

V. Wirthl, MPQ

V. Wirthl, L. Maisenbacher, D. Taray, O. Amit, R. Pohl, T. W. Hänsch and Th. Udem

PSAS Conference, June 2024

Hydrogen and deuterium energy levels theory

Hydrogen/deuterium energy levels based on bound-state Quantum Electrodynamics:

$$
E_{nlj} = hc R_{\infty} \left(-\frac{1}{n^2} + f_{nlj} (\alpha, \frac{m_e}{m_N}) + \frac{\delta_{l0}}{n^3} \left(C_{\text{NS}} r_N^2 + C_{\text{pol}} + \text{h.o.n.e.} \right) \right)
$$

Rydberg
constant

$$
hc R_{\infty} = m_e c^2 \times \frac{\alpha^2}{2}
$$

$$
\alpha
$$
 fine-structure constant

..related to the electron mass and the fine-structure constant

 m_e electron-to-nucleus mass ratio m_N

Hydrogen and deuterium energy levels theory

Hydrogen/deuterium energy levels based on bound-state Quantum Electrodynamics:

$$
E_{nlj} = hc R_{\infty} \left(-\frac{1}{n^2} + f_{nlj} (\alpha, \frac{m_e}{m_N}) + \frac{\delta_{l0}}{n^3} \left(C_{\text{NS}} r_N^2 + C_{\text{pol}} + \text{h.o.n.e.} \right) \right)
$$
\nQED effects with point-like nucleus\n
$$
\alpha^2 \times \alpha^3 \ln(\alpha^2) \times \alpha^2 \times \alpha^3
$$
\n
$$
\alpha^2 \times \alpha^3 \ln(\alpha^2) \times \alpha^2 \times \alpha^3
$$
\n
$$
\alpha^2 \times \alpha^3 \ln(\alpha^2) \times \alpha^2 \times \alpha^3
$$
\n
$$
\alpha^2 \times \alpha^2 r_N^2
$$
\n
$$
\alpha^2 \times \alpha^2 r_N^2
$$
\n
$$
\alpha^2 \times \alpha^2 r_N^2
$$
\n
$$
\alpha^2 \times \alpha^2 \times \alpha^3
$$
\n
$$
\alpha^2 \times \alpha^3 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^2 \times \alpha^3 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^2 \times \alpha^3 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^2 \times \alpha^4
$$
\n
$$
\alpha^2 \times \alpha^4
$$
\n
$$
\alpha^3 \times \alpha^4
$$
\n
$$
\alpha^4 \times \alpha^5
$$
\n
$$
\alpha^5 \text{C}_{\text{orb}} \text{C}_{\text{pol}}
$$
\n
$$
\alpha^2 \times \alpha^4
$$
\n
$$
\alpha^3 \times \alpha^4
$$
\n
$$
\alpha^4 \text{C}_{\text{reduction}}
$$
\n
$$
\alpha^5 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^6 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^7 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^8 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^8 \text{C}_{\text{pol}}
$$
\n
$$
\alpha^9 \text{C}_{\
$$

H 2S-6P vs D 2S-6P: contributions to transition frequency

Hydrogen 2S-6P: higher-order nuclear size effects and polarizability < 0.1 kHz Deuterium 2S-6P: higher-order nuclear size 0.4 kHz, polarizability 2.7 kHz

 \sim \equiv

 $N \implies$

Considering hydrogen and deuterium separately: 1S-2S transition measurement in hydrogen or deuterium combined with other transition measurement:

but so far no recent data from deuterium spectroscopy

Hydrogen: $l = 1/2$

Deuterium: $l = 1$

Additionally allowed transitions

Deuterium: $l = 1$

compared to hydrogen require to consider:

1) simultaneous excitation of different hyperfine levels

Additionally allowed transitions

Deuterium: $l = 1$

compared to hydrogen require to consider:

1) simultaneous excitation of different hyperfine levels

Residual circular polarization S changes the dipole ratio of excited hyperfine state manifolds

Introduced **polarization monitor** in our improved active fiber-based retroreflector [1]

Shift from non-zero circular polarization **cancels for equal population of initial states**

[1] V. Wirthl *et al.*, *Opt. Express* 29(5), 7024 (2021)

Deuterium: $l = 1$ **Additionally allowed transitions** compared to hydrogen require to consider: $\Delta_{HFS_{1/2}}$ 0.13 Γ_{nP} 1) simultaneous excitation of different hyperfine levels \gg Γ_{25} 41 MHz

