
Quantum Electrodynamics
and Quantum Cyclotron Energy Levels

Ulrich D. Jentschura
Missouri University of Science and Technology Rolla, Missouri, USA

PSAS 2024
Zurich, Switzerland

13 June 2024

Research Supported by the Templeton Foundation (Fundamental
Physics Block Grant) and by the National Science Foundation

1



Abstract

Relativistic and quantum electrodynamic corrections to the energy levels of

quantum cyclotron states is are important for the determination of a number of

fundamental constants, notably, for the g factor of the electron and positron, and

atomic masses. We have recently analyzed the relativistic corrections in detail in

[Phys. Rev. A 106, 012816 (2022)] on the basis of higher-order

Foldy-Wouthuysen transformations. Small modifications of literature values were

found. The evaluation of quantum electrodynamic corrections requires the

evaluation of bound-state Feynman diagrams with up to six magnetic vertices

[Phys. Rev. D vol. 108, 036004 (2023)] and the use of fully relativistic Landau

levels in the symmetric gauge, which were derived in [Phys. Rev. D vol. 108,

016016 (2023)]. Apparatus-dependent effects could limit the ultimate precision of

the determination of the electron g factor [Phys. Rev. D vol. 107, 076014

(2023)], with the main apparatus-dependent effects impacting the so-called axial

frequency. (As a supplement, a few other recent results such as those from

Phys. Rev. D 109, 096020 (2024), will be briefly summarized.)
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What are Quantum Cyclotron States?

▶ Quantum cyclotron states are bound quantum states
of an electron in a Penning trap.

▶ The (strong) magnetic field of the Penning trap is
(by convention) assumed to be directed along the z axis.

▶ The confinement in the xy plane is
mediated by the cyclotron orbits.

▶ The quadrupole (electric) field leads
to confinement along the z axis.

▶ An “artificial atomic binding potential” is generated
by the magnetic and electric fields of
the Penning trap.

▶ Can define “cyclotron fine-structure constant” αc and
“axial fine-structure constant” αz,
which determine the spectrum of the quantum cyclotron states.
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Brown and Gabrielse (Paper of 1986)

Gerald Gabrielse and Lowell S. Brown
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The Rev. Mod. Phys. Article

Lowell S. Brown and Gerald Gabrielse

[Rev. Mod. Phys. 58, 233–311 (1986)]
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Quantum Cyclotron States and Bound–State QED
▶ Hydrogen Atom: The binding field is the Coulomb field.

▶ Quantum Cyclotron: The binding field is the magnetic field of the
Penning trap (together with its quadrupole electric field).

▶ Hydrogen Atom: There is a particle at the center which can polarize
the vacuum.

▶ Quantum Cyclotron: The closest particle which could polarize the
vacuum sits in the walls of the Penning trap.

▶ Hydrogen Atom: The leading influence of the electron spin is at the
level of the spin-orbit coupling terms.

▶ Quantum Cyclotron: The leading influence of the electron spin is of
the same magnitude as the cyclotron motion itself.

▶ Hydrogen Atom: The main spectrum is characterized by the principal
quantum number n; transition energies are of the order of the a few eV.

▶ Quantum Cyclotron: The main spectrum is characterized by the
cyclotron quantum number n; transition energies are of the order of
the a 10−4 eV.

▶ ⇒ The quantum cyclotron is an weakly artificial “atom” (it is more
weakly bound than a Coulomb system, i.e., more weakly than a
hydrogenlike ion). Its spectrum exhibits the influence of the electron g
factor (electron spin) very clearly.
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How is the Anomalous Magnetic Moment of the Electron Determined?

Cyclotron
[n = 0, 1, ...]

Spin
[s = ±1/2]

Axial
[k = 0, 1, ...]

Magnetron
[` = 0, 1, ...]

ω(+) ≈ ωc

n = 0

n = 1

Splitting
determines
g − 2

ωz

ωc (1 + κ)
κ ≈ α/(2π)

ωm = ω(−)
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Quantum numbers for the quantum cyclotron (replacing hydrogen’s nℓjµ):

k = 0, 1, 2, . . . (axial) ℓ = 0, 1, 2, . . . (magnetron) ,

n = 0, 1, 2, . . . (cyclotron) , s = ±1 (spin) .

(Alphabetical sequence.) n and s are the “big ones”. Parameters from
Brown and Gabrielse (1986):

ωc = 2π × 164.4GHz (cyclotron frequency) ,

ωz = 2π × 64.42MHz (axial frequency) , ωc ≫ ωz .

