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Positronium (Ps)

* The bound state of an electron and a positron.
= Hydrogenic atom.

* Fine structure unlike hydrogen (annihilation, spin-orbit coupling, spin-spin
Interactions).

» Purely leptonic, ideal system for testing bound state QED theory.

» Has eigenstates of C (charge conjugation) and CP (charge conjugation and
parity) - ideal for testing fundamental symmetries.



Ps n = 2 transition measurements

» Measurements of Ps energy levels are much less precise than theory.

= 235, - 225%1p, (3 =0, 1, 2) intervals:
= Uncertainty in theory = 80 kHz*.
= Until recently, experimental uncertainties > 1 MHz.

= Difficulties:
» Hard to produce in large numbers.
» Very fast (doppler broadening, transit time broadening).

» Unstable against annihilation.

1 A. Czarnecki et al, Phys. Rev. A 59, 4316 (1999).



State of Ps n = 2 tests

A Singlets Triplets
= Measure two intervals: 2 3S; - 2 3P, (v;) (5=0) 5=
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Microwave transitions — 7esop o
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I\/Ilcrowave transitions

0.04-

= Magnetic fields mix states of equal £ and equal M,
but AS = + 1.

= 23S, - 2P, occurs due to Zeeman mixing of 2 1P,
with 2 3P, (J=0,1,2) states.

= Zeeman mixing coefficients, C;;, are determined by
diagonalization of the Zeeman Hamiltonian.

= Average Zeeman shift using C;; = I,,; x N as the
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Beamline 2

See B. S. Cooper et al,
Rev. Sci. Instrum. 86,
103101 (2015) for details
on beamline

——=

= 3% from 22Na source, moderated with solid neon.

= Two stage Surko-type buffer gas trap (N, and SFy) , operating at 1 Hz, rotating wall
and buncher.

» ¢t pulses of < 4 ns /3 mm and transported magnetically to target chamber.



Ps production and excitation

Microwave = 1 3S, produced by implantation of et into an
T  Absorbing Foam Si02 target.
4 = Single-photon 1 °S; — 2 3S; excitation using
‘ m s }‘ 243 nm UV radiation (retro-reflected).
: _W::f;?de = Performed in an electric field to allow transition
| 5 to occur.

|l; | Ps==>> =c’ * WR-75 rectangular waveguide.
\ * TE,, mode was propagated.

=
- o = Reversible microwave direction to cancel
& _lx X doppler shifts.
, LZ = Radiation polarised parallel to the quantisation

Uv "10cm  axis, defined by the applied magnetic field,
drives AM; = 0 transitions.




Line shape measurements

* Time resolved gamma-ray spectroscopy using scintillation detectors allows
differentiation of long- and short-lived states.

= Measure population transfer from the long-lived 2 3S; state to the short-lived
2 25*1p; state (S,) as a function of frequency.

stimulated fluorescence self annihilation
23S, > 23P; > 13S, > 3y
stimulated fluorescence self annihilation
emission Tmean=3-2 IS Tmean=125 ps
23S, > 21P/ > 115, > 2y

2381t Toeqn = 1136 NS




Line shape measurements

* Time resolved gamma-ray spectroscopy using scintillation detectors allows
differentiation of long- and short-lived states.

= Measure population transfer from the long-lived 2 3S; state to the short-lived

2 Zs;lP] state (S,) as a function of frequelr:)cy.
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= Fit Lorentzian functions to extract centroids, vs and vs.



Zeeman shifts

13060F Teer 77 = Measurements taken at multiple magnetic
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Zero-field transition frequencies

ey PTRPevies v | " Aiming for an improvement in precision of
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Systematic errors

* No first order Doppler shifts or recoll due to reversible microwave direction.

= From previous work! we estimate second order Doppler shifts to be < 1 kHz,
and the effect of stray electric fields to be < 10 kHz.

= Work on the Zeeman mixing model and line shape model is ongoing.
= AC stark shifts and QI effects will be determined by simulations and

calculations. Lower power measurements will be run to mitigate these
effects, but they could be on the MHz scale for vg.

L. Gurung et al, Phys. Rev. A 103, 042805 (2021).



Ongoing work

= Continue development of
Zeeman mixing and line
shape models

= Continue with measurements ==
at a range of powers

Future plans

= Slower Ps
» Production of polarized Ps using
microwave or laser selection

@PsSpectroscopy
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