Precision Measurements of Muonium and Muonic Helium Hyperfine Structure at J-PARC

Patrick Strasser

Institute of Materials Structure Science (IMSS), KEK

Muon Science Section, Materials and Life Science Division, J-PARC Center

HPARS

On behalf of the MuSEUM Collaboration

International Conference on Precision Physics of Simple Atomic Systems ETH Zurich - Hönggerberg Campus, Zurich, Switzerland, June 10-14, 2024.

Muonium Hyperfine Structure

Muonium: bound state of μ^+ and e^-

$$\mathcal{H} = h\Delta\nu\mathbf{I}_{\mu}\cdot\mathbf{J} - \mu_{B}^{\mu}g_{\mu}'\mathbf{I}_{\mu}\cdot\mathbf{H} + \mu_{B}^{e}g_{J}\mathbf{J}\cdot\mathbf{H}$$

Zeeman Splitting

electron muon

 ν_{12}

 ν_{34}

2.0

Most Precise Test of Bound-State QED

QED calculation: Effort for 10 Hz accuracy in progress (by Eides et al.)

Muon Precision Measurement @ J-PARC MLF

Relation between Muon g-2 & MuHFS

Muon g-2

- 5σ discrepancy between theory and exp.
- Exp. precision value: 0.2 ppm (FNAL 2023)
- Exp. goal at J-PARC and FNAL: ~0.1 ppm
- Independent precise measurement of muon mass required !
 - Exp. value obtained using Muonium HFS result

From Y. Okazaki's Talk at NuFACT2023

 $\lambda \equiv \frac{\mu_{\mu}}{\mu_{p}} \qquad \qquad \frac{\omega_{a}}{\omega_{L}(\mu)} = \frac{a_{\mu}\left(\frac{eB}{mc}\right)}{g_{\mu}\left(\frac{eB}{2mc}\right)} = \frac{a_{\mu}}{\left(\frac{g_{\mu}}{2}\right)} = \frac{a_{\mu}}{\left(\frac{g_{\mu}}{2}$ $R \equiv \frac{\omega_a}{\omega_p}$ $=\frac{\omega_a}{\omega_L(p)}\frac{\omega_L(p)}{\omega_L(\mu)}=\frac{\omega_a}{\omega_m}\frac{\mu_p}{\mu_m}$

From g-2 storage ring From Muonium HFS

 μ_{μ}/μ_{p} accuracy from direct measurement: 120 ppb

W. Liu et al., Phys. Rev. Lett. 82 (1999) 711

$MuHFS + Mu \ 1s - 2s = g - 2$

PHYSICAL REVIEW LETTERS 127, 251801 (2021)

Towards an Independent Determination of Muon g-2 from Muonium Spectroscopy

Cédric Delaunay^{1,*} Ben Ohayon^{2,†} and Yotam Soreq^{3,‡}

¹Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, CNRS—USMB, BP 110 Annecy-le-Vieux, F-74941 Annecy, France ²Institute for Particle Physics and Astrophysics, ETH Zürich, CH-8093 Zürich, Switzerland ³Physics Department, Technion—Israel Institute of Technology, Haifa 3200003, Israel

(Received 28 July 2021; accepted 15 November 2021; published 15 December 2021)

We show that muonium spectroscopy in the coming years can reach a precision high enough to determine the anomalous magnetic moment of the muon below one part per million (ppm). Such an independent determination of muon g - 2 would certainly shed light on the ~ 2 ppm difference currently

observed between spin-precession measurements and (*R*-ratio based) si magnetic dipole interaction between electrons and (anti)muons bound in m splitting (HFS) of the ground state which is sensitive to the muon anomal comparison of the muonium frequency measurements of the HFS at J-PAR with theory predictions will allow us to extract muon g - 2 with high prec: QED calculations of these transitions by about 1 order of magnitude is al agreement between theory and experiment for the electron g - 2 indicates unlikely to affect muonium spectroscopy down to the envisaged precision

DOI: 10.1103/PhysRevLett.127.251801

J-PARC Facility (KEK/JAEA)

400MeV Energy: 3 GeV,

Neutrino Beams (to Kamioka)

> Materials and Life Experimental Facility (MLF)

Main Ring (MR) Top Energy: 30 GeV, FX Design Power: 0.75 MW SX Power Expectation: > 0.1 MW

Hadron Hall

Linac Rapid Cycle Synchrotron (RCS)

Repetition: 25 Hz

Design Power: 1MW

J-PARC Muon Science Facility (MUSE)

Under Commissioning

<u>H-Line</u>: for particle and atomic physics large scale experiments, "precision frontier" Higher intensity tunable (4 – 50 MeV) μ⁺ & μ⁻ beam. (Exp.: MuSEUM, Deeme, *g*–2/EDM, ...)