Characteristic scale of the probability density in the xy plane and along z:

a0,c =

√
ℏ

mωc
= 10.6 nm , (cyclotron “Bohr” radius) ,

a0,z =

√
ℏ

mωz
= 0.435µm , (axial “Bohr” radius) , a0,z ≫ a0,c .

Generalized fine-structure constants:

αc =

√
ℏωz

mc2
= 3.648× 10−5 , αz =

√
ℏωz

mc2
= 7.221× 10−7 .

We observe: αz ≪ αc ≪ αQED ≈ 1/137.036.
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What Do Quantum Cyclotron States Look Like?

[k = 7, n = 0, ℓ = 2] [From Phys. Rev. D 107, 076014 (2023)]
Probability density is independent of the spin quantum number s.
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What Do Quantum Cyclotron States Look Like?

[k = 7, n = 1, ℓ = 2] [From Phys. Rev. D 107, 076014 (2023)]
Probability density is independent of the spin quantum number s.
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Characteristic Frequencies

Corrected cyclotron frequency:

ω(+) =
1

2

(
ωc +

√
ω2
c − 2ω2

z

)
≈ α2

cm.

Corrected magnetron frequency (E⃗ × B⃗ drift):

ω(−) =
1

2

(
ωc −

√
ω2
c − 2ω2

z

)
≈ ω2

z

2ωc
= α2

cξ
4
z m.

Convenient to introduce the ratio of axial and
cyclotron coupling parameters:

ξz =
αz

αc
=

√
ωz

ωc
.

Algebra of operators according to Brown and Gabrielse!
Main frequency: ω(+) ≈ ωc. Main coupling parameter:

αc = 3.648× 10−5 (corresponds to |B⃗| = 5.87T and ωc = 2π × 164.4GHz)
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Algebra of the Nonrelativistic Hamiltonian
Magnetic trap field in the z direction.
Magnetic spin coupling Hσ.
Axial confinement Hamiltonian Hz.
Radial variable: ρ⃗ = x êx + y êy.
Momentum in the xy plane: p⃗∥ = −i(êx∂x + êy∂y).
Electron charge e. Electron mass m. Nonrelativistic Hamiltonian H0:

H0 = H∥ +Hσ +Hz (radial+spin+axial),

H∥ =
p⃗ 2
∥

2m
− e

2m
L⃗ · B⃗T +

1

8
mω2

c ρ
2−1

4
mω2

zρ
2

Hσ = − e

2m
(1 + κ) σ⃗ · B⃗T

Hz =
p2z
2m

+
1

2
mω2

zz
2

Algebraic decomposition for Hξ and Hz:

H∥ = ω(+)

(
a†(+) a(+) +

1

2

)
− ω(−)

(
a†(−) a(−) +

1

2

)

Hz = ωz

(
a†z az +

1

2

)
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Diagonalization of the Nonrelativistic Hamiltonian

Nonrelativistic Hamiltonian H0:

H0 = H∥ +Hσ +Hz (radial+spin+axial)

H∥ = ω(+)

(
a†(+) a(+) +

1

2

)
− ω(−)

(
a†(−) a(−) +

1

2

)
Hσ = − e

2m
(1 + κ) σ⃗ · B⃗T

Hz = ωz

(
a†z az +

1

2

)
Energy eigenvalues:

Ekℓns = ωc(1 + κ)
s

2
+ ω(+)

(
n+

1

2

)
+ ωz

(
k +

1

2

)
− ω(−)

(
ℓ+

1

2

)
≈ ωc(1 + κ)

s

2
+ ωc

(
n+

1

2

)
≈ ωc

(
n+

s

2
+

1

2

)
This is the exact nonrelativistic energy eigenvalue!
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Wave Functions of the Nonrelativistic Hamiltonian

Wave function by creation operators:

ψkℓns(r⃗) =

(
a†z

)k
√
k!

(
a†(−)

)ℓ

√
ℓ!

(
a†(+)

)n

√
n!

ψ0(r⃗)χs/2

χ1/2 =

(
1
0

)
χ−1/2 =

(
0
1

)
The χs/2 denote fundamental spinors.
The orbital part of the ground-state wave function is

ψ0(r⃗) =

√
m
√
ω2
c − 2ω2

z

2π
exp

(
−m

4

√
ω2
c − 2ω2

z ρ
2
)

×
(mωz

π

)1/4

exp

(
−1

2
mωzz

2

)
where

ω(+) − ω(−) =
√
ω2
c − 2ω2

z
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Fourth–Order Corrections to Quantum Cyclotron Energies

Recall the nonrelativistic energy eigenvalue for vanishing axial frequency:

ENR = ωc

(
n+

s

2
+

1

2

)
= α2

c m

(
n+

s

2
+

1

2

)
= E[2]

E[2] is proportional to α2
cm

E[3] is proportional to αα2
c m

E[4] is proportional to α4
c m

E[5] is proportional to αα4
c m [self energy]

E[7] is proportional to αα6
c m [self energy]

[treat α and αc on the same footing]
The multiplying coefficients are functions of ξz = αz/αc. Recall:

Ekℓns = E[2] + E[3] = ωc(1 + κ)
s

2
+ ω(+)

(
n+

1

2

)
+ ωz

(
k +

1

2

)
− ω(−)

(
ℓ+

1

2

)
≈ α2

cm

(
n+

s

2
+

1

2

)
+

α

2π
α2
cm

s

2
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Fourth–Order Corrections to Quantum Cyclotron Energies

Fourth–Order Corrections [Phys. Rev. A 106, 012816 (2022)]:

E(4) = E1 + E2 ∝ α4
c m [ℏ = c = ϵ0 = 1]

where E1 is due to relativistic kinematics, and E2 is due to spin-orbit
coupling:

E1 = − 1

2m

[
ω2
(+)

(
n+ 1

2

)
+ ω2

(−)

(
ℓ+ 1

2

)
ω(+) − ω(−)

+
ωz

2
(k + 1

2
) +

ωcs

2

]2

−
ω4
z

[
(n+ 1

2
)(ℓ+ 1

2
)+ 1

4

]
4m(ω(+) − ω(−))2

− ω2
z

16m

[(
k + 1

2

)2
+ 3

4

]
Brown and Gabrielse (1986) in their equation (7.48) have a minus sign.
Small update here. Formula for E2:

E2 = − ω2
zs

4m

ω(+)(n+ 1
2
) + ω(−)(ℓ+

1
2
)

ω(+) − ω(−)

For α6
cm corrections see [Phys. Rev. A 106, 012816 (2022)].
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Recent Paper

Sixth-order corrections and formulas for sixth-order Foldy–Wouthuysen
transformation in general electric and magnetic fields can be found in a
recent paper:

[. . . also contains formulas for the anomalous-magnetic-moment terms of
seventh order (“seventh” = six momenta and one κ = (g − 2)/2).]
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What about the Self Energy?
Interactions with the external magnetic field (Feynman diagrams):

(Replacement γ0 V → −eα⃗ · A⃗T = − e
2
(B⃗T × r⃗), couples upper and lower

components of the Dirac spinor, need more vertices)

The self-energy of an electron bound in a Coulomb field was calculated by
Bethe, Kroll and Lamb, and Feynman. The treatment been generalized to
quantum cyclotron states very recently. High-energy part: normally treated
using form factors, but this approach is not suitable for quantum cyclotron
states. Low-energy part: “trapped” Bethe logarithm.
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Self–Energy for a Bound Electron

Hydrogen:

∆ESE =
α

π

(Zα)4

n3
mc2 F (Zα)

F (Zα) = A41 ln(Zα)−2 +A40 + (Zα)A50

+ (Zα)2
[
A62 ln2(Zα)−2 +A61 ln(Zα)−2 +A60

]
+ . . .

Quantum cyclotron:

∆ESE = ωc κ
s

2
+
α

π
α4
c mc

2
F(αc)

F(αc) = A41 ln(α−2
c ) +A40 + α2

c

[
A61 ln(α−2

c ) +A60

]
+ . . .

Changes:
F → F, A→ A, and no n3 in the denominator!
In a quantum cyclotron, the characteristic momentum grows with the
cyclotron quantum number n, while in a a hydrogen atom, the characteristic
momentum scale decreases with increasing principal quantum number n.
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Result for the Self Energy

In the leading order in αc, one obtains the following results [see
Phys. Rev. D 108, 016016 (2023) and Phys. Rev. D 108, 036014 (2023)].
High–energy part and low–energy part:

EHEP ≈ α

4π
sωc +

2α

3π
α4
cm

[
ln

(
m

2 ϵ

)
− 13

72

]
ELEP ≈ 2α

3π
α4
cm ln

(
ϵ

α2
c m

)
− 2α

3π
α4
cm ln(k0T)

where ln k0T is the “trapped Bethe logarithm”:

ln(k0T) =
ω3
(+) ln

(
ω(+)
ωc

)
− ω3

(−) ln
(

ω(−)
ωc

)
ω2
c (ω(+) − ω(−))

+
ω2
z

2ω2
c

ln

(
ωz

ωc

)
Focus on the cancelation of the photon energy cutoff ϵ:

