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Abstract

Relativistic and quantum electrodynamic corrections to the energy levels of
quantum cyclotron states is are important for the determination of a number of
fundamental constants, notably, for the g factor of the electron and positron, and
atomic masses. We have recently analyzed the relativistic corrections in detail in
[Phys. Rev. A 106, 012816 (2022)] on the basis of higher-order

Foldy- Wouthuysen transformations. Small modifications of literature values were
found. The evaluation of quantum electrodynamic corrections requires the
evaluation of bound-state Feynman diagrams with up to siz magnetic vertices
[Phys. Rev. D wvol. 108, 036004 (2023)] and the use of fully relativistic Landau
levels in the symmetric gauge, which were derived in [Phys. Rev. D wvol. 108,
016016 (2023)]. Apparatus-dependent effects could limit the ultimate precision of
the determination of the electron g factor [Phys. Rev. D wol. 107, 07601/
(2023)], with the main apparatus-dependent effects impacting the so-called azial
frequency. (As a supplement, a few other recent results such as those from

Phys. Rev. D 109, 096020 (2024), will be briefly summarized.)



What are Quantum Cyclotron States?

» Quantum cyclotron states are bound quantum states
of an electron in a Penning trap.
» The (strong) magnetic field of the Penning trap is
(by convention) assumed to be directed along the z axis.
» The confinement in the xy plane is
mediated by the cyclotron orbits.
» The quadrupole (electric) field leads
to confinement along the z axis.
» An “artificial atomic binding potential” is generated
by the magnetic and electric fields of
the Penning trap.
» Can define “cyclotron fine-structure constant” «. and
“axial fine-structure constant” a.,
which determine the spectrum of the quantum cyclotron states.



Brown and Gabrielse (Paper of 1986)

Gerald Gabrielse and Lowell S. Brown




The Rev. Mod. Phys. Article

Lowell S. Brown and Gerald Gabrielse

[Rev. Mod. Phys. 58, 233-311 (1986)]

Geonium theory: Physics of a single electron or ion in a Penning trap

Lowell S. Brown and Gerald Gabrielse
Department of Physics, FM-15, University of Washington, Seattle, Washington 98195

A single charged particle in a Penning trap is a bound system that rivals the hydrogen atom in its simplicity
and provides similar opportunities to calculate and measure physical quantities at very high precision. We
review the theory of this bound system, beginning with the simple first-order orbits and progressively deal-
ing with small corrections which must be considered owing to the experimental precision that is being
achieved. Much of the discussion will also be useful for experiments with more particles in the trap, and
several of the mathematical techniques have a wider applicability.

ot



Quantum Cyclotron States and Bound—State QED

>
>

>

>

Hydrogen Atom: The binding field is the Coulomb field.

Quantum Cyclotron: The binding field is the magnetic field of the
Penning trap (together with its quadrupole electric field).

Hydrogen Atom: There is a particle at the center which can polarize
the vacuum.

Quantum Cyclotron: The closest particle which could polarize the
vacuum sits in the walls of the Penning trap.

Hydrogen Atom: The leading influence of the electron spin is at the
level of the spin-orbit coupling terms.

Quantum Cyclotron: The leading influence of the electron spin is of
the same magnitude as the cyclotron motion itself.

Hydrogen Atom: The main spectrum is characterized by the principal
quantum number n; transition energies are of the order of the a few eV.
Quantum Cyclotron: The main spectrum is characterized by the
cyclotron quantum number n; transition energies are of the order of
the a 10~ % eV.

= The quantum cyclotron is an weakly artificial “atom” (it is more
weakly bound than a Coulomb system, i.e., more weakly than a
hydrogenlike ion). Its spectrum exhibits the influence of the electron g
factor (electron spin) very clearly.



How is the Anomalous Magnetic Moment of the Electron Determined?

Cyclotron
[n=0.1,.] s =+1/2

Splitting
determines

g—2




Quantum numbers for the quantum cyclotron (replacing hydrogen’s néju):

k=0,1,2,... (axial) £=0,1,2,... (magnetron)
n=0,1,2,... (cyclotron), s ==+1 (spin).

(Alphabetical sequence.) n and s are the “big ones”. Parameters from
Brown and Gabrielse (1986):

we = 27 x 164.4 GHz (cyclotron frequency)
w, = 21 X 64.42 MHz (axial frequency), We > Wy .

Characteristic scale of the probability density in the zy plane and along z:

h

ap,c = = 10.6 nm, (cyclotron “Bohr” radius),
mwe
h . .
ao,» = = 0.435 pm , (axial “Bohr” radius), ao,> > ao,c -
muw,

Generalized fine-structure constants:

Iw:

= =3.648x107°, .= L2

= =7.221x 107",

Qe =

We observe: a, < a. < aqep ~ 1/137.036.