2) quantum interference between unresolved hyperfine transitions [1]

[1] Th. Udem *et al.*, *Ann. Phys. 531*(5), 1900044 (2019)

- for π decays q. i. effect cancels [2] for each initial state

- for σ^{\pm} decays q. i. effect **cancels** [2] **for equal population of initial states or equal detection** of σ^+ and σ^- decays **Al detector e −**

possible sensitivity ξ _o of e[−]yield upon **circular polarization**

[1] Th. Udem *et al.*, *Ann. Phys. 531*(5), 1900044 (2019) [2] V. Wirthl, *PhD Thesis, LMU Munich* (2023)

e −

Both effects from additional transitions in deuterium **doubly suppressed**

[1] Th. Udem *et al.*, *Ann. Phys. 531*(5), 1900044 (2019)

Initial state population asymmetry: estimation from Boltzmann

Deuterium: $l = 1$ Both effects from additional transitions in deuterium depends on the **initial state population asymmetry**:

$$
\iota = \frac{N_{i2} - N_{i1}}{N_{i2} + N_{i1}}
$$

Spin-polarizing effects in the nozzle?

 $F = 3/2$ $F = 1/2$ $F = 3/2$ $F = 1/2$ $F = 3/2$ $F = 1/2$ ΔE_t

Symmetric nozzle: **symmetry breaking induced by magnetic field**, which leads to the energy difference $\Delta E_t = \frac{2}{3}\mu_B B$ between the two initial states. Estimate assuming thermalization (Boltzmann distribution):

$$
\frac{N_{i1}}{N_{i2}} = \exp\left(-\frac{\Delta E_{\iota}}{k_{\mathrm{B}}T_{\mathrm{N}}}\right) \quad \Rightarrow \qquad \iota \simeq \frac{\mu_{\mathrm{B}}B}{3k_{\mathrm{B}}T_{\mathrm{N}}} \sim 3 \times 10^{-7}
$$

Initial state population asymmetry: Stern-Gerlach effect

Initial state population asymmetry: Stern-Gerlach effect

Initial state population asymmetry: Stern-Gerlach effect

Initial state asymmetry originates only from asymmetries in the apparatus

Estimate of initial state asymmetry from Stern-Gerlach effect in the atomic beam:

$$
\iota \simeq 10^{-6} \dots 5 \times 10^{-5}
$$

Depends on velocity of atoms: **velocity-resolved detection** sensitive to this effect Estimates of line shifts due to initial state population asymmetry

Estimates of initial state asymmetry:

Calculation of systematic shifts coupled to population asymmetry yields [1]:

2S-6P_{3/2}: Shift due to simultaneous excitation with 2S-6P_{1/2}: residual circular polarization fraction S : $\Delta\nu_{is} \simeq \iota s \times 75 \,\text{kHz}$ $\iota s \times 37 \,\text{kHz}$ Shift due to unresolved Q.I. with circular $\Delta \nu_{\iota \xi_{\rm o}} \simeq \iota \xi_{\rm o} \times 100 \,\text{kHz}$ $\iota \xi_{\rm o} \times 5 \,\text{kHz}$ polarization sensitivity of the detector ξ ^o:

With the estimated initial state population asymmetry of $< 10^{-4}$, both effects lead to shifts $<$ 1 Hz even for the worst case of other imperfections

+ sensitive to velocity-resolved detection $+$ different for 2S-6P_{1/2} and 2S-6P_{3/2} [1] V. Wirthl, *PhD Thesis, LMU Munich* (2023)

Possible measurement of initial state population asymmetry

Observed deuterium 2S-6P transition signal with a high count rate, low background:

Test measurement: ~ 300 deuterium 2S-6P precision line scans

Preliminary deuterium 2S-6P measurement campaign result:

 \rightarrow feasible with a similar precision as in hydrogen

Setup upgrade for O₂ flushing of UV mirrors: differential pumping

Main problem for continuos operation of the experiment: **UV mirror degradation** for the 243nm enhancement cavity

→ Solution: in the future planned to rebuild setup for differential pumping to **flush mirrors with ~1mbar of oxygen**

Setup upgrade for O_2 flushing of UV mirrors: differential pumping

Upgrade to differential pumping required to disassemble the whole apparatus

Thank you for your attention!

Hydrogen team

V. Wirthl, MPQ

Vincent Weis

Omer Amit

Vitaly **Wirthl**

Lothar Maisenbacher (UC Berkeley)

Looking for new PhD students!

Randolf Pohl

Thomas Udem

Theodor W. Hänsch