MLF Experimental Hall No. 1 (May 2023)

Beamlines in Operation

<u>S-Line</u>: Surface muon (μ^+)

Slow (4 MeV) beam for condensed matter physics.

<u>D-Line</u>: Decay muon ($\mu^+ \& \mu^-$)

Slow (50 keV) – fast (50 MeV) beam, general purpose.

<u>U-Line</u>: Ultra-slow muon (μ^+)

Ultra-slow (0.1 - 30 keV) beam for near-surface condensed matter physics, chemistry, etc.

MuSEUM Setup

Signal =
$$\frac{N_{ON} - N_{OFF}}{N_{OFF}}$$

 N_{ON} : number of positrons when microwave ON N_{OFF} : number of positrons when microwave OFF

MuSEUM Experiment Timeline

2017

 Mu HFS resonance measured at zero field and Kr 1 atm

2018

- Measurements at Kr 0.3, 0.4, 0.7 atm
- Lower pressure than previous experiments
- Development of Rabi-oscillation spectroscopy

2019

- Measurement with Kr-He mixture gas
- Upgrade with silicon strip detector

2022 ~

- H-line commissioning ...
- Preparation for high-field experiment ...

Zero-Field Experiment

MuSEUM Zero-Field Experiment

Microwave Cavity for Zero Field

Experimental Setup

Counter Development

High-rate capability (S/N \sim 21)

- No. of strips: 512 x 2 blocks
- Thickness: 0.32 mm

Rabi-Oscillation Spectroscopy Method

10

15

Time (µs)

10

15

• Need fast detector and high-statistics data

MuSEUM Recent Publications

Zero-Field and High-Field Microwave Cavity

PTEP

Prog. Theor. Exp. Phys. 2021, 053C01 (18 pages) DOI: 10.1093/ptep/ptab047

Development of microwave cavities for measurement of muonium hyperfine structure at J-PARC

K. S. Tanaka^{1,2}, M. Iwasaki³, O. Kamigaito³, S. Kanda^{4,5,6}, N. Kawamura^{4,5,6}, Y. Matsuda², T. Mibe^{5,6,7}, S. Nishimura^{4,5,8}, N. Saito^{5,8}, N. Sakamoto³, S. Seo^{2,3}, K. Shimomura^{4,5,6}, P. Strasser^{4,5,6}, K. Suda³, T. Tanaka^{2,3}, H. A. Torii^{2,8}, A. Toyoda^{5,6,7}, Y. Ueno^{2,3}, and M. Yoshida^{6,9}

Zero-Field Experimental Setup and First Result

	Contents lists available at ScienceDirect	PHOSICS LETTERS #
ELSEVIER	www.elsevier.com/locate/physletb	
New precise spectr	oscopy of the hyperfine structure in muonium with	
New precise spectro a high-intensity pu	oscopy of the hyperfine structure in muonium with Ised muon beam	Coma for spelder

Rabi-Oscillation Spectroscopy

DUVSICAL DEVIEW A 104 L020201 (2021)
PHISICAL REVIEW A 104, L020801 (2021)
Lotter
Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms
S. Nishimura ⁰ , ^{1,2,*} H. A. Torii, ³ Y. Fukao, ^{1,2,4} T. U. Ito, ^{2,5} M. Iwasaki, ⁶ S. Kanda, ⁶ K. Kawagoe, ⁷ D. Kawall, ⁸ N. Kawamura ^{1,2,4} N. Kurosawa ^{1,2} Y. Matsuda ⁹ T. Mihe ^{1,2,4} Y. Miyake ^{1,2,4} N. Saito ^{1,2,4,4} K. Sasaki ^{1,2,4} Y. Sato ¹ S. Seo ^{6,9}
124 To 124 To 1
P. Strasser, and T. Suehara, K. S. Ianaka, T. Ianaka, J. Iojo, A. Ioyoda, T. Ueno, T. ramanaka, T. ramazaki,
H. Yasuda, ³ T. Yoshioka, ⁷ and K. Shimomura ^{1,2,4}
(MuSEIIM Collaboration)

Development for High-Field Experiment

MRI Magnet for High-Field Experiment

Requirements for magnetic field

- 0.2 ppm (peak-to-peak) uniformity
- ±0.1 ppm stability during measurement

Long Term Stability

Azimuth (deg.)