What Do Quantum Cyclotron States Look Like?

2
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[k =7,n=0,¢=2] [From Phys. Rev. D 107, 076014 (2023)]
Probability density is independent of the spin quantum number s.



What Do Quantum Cyclotron States Look Like?

2
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25x 10¥m=2

[k =7,n=1,£=2] [From Phys. Rev. D 107, 076014 (2023)]
Probability density is independent of the spin quantum number s.
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Characteristic Frequencies

Corrected cyclotron frequency:
1 2
W) = 5 (wc + Vw2 — ng) N a.m.

Corrected magnetron frequency (E x B drift):

1 2 _ 2,

c

Convenient to introduce the ratio of axial and
cyclotron coupling parameters:

Qz Wy

gz:*: -

Qe We

Algebra of operators according to Brown and Gabrielse!
Main frequency: w4y =~ w.. Main coupling parameter:

. = 3.648 x 107 (corresponds to |B| = 5.87 T and w,. = 27 x 164.4 GHz)
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Algebra of the Nonrelativistic Hamiltonian
Magnetic trap field in the z direction.
Magnetic spin coupling /.
Axial confinement Hamiltonian H..
Radial variable: p = zé, + yeé,.
Momentum in the zy plane: p| = —i(€,0, + &,0,).
Electron charge e. Electron mass m. Nonrelativistic Hamiltonian Hy:

Ho = Hj + H, + H. (radial+spind-axial),

p e =» = 1 1
H = % — %L~BT + gmwf prmegf
H, = —i(l—o—n)&'-ET
2
1
H, = 21’;%+§mw§z2

Algebraic decomposition for He and H:
1 1
Hy=ww) <GI+> ac+) + 5) = Y= (GI_> G 1 5)

Hz = Wz (al‘ a. + %)



Diagonalization of the Nonrelativistic Hamiltonian

Nonrelativistic Hamiltonian Hg:

Ho = H| + H, + H. (radial+spin+-axial)

1 1
_ i §
Hy =w (a<+) ac+) + 5) W) (a(f) ac-) + 5)

H, = —ﬁ(ljun)ﬁ-éT

1
18l = w3 (alaz aF 5)

Energy eigenvalues:
s 1 1
Erons = wc(l + Ii) 5 a4 W(+) (IL =+ 5) + w, </(7 =+ 5) — W(—) (( 4

s 1 S 1
zwc(l+n)§+wc n+§ & We n,+§+§

This is the exact nonrelativistic energy eigenvalue!

2

)
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Wave Functions of the Nonrelativistic Hamiltonian

Wave function by creation operators:

Yitns(F) = Yo () Xs/2

1 0
X1/2:(0> X71/2:<1>

The x,/2 denote fundamental spinors.
The orbital part of the ground-state wave function is

my/ w2 — 2w?2 m 5 7 2
o (7) = R exp (_Z w2 — 2w2 p )

(mwz)1/4 ( 1 2>
X exp | ——mw;z
us 2

W) — W) = \/wg — 20.)2

where
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Fourth—Order Corrections to Quantum Cyclotron Energies

Recall the nonrelativistic energy eigenvalue for vanishing axial frequency:

s 1 . s 1
ENR = we <n+%+§) :ufm(n+%+§) = gl

EPl is proportional to a’m

EBl g proportional to o’ m

EW g proportional to o m

EP! is proportional to a v} m [self energy]

E" is proportional to a.a® m [self energy]

[treat o and a. on the same footing]

The multiplying coefficients are functions of . Recall:

1 1 1
Erons = Jolkl + BBl — we(l+ k) % + Wiy <n + 5) + w, (k + 5) — W) ((i + 5)

matm(ne i1y @28
TAMANT G Ty | T g%y



Fourth—Order Corrections to Quantum Cyclotron Energies

Fourth—Order Corrections [Phys. Rev. A 106, 012816 (2022)]:
EW =FE +E xaim [h=c=¢€ =1]

where F; is due to relativistic kinematics, and FEs is due to spin-orbit

coupling:
2
i = 1 w(2+) (n + %) +w(2*) (6 + %) Wz 1 WeS
“1 = 75— +7(k’+§)+
2 W) — W) 2 2
Al pee D) o o ey
Am(weyy —w-))? 16m 2 a

Brown and Gabrielse (1986) in their equation (7.48) have a minus sign.
Small update here. Formula for Fo:

_ L%w(+)(n+ %) +w(,)(€+ %)

E; =
dm W(+) ~ W(-)
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Recent Paper

Sixth-order corrections and formulas for sixth-order Foldy—Wouthuysen
transformation in general electric and magnetic fields can be found in a
recent paper:

PHYSICAL REVIEW A 106, 012816 (202

Wouthuysen transformation in strong magnetic fields and relativistic corrections
for quantum cyclotron energy levels

