \otimes \sigma_{\pm 1,e}^- + h.c.\right)$ $+ \sum_k \left[\Delta_k b_k^+ b_k + \left(g_b e^{i\vec{k}_b\cdot\vec{r}}b_k^+ \otimes \sigma_{0e}^- + h.c.\right)\right]_{\text{state of Post-selction}} \left|\phi\right\rangle = \left|\phi(p)\right\rangle$ $At \ time \ t: \left|\psi_f\right\rangle$ $|\psi_f\rangle = e^{-i\int_0^t H(\tau)d\tau} |\psi_i\rangle$

The number of atoms finally obtained by slit3

$$N(\delta) \propto |\langle \phi(p) | U_{SE} \langle e | O(\delta) | \pm 1 \rangle | \psi_i(p) \rangle|^2$$

S slit3 **Post-selction(WM):** $\left\langle \phi \mid \psi_{f} \right\rangle = \left\langle \phi \left| e^{-i \int_{0}^{t} H(\tau) \mathrm{d}\tau} \right| \psi_{i} \right\rangle$ $|\phi\rangle = |\phi(p)\rangle \otimes |0\rangle$ $|\phi(p)
angle$ 0 p

 \mathbf{N}

坃

Different positions correspond to different distributions

Systematic effect :Geometry effect from the slid=> Post Selection

□ The slit selects atoms with a certain Doppler shift

□ The two retro-reflection lasers experience the same shift

Standing Wave or Traveling Wave all the Same
Move Position of the slit does not change

Uncertainty Budget

This Work: $f(2^{3}S_{1} - 2^{3}P_{0}) = 276\,764\,094\,712.73\,(86)\,kHz$

	X. Zheng		This work	
	Correction	Error (1 σ)	Correction	Error (1o)
Statistics		0.45		0.22
1st Doppler		1.1		0.82
2nd Doppler	+ 0.70	0.15		0.01
Frequency calibration		0.55		0.06
Quantum interference	+ 0.08	0.03	+ 0.05	0.02
Zeeman effect		0.01		0.01
Laser power		0.1		0.20
Line profile		0.3		
Recoil shift	- 42.5		- 42.48	
Post-selection shift	+ 55.3	1.5		
Light-force shift	+ 0.5	0.8		
Total		2.1		0.86

2S-2P Centroid Frequency - 276, 736, 495 MHz (kHz)

Latest 2¹S-2³S result [arXiv:2306.02333v1] Latest µ-He⁺result [arXiv:2305.11679v2] --Deviation 3.6 times standard deviation

Ordinary Helium atomic spectrum: --Three independent experiments were consistent --Shiner-95 3.4 times standard deviation

μ-He⁺ compare with He : --μ-H and H --New Physics?

Jin-Lu Wen

Institute of Advanced Science Facilities

Du Xiao-Jiao

Wei Long

University of Science and Technology of China

Prof. Hu Shui-Ming

Wen Jin-Lu

Tang Jia-Dong

Dong Jun-Feng

Acknowledgement

Shui-ming Hu Zheng-Tian Lu Wei Jiang

Xin Zheng Jiao-Jiao Chen

NTS

Zhan-Jun Fang Fei Meng

University of Warsaw K. Pachucki

UNB (CA) Zong-Chao Yan UNB

Funding:

Thank You !!!