Magnetic Field Probes

Three types of probes are being developed

Standard Probe

- CW-NMR field monitoring system
- Precision of 15 ppb has been achieved

Field Camera

- 24-channels rotating NMR probe to map magnetic fields
- Used for shimming
- 10-channel prototype has been developed

Fixed Probe

 Compact probe to monitor magnetic field stability during experiment

Field Camera

Scanning a sphere with a radius of 25 cm

Developed by Hiroki Tada (Nagoya Univ.)

- 24-channel half-circle multi-channel system
- > Scanning time: 3 hours (single probe) \rightarrow 20 minutes (multi-channel system)

High-Field Microwave Cavity

Improvement from LAMPF

- Muonium transition frequency in gas varies with the gas pressure due to atomic collisions between Mu and Kr
- Previous experiment used fitting of 0.8 and 1.5 atm data only using old quadratic dependence parameter (LAMPF)
- Data at lower pressure needed to improve uncertainty

Rectangular Cavity for 2.9 T Measurement

Improve μ_{μ}/μ_{p} determination at higher field

- NMR probe has same accuracy at different magnetic field strengths
- ➤ Cylindrical cavity only works where $F_{TM110}/F_{TM210} \approx v_{12}/v_{34}$

Frequencies

ies $v_{12} = 1.778 \text{ GHz}, v_{34} = 2.686 \text{ GHz}$

Cavity Size

a = 249.19 mm, *b* = 114.54 mm

$$F_{mnl} = \frac{c}{2\sqrt{\mu_r\epsilon_r}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{d}\right)^2}$$

c:speed of light μ_r, ϵ_r :relative permeability and permittivitym, n, l:mode numbersa, b, c:cavity dimensionsCavity d

Cavity design is ongoing! Prototype constructed and tested

Developed by Ryoto Iwai (KEK)

FRIB/MSU

R. Iwai et al., Nucl. Intrum. Meth. A 1064 (2024) 169434

Upstream Detector Development

Improve statistics and systematics

- Increase statistics and measurement of backward/forward asymmetry to study systematic uncertainties
- Fiber scintillation detector with SiPMs

- Prototype unit developed and beam tested at S-line
- Muon decay positron signal observed
- Full-scale detector design completed
- Now under construction

Developed by Hiroki Tada (Nagoya Univ.)

Blind Analysis for MuSEUM

Hidden answer method

Value to be blinded: injected microwave frequency

- Microwave frequency input by user: v_{set}
- Blinded offset: δ
- True microwave frequency: v_{mw}

 $v_{\rm mw} = v_{\rm set} + \delta$

- δ constant for all v_{set} to draw a resonance curve
- If $|\delta| < 8$ kHz

blind value sufficient for the target precision
rate of change in stored microwave energy < 0.07%

Implemented in Python3

True frequency hidden

Before opening the blind

 v_{mw} - 4,463,302 kHz - δ = v_{set} - 4,463,302 kHz

Blind Test (for µHe HFS)

Password protected, safety/protection features to prevent mis-operation Microwave power and gas pressure are also monitored and recorded

Muonic Helium Atom Hyperfine Structure

Muonic Helium Atom

Previous µHe HFS Experiments

Zero Field (SIN)

Signal (%)

FIG. 2. Schematic view of the apparatus. The Helmholtz coils are used for muon-spin rotation. A cylindrical high-permeability metal shield (diameter 50 cm, length 100 cm) was installed (not shown in the figure) during the microwave magnetic-resonance experiment to reduce the stray magnetic fields.

pressure: 20 atm

FIG. 3. Resonance curves for the $\Delta F = \pm 1$, $\Delta M_F = \pm 1$ hfs transitions in $({}^{4}\text{He}^{++}\mu^{-}e^{-})^{0}$, simultaneously observed in the backward (upper graph) and forward (lower graph) electron telescopes as a function of the microwave resonance frequency.