ESE = EHEP + ELEP ∼ 2α

3π
α4
cm ln(α−2

c ) , A41 =
2

3
,

EHEP ∼ 2α

3π
α4
cm ln

(
m

2 ϵ

)
, ELEP ∼ 2α

3π
α4
cm ln

(
ϵ

α2
c m

)
Almost ironic: Almost no dependence on k, ℓ, n and s!
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Self–Energy: Contributions in Higher Order in ξz

ESE = E
[1]
HEP + E

[2]
HEP + ELEP =

6∑
i=1

Ti

Six individual contributions have been calculated:

T1 = ωcκ
s

2

T2 =
α

π
α4
cm

[
2

3
ln

(
α−2
c

)
− 2

3
ln(2)− 13

108

]
T3 = − α

8π

sωcωz

m
(k + 1

2
) = − α

8π
α4
cmsξ

2
z (k + 1

2
)

T4 = − α

4π

ω2
zs

m

ω(+)(n+ 1
2
) + ω(−)(ℓ+

1
2
)

ω(+) − ω(−)

=
α

π
α4
cm

[
−1

8
(2n+ 1)s ξ4z

]
+O(ξ6z)

T5 = − α

3π

ω2
z

m
ln

(
ωz

ωc

)
=
α

π
α4
cm

[
−2

3
ξ4z ln(ξz)

]

T6 = − 2α

3π

ω3
(+) ln

(
ω(+)
ωc

)
− ω3

(−) ln
(

ω(−)
ωc

)
m(ω(+) − ω(−))

=
α

π
α4
cm

ξ4z
3

+O(ξ6z)
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State Dependence of the Self Energy

δESE =
α

π
α6
cmA61 ln(α−2

c ) , A61 = 2n+ 1− 4s

3
.

[ higher-order A61 has a state dependence. ]
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Apparatus–Dependent Corrections
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Apparatus–Dependent Corrections

How do the walls of the trap influence the self-energy of the electron bound
in the quantum cyclotron state? At least a partial answer can be found in
Phys. Rev. D 107, 076014 (2023).

▶ Assumption: Idealized geometry of an electron in the vicinity of an
infinitely extended conducting plane, which serves to approximate the
walls of the Penning trap.

▶ Conclusion: The low-energy part of the self energy is modified. The
calculation splits up into the modification of the photon propagator,
and a matrix element of the quantum cyclotron state.

▶ The correction to the axial frequency is large but it can be eliminated
in the evaluation of the experimental data. The correction to the
spin-flip frequency is parametrically highly suppressed.
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Limits for the g Factor

g = 2(1 + κ)

▶ The correction to the cyclotron frequency is the problem. Independent
of the geometry of the trap, we can provide the estimate

κ+ δκ =
ωs

ωc + δωc
− 1 ≈ κ− δωc

ωc

and so

δκ = −δωc

ωc
≈ −r0

R
f(x) , x =

ωcR

c
= “retardation phase” ,

where for an electron over a conducting plane, f(x) = 1
2
cos(2x). The

function f(x) can be assumed to be of order unity. Classical electron
radius is r0 = 2.8× 10−15 m, and R = 3 × 10−3 m is the trap dimension.

▶ We may have a problem when δκ ∼ 10−13!

▶ (α/π)4 ∼ 10−11

▶ (α/π)5 ∼ 10−14

▶ What about five-loop corrections?
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Further Details in the Following Papers

▶ A. Wienczek, C. Moore and U. D. Jentschura, “Foldy–Wouthuysen
Transformation in Strong Magnetic Fields and Relativistic Corrections
for Quantum Cyclotron Energy Levels”, Phys. Rev. A 106, 012816
(2022).
(Relativistic Corrections to the Energies)

▶ U. D. Jentschura, “Algebraic Approach to Relativistic Landau Levels
in the Symmetric Gauge”, Phys. Rev. D 108, 016016 (2023).
(Relativistic Wave Functions)

▶ U. D. Jentschura and C. Moore, “Quantum Electrodynamic
Corrections for Quantum Cyclotron States”, Phys. Rev. D 108,
036004 (2023).
(Self–Energy Corrections to the Energies)

▶ U. D. Jentschura, “Apparatus–Dependent Corrections to g − 2
Revisited”, Phys. Rev. D 107, 076014 (2023). (Ultimate Limits of
Penning Traps)
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Conclusions

Relativistic, quantum electrodynamic, and apparatus-dependent corrections
to quantum cyclotron states in Penning traps have been analyzed in detail.

The results provide small updates of known results, provide data for a
number of higher-order corrections, and clarify the level at which
apparatus-dependent effects have to be considered!
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