Rebecca J. Daly

Department of Physics and Astronomy, University College London,

Gower Street, London, WC1E 6BT, United Kingdom

Measurement of the C-forbidden $2 {}^{3}S_{1} \rightarrow 2 {}^{1}P_{1}$ transition in positronium

rebecca.daly.18@ucl.ac.uk

R. E. Sheldon, K. P. Habdas, S. D. Hogan and D. B. Cassidy Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom

J. Pérez-Ríos

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, US

Positronium (Ps)

- The bound state of an electron and a positron.
- Hydrogenic atom.
- Fine structure unlike hydrogen (annihilation, spin-orbit coupling, spin-spin interactions).
- Purely leptonic, ideal system for testing bound state QED theory.
- Has eigenstates of C (charge conjugation) and CP (charge conjugation and parity) - ideal for testing fundamental symmetries.

Ps n = 2 transition measurements

- Measurements of Ps energy levels are much less precise than theory.
- $2^{3}S_{1} \rightarrow 2^{2S+1}P_{J}$ (J = 0, 1, 2) intervals:
 - Uncertainty in theory = 80 kHz¹.
 - Until recently, experimental uncertainties > 1 MHz.
- Difficulties:
- Hard to produce in large numbers.
- Very fast (doppler broadening, transit time broadening).
- Unstable against annihilation.

¹ A. Czarnecki et al, Phys. Rev. A 59, 4316 (1999).

UCL

State of Ps n = 2 tests

- Measure two intervals: $2 {}^{3}S_{1} \rightarrow 2 {}^{3}P_{1}(\nu_{1})$ and $2 {}^{3}S_{1} \rightarrow 2 {}^{1}P_{1}(\nu_{F})$.
- Performed in a range of magnetic fields.

Transition	Measured (MHz)	Δ _{meas.} (ppm)	Theory (MHz)	$\Delta_{\text{theo.}}$ (ppm)
$2^{3}S_{1} \rightarrow 2^{3}P_{0}$ (ν_{0})	18 499.65(5.2)	230 ^[1]	18498.25(8)	4.8 ^[2]
$2 {}^{3}S_{1} \rightarrow 2 {}^{3}P_{1}$ (ν_{1})	13012.42(1.68)	129 ^[1]	13012.41	6.1 ^[2]
$2 {}^{3}S_{1} \rightarrow 2 {}^{3}P_{2}$ (ν_{2})	8627.94(95)	110 ^[3]	8626.71	9.3 ^[2]
$2 {}^{3}S_{1} \rightarrow 2 {}^{1}P_{1}$ (ν_{F})	11180.0(9.0)	600 ^[4]	11185.37(8)	7.2 ^[2]

- ¹D. Hagena, et al, Phys. Rev. Lett., 71:2887–2890 (1993).
- ²A. Czarnecki et al, Phys. Rev. A 59, 4316 (1999).
- ³R. E. Sheldon et al, Phys. Rev. Lett. 131, 043001 (2023).
- ⁴R. Ley et al, Hyperfine Interactions, 89(1):327–341 (1994).

UCL

Microwave transitions

- $\Delta M_I = 0$ transitions are driven.
- ν_F:
- $2 {}^{3}S_{1}(0) \rightarrow 2 {}^{1}P'_{1}(0)$ • $2 {}^{3}S_{1}(\pm 1) \rightarrow 2 {}^{1}P'_{1}(\pm 1)$
- ν₁:
- $2^{3}S_{1}(\pm 1) \rightarrow 2^{3}P_{1}(\pm 1)$

Microwave transitions

- Magnetic fields mix states of equal ℓ and equal M_J , but $\Delta S = \pm 1$.
- $2 {}^{3}S_{1} \rightarrow 2 {}^{1}P_{1}$ occurs due to Zeeman mixing of $2 {}^{1}P_{1}$ with $2 {}^{3}P_{J}$ (J=0,1,2) states.
- Zeeman mixing coefficients, C_{ij}, are determined by diagonalization of the Zeeman Hamiltonian.
- Average Zeeman shift using $C_{ij} * I_{mj} * N$ as the weights for the transitions, where I_{mj} are the angular components of the transition strength and N is the number of possible transitions for each M_{J} .
- Fit $v_R = aB^2 + v_j$, where *a* is a constant, B is the magnetic field and v_j is the zero-field excitation frequency.