ZF: H. Orth *et al.*, Phys. Rev. Lett. **45** (1980) 1483 **HF**: C. J. Gardner *et al.*, Phys. Rev. Lett. **48** (1982) 1168

High Field (LAMPF)

FIG. 1. Typical resonance curves for the ν_{12} transition obtained with the forward telescope at (a) 15 atm and (b) 5 atm. The data for these curves were obtained in (a) 24 h and (b) 100 h. For each curve obtained with the forward telescope there is a corresponding curve for the backward telescope.

pressure: 5 & 15 atm

Δν = 4465.004(29) MHz [6.5 ppm]

μ_{μ} -/ μ_{p} = 3.18328(15) [47 ppm]

FIG. 2. $\Delta \nu$ as a function of He +Xe(1.5%) gas pressure. Closed circles show the results of this experiment; the open circle is the result of Ref. 3. The straight line shows the linear extrapolation used to extract $\Delta \nu$ (0).

$\Delta\nu_{\text{HFS}}$: Experiment vs. Theory

- Ground state HFS of muonic helium is very similar to muonium.
- In reality, however, muonic helium is complicated because three-body interaction has to be considered, thus limiting the theoretical approach.

Calculations performed since the 1970s based on perturbation theory (PT), variational approach (VA), and Born-Oppenheimer (BO) theory.

- PT: Amusia, Krutov, Lakdawala, ...
- VA: Aznabayev, Chen, Forlov, Huang, Pachucki, ...
- BO: Drachman, ...

Δv = 4464.55(60) MHz (135 ppm)

D. T. Aznabayev *et al.,* Phys. Part. Nucl. Lett. **15** (2018) 236

Possible theoretical improvements:

Year

 QED effects calculation in 3-body systems could be performed more precisely in higher orders of perturbation theory.
K. Pachucki Phys. Rev. A 63 (2001) 032508

Recent calculations developed for HFS in ³He (40-fold improvement): could it be applied to muonic helium HFS ? V. Patkos *et al.*, Phys. Rev. Lett. **131** (2023) 183001

µHe HFS Measurements at Zero-Field

MuSEUM Zero-Field Experimental Setup

MuSEUM Microwave Cavity (TM220)

 $\Delta v = 4.463 \text{ GHz}$ $\Delta v = 4.465 \text{ GHz}$

Gas Panel

Preparation of MuSEUM apparatus in D2 area at D-line (students from Nagoya University and the University of Tokyo).

Decay Electron Time Spectra

µHe HFS Resonance Curve

High-Field Microwave Cavity (µHe)

Why so difficult compared to Mu?

Muonic helium atom residual polarization

• Depolarization during muon cascade process: $100\% \rightarrow \sim 5\%$

Electron donor

- Helium capturing a muon forms $({}^{4}\text{He}\mu^{-})^{+}$ ion \rightarrow need an electron donor !!!
- Previously 1–2% xenon (IP = 12.1 eV) was used. But, Xe (Z=54) prevents efficient μ⁻ capture by He (Z=2), due to Fermi-Teller Z-law.
- Recently methane (CH₄) found more efficient because of its reduced total charge (Z=10) and similar IP of 12.5 eV. Polarization of ~ 5% reported.

D. J. Arseneau, et al., J. Phys. Chem. B 120 (2016) 1641.

Negative Muon Beam Intensity

 Negative muon beams are generally 10 – 100 times less intense than surface (positive) muon beams

Highly-Polarized Muonic He Atom

Production of highly-polarized muonic helium atom by spin exchange optical pumping (SEOP)

Volume 70, Number 6	PHYSICAL	REVIEW	LETTERS	8 February 1993
Highly Polarized	Muonic He Pro	duced by	Collisions with	Laser Ontically

Pumped Rb

A. S. Barton, P. Bogorad, G. D. Cates, H. Mabuchi, H. Middleton, and N. R. Newbury Department of Physics, Princeton University, Princeton, New Jersey 08544

> R. Holmes, J. McCracken, P. A. Souder, and J. Xu Department of Physics, Syracuse University, Syracuse, New York 13244

D. Tupa Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 24 September 1992)

We have formed highly polarized muonic helium by stopping unpolarized negative muons in a mixture of unpolarized gaseous He and laser polarized Rb vapor. The stopped muons form muonic He ions which are neutralized and polarized by collisions with Rb. Average polarizations for ³He and ⁴He of $(26.8\pm2.3)\%$ and $(44.2\pm3.5)\%$ were achieved, representing a tenfold increase over previous methods. Relevant cross sections were determined from the time evolution of the polarization. Highly polarized muonic He is valuable for measurements of the induced pseudoscalar coupling g_p in nuclear muon capture.

