

Testing quantum electrodynamics at extreme fields in the heaviest few-electron atoms

PSAS 2024 ETH zürich Switzerland, 13 June 2024 PSAS 2024, M. Trassinelli – INSP

Strong Coulomb field in highly charged ions

CNrS

INSTITUT DES

Strong Coulomb field in highly charged ions

Strong electric field

 → Quantum Electrodynamic effects enhanced

Strong Coulomb field in highly charged ions

Sparc

EMMĬ

FAIR

Heavy highly charged ions
 are difficult to produce

@ Livermore SuperEBIT Beiersdorfer et al., Phys. Rev. Lett. 95, 233003 (2005)

But too many electrons! Many-electrons and 1-electron QED terms all together

Sparc

EMM

13 June 2024

Spare

EMMI

FAIR

9

13 June 2024

Lamb shift of H-like Uranium

Good... but not enough

13 June 2024

INS

Lamb shift of H-like Uranium

Accuracy limitations

Detector resolution

Lamb shift of H-like Uranium

Accuracy limitations

Detector resolution

new systematic uncertainties...

$$\delta(E_{\rm ion})_{\theta} = E_{\rm lab}\gamma\beta\sin\theta\,\,\delta\theta$$
$$\delta(E_{\rm ion})_{\beta} = E_{\rm lab}\gamma^3|\beta - \cos(\theta)|\delta\beta$$

180

INS

Accuracy limitations

New recent developments

Crystal spectroscopy: the FOCAL experiment (2012)

Detector resolution

Doppler systematic effect

Relativistic Doppler shift

$$E_{\rm ion} = E_{\rm lab} \gamma (1 - \beta \cos \theta)$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}; \beta = \frac{v}{c}$$
 c: light speed

Final result too much affected by Doppler systematic effects...

Gassner *et al.*, New J. Phys. **20**, 073033 (2018) Gassner *et al.*, X-Ray Spectrom. **49**, 204-208 (2020)

Accuracy limitations

New recent developments

Crystal spectroscopy: the FOCAL experiment (2012)

FAIR X-ray spectroscopy of few electrons heavy charged ions

He-like ions (2 el.) E_1 $1s_2p {}^{1}P_1$ $1s_2p {}^{3}P_2$ $1s_2p {}^{3}P_1$ $1s_2p {}^{3}P_1$

spare

EMMĬ

He-like heavy charged ions

sparc

EMM

١R

Intra-shell transition measurement

4.5 keV in He-like U
→ X-ray spectroscopy
from Bragg reflection

1s2p ¹P₁ 1s2p ³P₂

1s2p ³P₀

1s2p ³P₁

M1E

E1

Resolution: 0.5 eV

 $\frac{E}{\Delta E}=10000$

Gas-jet target

U⁹¹⁺

beam

Production at ESR@GSI/FAIR

INSP

But Doppler effect still well present...

$$E_{\rm ion} = E_{\rm lab} \gamma (1 - \beta \cos \theta)$$

→ Systematic uncertainties $\delta(E_{ion})_{\theta} = E_{lab}\gamma\beta\sin\theta\,\,\delta\theta$ $\delta(E_{ion})_{\beta} = E_{lab}\gamma^{3}|\beta - \cos(\theta)|\delta\beta$

Doppler tuned intra-shell transition

spectroscopy

E_{lab} ~ 4310 eV

→ Same Bragg angle than Zn Ka line in second order reflection, for which

$$\frac{\delta(E_{\rm ion})_{\theta}}{E_{\rm ion}} = \gamma^2 \beta \delta \theta$$

Strong reduction of main systematic errors and in particular...

$$\frac{\delta(E_{\rm ion})_{\theta}}{E_{\rm ion}} = \gamma^2 \beta \delta \theta \quad \Longrightarrow \gamma^2 |\beta - \beta_0| \delta \theta$$

2007 experiment at ESR

2007 experimental result

Double spectrometer

 \rightarrow Higher luminosity

 \rightarrow Better control of systematics

F(AIR

Phase-0

14 years later... the 2021 set-up

- Double spectrometer
- Larger bending radius

 \rightarrow Higher resolution

F(AIR

Phase-0

14 years later... the 2021 set-up

Ge (220) X-ray crystal reflection map

F(AIR

Phase-0

14 years later... the 2021 set-up

14 years later... the 2021 set-up

FAR Phase-0

[1] P. Beiersdorfer et al., Phys. Rev. Lett. **71**, 3939 (1993), P. Beiersdorfer, Nucl. Instrum. Meth. B **99**, 114 (1995)

[1] P. Beiersdorfer et al., Phys. Rev. Lett. **71**, 3939 (1993), P. Beiersdorfer, Nucl. Instrum. Meth. B **99**, 114 (1995)