Beamline

See B. S. Cooper et al, Rev. Sci. Instrum. 86, 103101 (2015) for details on beamline

Ζ

- β^+ from ²²Na source, moderated with solid neon.
- Two stage Surko-type buffer gas trap (N₂ and SF₆), operating at 1 Hz, rotating wall and buncher.
- e⁺ pulses of < 4 ns / 3 mm and transported magnetically to target chamber.

Ps production and excitation

- 1 ³S₁ produced by implantation of e⁺ into an SiO₂ target.
- Single-photon $1 {}^{3}S_{1} \rightarrow 2 {}^{3}S_{1}$ excitation using 243 nm UV radiation (retro-reflected).
- Performed in an electric field to allow transition to occur.
- WR-75 rectangular waveguide.
- TE₁₀ mode was propagated.
- Reversible microwave direction to cancel doppler shifts.
- Radiation polarised parallel to the quantisation axis, defined by the applied magnetic field, drives ΔM_J = 0 transitions.

Line shape measurements

- Time resolved gamma-ray spectroscopy using scintillation detectors allows differentiation of long- and short-lived states.
- Measure population transfer from the long-lived $2 {}^{3}S_{1}$ state to the short-lived $2 {}^{2S+1}P_{J}$ state (S_{γ}) as a function of frequency.

$$2 {}^{3}S_{1} \xrightarrow{\text{stimulated}} 2 {}^{3}P_{1} \xrightarrow{\tau_{\text{mean}}=3.2 \text{ ns}} 1 {}^{3}S_{1} \xrightarrow{\tau_{\text{mean}}=142 \text{ ns}} 3\gamma$$

$$2 {}^{3}S_{1} \xrightarrow{\text{stimulated}} 2 {}^{3}P_{1} \xrightarrow{\tau_{\text{mean}}=3.2 \text{ ns}} 1 {}^{3}S_{1} \xrightarrow{\tau_{\text{mean}}=142 \text{ ns}} 3\gamma$$

$$2 {}^{3}S_{1} \xrightarrow{\text{stimulated}} 2 {}^{1}P_{1}' \xrightarrow{\tau_{\text{mean}}=3.2 \text{ ns}} 1 {}^{1}S_{0} \xrightarrow{\tau_{\text{mean}}=125 \text{ ps}} 2\gamma$$

2
$${}^{3}S_{1}$$
: τ_{mean} = 1136 ns

Line shape measurements

- Time resolved gamma-ray spectroscopy using scintillation detectors allows differentiation of long- and short-lived states.
- Measure population transfer from the long-lived $2 {}^{3}S_{1}$ state to the short-lived $2 {}^{2S+1}P_{I}$ state (S_{γ}) as a function of frequency.

Zeeman shifts

- Measurements taken at multiple magnetic fields to allow extrapolation to zero-field.
- v₁ is Zeeman-shifted as expected, and a quadratic function is fit for extrapolation to zero-field.

Current hypothesis:

- AC Stark-shifts and quantum interference (QI) effects on the scale of a few MHz for v_F due to higher power.
- Incomplete Zeeman mixing model and line shape model

Zero-field transition frequencies

- v^F_R is more complicated due to Zeeman mixing and possible AC Stark shifts and QI: agrees with theory at high magnetic fields.
- Statistical error **only**.

- Aiming for an improvement in precision of both v_R¹ and v_R^F compared to previous measurements.
- v_1 is well understood: no significant disagreement of v_R^1 with theory, and previous issues mostly resolved.

Systematic errors

- No first order Doppler shifts or recoil due to reversible microwave direction.
- From previous work¹ we estimate second order Doppler shifts to be < 1 kHz, and the effect of stray electric fields to be < 10 kHz.
- Work on the Zeeman mixing model and line shape model is ongoing.
- AC stark shifts and QI effects will be determined by simulations and calculations. Lower power measurements will be run to mitigate these effects, but they could be on the MHz scale for v_F.

¹L. Gurung et al, Phys. Rev. A **103**, 042805 (2021).

UCL

Ongoing work

- Continue development of Zeeman mixing and line shape models
- Continue with measurements at a range of powers

Future plans

- Slower Ps
- Production of polarized Ps using microwave or laser selection

Thank you!