A. S. Barton et al., Phys. Rev. Lett. 70, 758 (1993)

for μ^4 He: 6% \rightarrow 44% Improvement by a factor 7 achieved !

Maximum theoretical polarization: ⁴He = 100%, ³He = 75%

Polarization of Muonic He Atom

µHe SEOP Objectives

- 1) Demonstrate re-polarization of µHe atoms at using the SEOP technique
 - Test experiment at D1 area under development
- 2) Further improvements expected with a **hybrid-SEOP technique**
 - Use **K**/**Rb** to enhance the spin-exchange efficiency
 - Rb is used as a spin-transfer agent to K, to prevent depolarization of Rb due to Rb-Rb collision.
 - K-He transfers the angular momentum with much greater efficiency than directly Rb-He (nearly 10 times greater than with pure Rb pumping).
 - Can achieve high polarizing rate with high polarization, which is very important for HFS measurements
- Demonstrate that the SEOP technique can be applied to muonic helium HFS measurements
 - Simulation (in progress)
 - Test experiment

SEOP Experimental Setup for µHe

µHe SEOP Beamtime (Feb. 2023)

Muonic helium atom residual polarization

- Depolarization during muon cascade \rightarrow **~5%** (muonium 50%)
- Re-polarization of muonic He atom by spin exchange optical pumping (SEOP)

First laser experiment at area D1 First successful μHe SEOP Results!

S. Fukumura T. Okudaira (Nagoya Univ.) [2022B0314]

Muon D1

D1 laser enclosure can also be used by other experiments.

µHe SEOP Beamtime (Dec. 2023)

µHe SEOP Beamtime (Dec. 2023)

Preliminary Simulation

0.05

-500

500

Detuning Frequency [kHz]

1000

Simulation by S. Fukumura

Current Schedule & Goal

Current Goal

Statistical Improvement:

- H-line: 10x intensity (D-line)
- Runtime: 100 days

Systematic uncertainties:

- Δv_{HFS} : < 1.5 ppb
- μ_{μ^-}/μ_p : < 13 ppb

 $\begin{array}{|c|c|c|}\hline Muonium \\ \Delta\nu {}_{HFS} & \sim 2 \ ppb \\ \mu {}_{\mu} / \mu {}_{p} & \sim 20 \ ppb \end{array}$

(estimation)

Vor	<i>i</i> V/	orv	Dro	lim	inary	, 111
very	γv	ery	FIE		iiiai y	

Summary & Future Plans

Muonium HFS precision measurement

- Precise bound-state QED test
- Muon g 2 & Muonium 1s 2s

Zero-Field Experiment

- Development of Rabi-oscillation spectroscopy
- World's highest precision in ZF measurement: 160 ppb

High-Field Experiment (H1 area)

- Field uniformity: **0.27 ppm** achieved
- Development of CW-NMR magnetic probe: **15 ppb** precision achieved
- Ready to **START** measurement **very soon** !!!

Muonic Helium HFS Measurement

- Zero-Field experiment successful; world's highest precision: **4.5 ppm**
- Highly-polarized µHe formation by SEOP under development
- High-field experiment planned after muonium

The μHe project was supported by a JSPS KAKENHI grant No. 21H04481 (FY2021-2023)

"High-precision measurement of the negative muon mass by muonic helium atom hyperfine structure spectroscopy"

(Muonium Spectroscopy Experiment Using Microwave)

KEK

M. Abe, T. Ino, S. Kanda, S. Nishimura, H. Okabe, K. Sasaki, K. Shimomura, P. Strasser

Nagoya University

K. Asai, M. Fushihara, Y. Goto, S. Kawamura, M. Kitaguchi, T. Okudaira, M. Okuizumi, H. M. Shimizu, H. Tada

JAEA

T. Oku

University of Tokyo

H. A. Torii

Michigan State Univ.

R. Iwai

Tohoku University H. Okabe

Ibaraki University M. Hiraishi

NIIGATA S. Fukumura, INIVERSITY R. Azuma

On behalf of the extended MuSEUM Collaboration