SDare-			No beam			
EMMI FAIR	20	Injection of Li-like U with 60 MeV Injection of He-like U with 296 MeV				
Room time acquisition:			Injection of H-like U with 296 MeV			
He-like U	→ ~ 84h → 1800 photons per a (1 photon every 3 cycle)	rm əs, 3')	20-21.03.2021			
Li-like U	\rightarrow ~ 11h \rightarrow 1400 photons (~2 photon per cycle. 1	·)	22-23.03.2021			
Be-like U	\rightarrow ~ 24h \rightarrow ~700 photons		24-25.03.2021			
(out of ~400h beam time)			26-27.03.2021			
			28-29.03.2021			
			30-31.03.2021			
			01-02.04.2021			
			03-04.04.2021			
			05-06.04.2021			
			07.04.2021			

Bragg law of diffraction

$$n\frac{hc}{E} = 2d\sin\Theta_{\rm B}$$

n: diffraction order 2d: crystal planes spacing

Bragg law of diffraction

$$n\frac{hc}{E} = 2d\sin\Theta_{\rm B}$$

n: diffraction order 2d: crystal planes spacing

Stationary ref. Zn K α fluorecence

Projection on the dispersion axis

• Fit using Nested_fit code (Bayesian methods) [1,2]

Poisson likelihood

adapted for very low count rate (here the background ~ 0 counts/ch)

2D analysis
 F(x,y) = f[x - (a + b y)] + bg

[2] https://github.com/martinit18/nested fit

Projection on the dispersion axis

• Fit using Nested_fit code (Bayesian methods) [1,2]

Poisson likelihood

adapted for very low count rate (here the background ~ 0 counts/ch)

- 2D analysis
 F(x,y) = f[x (a + b y)] + bg
- Modelling tests of the line profile by Bayesian methods f[x]: single convolution between a Gaussian and a flat profile [3] No satellites!

• Fit using Nested_fit code (Bayesian methods) [1,2]

Poisson likelihood

adapted for very low count rate (here the background ~ 0 counts/ch)

- 2D analysis
 F(x,y) = f[x (a + b y)] + bg
- Modelling tests of the line profile by Bayesian methods f[x]: single convolution between a Gaussian and a flat profile [3] No satellites!

MT, Proceedings **33**, 14 (2019)
 <u>https://github.com/martinit18/nested_fit</u>
 MT, Atoms **11**, 64 (2023)
 Weber *et al.*, Phys. Rev. ST AB **18**, 034403 (2015)

He-like U energy evaluations

2 spectrometers x 2 moving reference → 4 dependent measurements

Uncertainty budget

2 spectrometers x 2 moving reference \rightarrow 4 dependent measurements

 $\underbrace{E_0^{\text{Mov}}}_{\gamma_0(1+\beta_0\sin\Delta\theta)} \frac{\gamma(1+\beta\sin\Delta\theta)}{(1+\gamma_0^{\text{Mov}})} \left(1+\frac{x-x^{\text{Mov}}}{D\tan\Theta}\right)$

0.066
0.246
0.006
0.007
0.001
0.000
0.003

Moving	source:	Li-	and	Be-l	ike	uranium	
E ^{Li-like}	= 4459.	37	\pm 0	.21	eV		
E ^{Be-like}	= 4501.	72	± 0	.21	eV		

Uncertainties for each meas, in eV

Beiersdorfer et al., Phys. Rev. Lett. 71, 3939 (1993).

E

Result absolute energy of He-like U: $E_{\text{He-like U}} = 4509.763 \pm 0.034_{\text{stat}} \pm 0.162_{\text{syst}} (\pm 0.166) \text{ eV}$

59

He- Li-like U relative energy

Same nucleus

Same 1 el. QED contribution

Disentanglement between one-electron QED and two-electron QED

[1] R. Loetzsch *et al.*, Nature **625**, 673-678 (2024) [2] A.V. Malyshev *et al.*, Phys. Rev. A **107**, 042806 (2023)

He- Li-like U relative energy

Result absolute energy of He-like U: $E_{He-like U} = 4509.763 \pm 0.034_{stat} \pm 0.162_{syst} eV$

Main present limitation and outlooks

Result absolute energy of He-like U: $E_{He-like U} = 4509.763 \pm 0.034_{stat} \pm 0.162_{syst} eV$

Possible outlooks:

1) Wait ...