Albert Wienczek,'> Christopher Moore®," and Ulrich D. Jentschura®-*
'Department of Physics and LAMOR, Missouri University of Science and Technology, Rolla, Missouri 65409,
aculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

M (Received 11 May epted 9 June 2022; published 20 July

We carry out a direct iterative Fold; n transformation of a general Dirac Hamiltonian coupled to
an electromagnetic field. including the anomalous magnetic moment. The transformation is carried out through
an iterative disentangling of the particle and antiparticle Hamiltonians in the for higher orders of the
momenta. The time-derivative term from the unitary transformation is found to be crucial in supplementing the
transverse component of the electric field in higher orders. Final expressions are obtained for general combined
elect: nd magnetic fields, including strong magnetic fields. The time d of the ic field is shown
to enter only in the seventh order of the fine-structure constant if the transformation is carried out in the standard
fashion. We put special emphasis on the case of strong fields, which are important for a number of applications,
such as electrons bound in Penning traps.

DOL: 10.1103/PhysRevA.106.012816

[... also contains formulas for the anomalous-magnetic-moment terms of
seventh order (“seventh” = six momenta and one k = (g — 2)/2).]




What about the Self Energy?
Interactions with the external magnetic field (Feynman diagrams):
(Replacement, YV — —ed - Ar = —S(BT X 1), couples upper and lower
components of the Dirac spinor, need more vertices)

The self-energy of an electron bound in a Coulomb field was calculated by
Bethe, Kroll and Lamb, and Feynman. The treatment been generalized to
quantum cyclotron states very recently. High-energy part: normally treated
using form factors, but this approach is not suitable for quantum cyclotron
states. Low-energy part: “trapped” Bethe logarithm.
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Self-Energy for a Bound Electron

Hydrogen:

AFEsg = — (Z(E) mc® F(Za)
T

7

F(Za) = A41 IH(ZCY)_ =+ A40 + (Za) A50
—|— (Za)Q [AGQ IHQ(ZOC)_Q + A61 ln(Za)_2 —|— Ago] —|— 000

Quantum cyclotron:

AFEsg = we K §+g o/cl mc? F ()
s

F () = Aa1 In(ag?) + Aso + o [As1 In(ag ) + Aso] +

Changes:

F - %, A— A, and no n® in the denominator!

In a quantum cyclotron, the characteristic momentum grows with the
cyclotron quantum number n, while in a a hydrogen atom, the characteristic
momentum scale decreases with increasing principal quantum number n.



Result for the Self Energy

In the leading order in «., one obtains the following results [see
Phys. Rev. D 108, 016016 (2023) and Phys. Rev. D 108, 036014 (2023)].
High—energy part and low—energy part:

2 ) 1
Fuep ~ % Swe + 3—‘; aﬁm [1n<£) — 7—2}

Eigp ~ el ozfm In ( € ) — 2—Oéozﬁfmln(/cOT)

37 azm 3w

where In ko7 is the “trapped Bethe logarithm”:

We

+ — =
wg (Wi —w(-) 2w?

In(kor) = W?_‘—) o <W§Jfr)) ~ W?_> " (WU(;)) ws In (wz)

Focus on the cancelation of the photon energy cutoff e:

2c _ 2
FEsg = Eugp + ErLgp ~ — aim ln(ac 2)7 Ay = ’
3 3
200 4 m 2a 4
FEugp ~ 3a a.m ln(?) , Ergp ~ In a.m In (a% m)

no dependence on k, ¢, n and s!
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Self-Energy: Contributions in Higher Order in &,

6
Bsp = Eylp + By + Evep = > 9;

Six individual contributions have been calculated:

T :wcmg
a4 —2 2 13
To = — 1 — = In(2)— —
2T e {3 2. = 5 ol 108}
_ _gswcwz 1 :_g 4 2 1
o= - (g 1) =~ Lalmse (k+ 1)
e+ 1
Go _ auisunita) teanlts) ol {_1(2714—1)853} +O(E9)
4 m W(4) — W(—) 0 8
« UJZ Wz a 4 2 4
= - 2 %, =Z —Z et In(e,
Ts =—— (%) —aem { 3 & (¢ )}
(€5) 3 “i=)
2aw(+)1n( c)—%—)ln(wc) o 4 53
%: = —Qa.m ©(£z)
3T (W(+) —(/J(_)) ™
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Dependence of the Self Energy

PHYSICAL REVIEW D 108, 036004 (2023)

Quantum electrodynamic corrections to cyclotron states in a Penning trap

Ulrich D. Jentschura® and Christopher Moore

Department of Physics and LAMOR, Missouri University of Science and Technology,
Rolla, Missouri 65409, USA