Main present limitation and outlooks

Result absolute energy of He-like U: $E_{He-like U} = 4509.763 \pm 0.034_{stat} \pm 0.162_{syst} eV$

Possible outlooks:

- 1) Wait for calibration improvements
 - a) in a Super-, Hyper-EBIT

Main present limitation and outlooks

Result absolute energy of He-like U: $E_{\text{He-like U}} = 4509.763 \pm 0.034_{\text{stat}} \pm 0.162_{\text{syst}} \text{ eV}$

Possible outlooks:

- 1) Wait for calibration improvements
 - in a Super/Hyper-EBIT a)
 - with resonant coherent excitation method b) (inverted laser)

Present accuracy = 2 eV Goal accuracy: 0.01eV

Result absolute energy of He-like U: $E_{\text{He-like U}} = 4509.763 \pm 0.034_{\text{stat}} \pm 0.162_{\text{syst}} \text{ eV}$

Possible outlooks:

- 1) Wait for calibration improvements (Li- and/or B-like U)
- 2) Use another calibration

Use hydrogenlike scandium (Z=21) instead of uranium (Z=92)

- → Negligible 2-loop QED effects (0.0017 eV only)
- → Systematic uncertainty: from 0.162 to 0.005 eV (due to the HFS)

Use hydrogenlike scandium (Z=21) instead of uranium (Z=92)

- \rightarrow Negligible 2-loop QED effects (0.0017 eV only)
- \rightarrow Systematic uncertainty: from 0.162 to 0.003 eV

Smaller gas-get as target (from 5 to 1 mm of diameter)

- \rightarrow Higher resolution power
- \rightarrow Statistical uncertainty: from 0.034 to 0.008 eV

Higher probability of double capture

Coincidences required

Use hydrogenlike scandium (Z=21) instead of uranium (Z=92)

- → Negligible 2-loop QED effects (0.0017 eV only)
- \rightarrow Systematic uncertainty: from 0.162 to 0.003 eV

Smaller gas-get as target (from 5 to 1 mm of diameter)

- \rightarrow Higher resolution power
- \rightarrow Statistical uncertainty: from 0.034 to 0.008 eV

New detectors (Timepix3 tech.)

 \rightarrow Spatial and **time-resolution** for single capture only

CheeTah detector Timepix3 CERN tech. Time resolution: a few ns Space resolution: 55 µm

2024-25 beam time proposal

Lower than nucleus size uncertainty • \pm 0.034 eV contribution

Sensitive to uncalculated QED effects ٠ (3-photon exchange QED) ± 0.017 eV

Use hydrogenlike scandium (Z=21) instead of uranium (Z=92)

Smaller gas-get as target

 \rightarrow Higher resolution power

(from 5 to 1 mm of diameter)

- \rightarrow Negligible 2-loop QED effects (0.0017 eV only)
- \rightarrow Systematic uncertainty: from 0.162 to 0.003 eV

13 June 2024

Result absolute energy of He-like U: $E_{He-like U} = 4509.763 \pm 0.034_{stat} \pm 0.162_{syst} eV$

Possible outlooks:

- 1) Wait for calibration improvements (Li- and/or B-like U)
- 2) Use another calibration (He-like Sc)
- 3) Do something else ...

Relative measurements

→ Uncertainty dominated by statistics (for almost coinciding transitions)

Smaller gas-get as target (from 5 to 1 mm of diameter)

- \rightarrow Higher resolution power
- \rightarrow Statistical uncertainty: from 0.037 to 0.009 eV

Relative measurements

→ Uncertainty dominated by statistics (for almost coinciding transitions)

Smaller gas-get as target (from 5 to 1 mm of diameter)

- \rightarrow Higher resolution power
- \rightarrow Statistical uncertainty: from 0.037 to 0.009 eV

Transition energy comparisons between isotopes

- Present nuclear radius uncertainty (for ²³⁸U): 0.034 eV [1]
 - Expected deformation effects: 0.02 eV [2]

[1] V.A. Yerokhin *et al.*, J. Phys. Chem. Ref. Data **44**, 033103 (2015)
[2] Z. Sun *et al.*, arXiv preprint arXiv:2309.07780 (2023)
+ N. Oreshkina private communication

٠

Conclusions

- New high-resolution X-ray spectroscopy measurement of He-like uranium ions
- New calibration method to reduce the Doppler effect systematics
- Disentangled measured of one-electron and many-electrons QED
- New benchmark test for bound system QED in strong field
- New proposals planned for next FAIR beamtimes

R. Loetzsch et al., Nature 625, 673-678 (2024)

13 June 2024

74

INSD

P. Dergham

E. Lamour

C. Prigent

S. Steydli

D. Vernhet

MT

S. Macé

Collaboration and sponsors

Th. Stöhlker H. Beyer

R. Hess P.-M. Hillenbrand

KΒ

S. Litvinov Yu. A. Litvinov N. Petridis M. Steck M. Scheidel R. Sidhu S. Trotsenko

Thank you!

Jena Helmholtz Institute Jena R. Lötzsch

I. Uschmann

G. Paulus

G. Weber

IOQ JENA

Friedrich-Schiller-Universitä

L. Duval

P. Indelicato

N. Paul

Jan Kochanowski University D. Banas P. Jagodzinski K. Szary

B. A. Lorentz

M. Guerra J. Machado J.P. Santos

Alexander von Humboldt

Stiftung/Foundation

DFG Deutsche Forschungsgemeinschaft

INS

EMMI

PSAS 2024. M. Trassinelli – INSP