® (Received 17 May 2023; accepted 6 July 2023; published 7 August 2023)

We analyze the leading and higher-order quantum electrodynamic corrections to the energy levels for a single
electron bound in a Penning trap, including the Bethe logarithm correction due to virtual excitations of the
reference quantum cyclotron state. The effective coupling parameter a, in the Penning trap is identified as the
square root of the ratio of the cyclotron frequency, converted to an energy via multiplication by the Planck
constant, to the electron rest mass energy. We find a large, state-independent, logarithmic one-loop self-energy
correction of order a afmc? In(a;?), where m is the electron rest mass and ¢ is the speed of light. Furthermore,
we find a state-independent “trapped” Bethe logarithm. We also obtain a state-dependent higher-order
logarithmic nergy correction of order aa®mc? In(a2). In the high-es y part of the bound-state self-
energy, we need to consider terms with up to six magnetic interaction vert inside the virtual photon loop.

DOL: 10.1103/PhysRevD.108.036004

n As1 1n( ), Ae1r =2n+1 — 4; .

order Ag1 has a state dependence. |




Apparatus—Dependent Corrections

PHYSICAL REVIEW D 107, 076014 (2023

paratus-dependent corrections to the electron g -2 revisited

Department of Physics and LAMOR, Missouri U rsity of Science and Technolog
Rolla, Missouri 65409, U

® (Received 1 January 2023; accepted 14 March published 19 April 2023)

We revisit the derivation of the apparatus-dependent correction to the energy levels of quantum cyclotron
states, as previously outlined [Boulware et al., Phys. Rev. D 32, 729 (1985)]. We evaluate the leading
corrections to the axial, magnetron, cyclotron, and spin-projection-dependent energy levels due to the
altered photon field quantization in the vicinity of a conducting wall. Our work significantly extends
lotron states are used for the determination of the electron g fz

previous considerations. Quantum cy
gest apparatus-dependent corrections can

Penning traps. Our calculations show that the numerically 1z
be expected for the axial and magnetron frequencies, where they can be as large as 107 in re
, which can affect the

ative units.
For the cyclotron frequency, one can expect corrections on the order of 10~

determination of the anomalous magnetic moment of the electron.

DOI: 10.1103/PhysRevD. 10’ )14




Apparatus—Dependent Corrections

How do the walls of the trap influence the self-energy of the electron bound
in the quantum cyclotron state? At least a partial answer can be found in
Phys. Rev. D 107, 076014 (2023).

> Idealized geometry of an electron in the vicinity of an
infinitely extended conducting plane, which serves to approximate the
walls of the Penning trap.

» Conclusion: The low-energy part of the self energy is modified. The
calculation splits up into the modification of the photon propagator,
and a matrix element of the quantum cyclotron state.

» The correction to the axial frequency is large but it can be eliminated
in the evaluation of the experimental data. The correction to the
spin-flip frequency is parametrically highly suppressed.
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Limits for the g Factor

vvyywyy

g9=2(1+k)
Independent
of the geometry of the trap, we can provide the estimate
Ws dwe
K+ 0Kk = —1l=k—
. we + dwe We
and so
dwe e I .
ok = — e 10 f(z), z = 222 — “etardation phase” ,
We R @

where for an electron over a conducting plane, f(z) = % cos(2z). The
function f(x) can be assumed to be of order unity. Classical electron

radius is 7o = 2.8 x 107 1? m, and R =3 X 10~3 m is the trap dimension.

(a/m)* ~ 107
(a/m)® ~ 1071

What about five-loop corrections?



Further Details in the Following Papers

> A. Wienczek, C. Moore and U. D. Jentschura, “Foldy—Wouthuysen
Transformation in Strong Magnetic Fields and Relativistic Corrections
for Quantum Cyclotron Energy Levels”, Phys. Rev. A 106, 012816
(2022).
(Relativistic Corrections to the Energies)

» U. D. Jentschura, “Algebraic Approach to Relativistic Landau Levels

in the Symmetric Gauge”, Phys. Rev. D 108, 016016 (2023).
(Relativistic Wave Functions)

» U. D. Jentschura and C. Moore, “Quantum Electrodynamic
Corrections for Quantum Cyclotron States”, Phys. Rev. D 108,
036004 (2023).

(Self-Energy Corrections to the Energies)

» U. D. Jentschura, “Apparatus—Dependent Corrections to g — 2
Revisited”, Phys. Rev. D 107, 076014 (2023). (Ultimate Limits of
Penning Traps)
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Conclusions

Relativistic, quantum electrodynamic, and apparatus-dependent corrections
to quantum cyclotron states in Penning traps have been analyzed in detail.

The results provide small updates of known results, provide data for a
number of higher-order corrections, and clarify the level at which
apparatus-dependent effects have to be considered!



