

Stringent tests of *ab initio* QED calculations in the ALPHATRAP experiment

Jonathan Morgner

Precision Physics of Simple Atomic Systems

Hydrogen atom

Hydrogen-like ion

- Stronger Coulomb coupling
- Electric field strength reaches values of 10¹⁶ V/cm

- Well tested and well understood
- We can add complexity to probe other aspects of the atomic theory

Nuclear charge Z

¹Heiße et al. PRL **131** (2023), ²Sturm et al. PRL **107** (2011), ³Morgner et al. Nature **622** (2023)

with Z

Precision Physics of Simple Atomic Systems

- Well tested and well understood
- We can add complexity to probe other aspects of the atomic theory

 Simplest available molecule

 $f_{rot} \sim cR_{\infty} \frac{m_e}{m_n}$

- Simple system \rightarrow precise theory prediction
- Rovibrational levels give access to fundamental constants
- CPT¹ test comparing H_2^+ and \overline{H}_2^-
 - + unique and high sensitivities
 - very low \overline{H}_2^- production rates
 - Symmetric molecule \rightarrow no dipole transitions (up to 10¹¹ s lifetimes)
- Single-ion non-destructive state detection and spectroscopy needed

Outline

Introduction *Setup* & *Methods*

 g-factor measurement of hydrogen-like¹ and lithium-like² tin

- Demonstration of non-destructive single ion state detection
- HFS measurement in HD⁺

¹Morgner *et al., Nature* **622** 53-57 (2023) ²Morgner *et al.,* submitted

³König et al., in preparation

Alphatrap setup

- Penning-trap with 4-Tesla magnet
- Cryogenic setup
- Access to externally produced ions
 - Mini-EBIT ($Z \le 14$)
 - Heidelberg-EBIT ($Z \le 55$)
 - Eventually Hyper-EBIT (See upcoming talk of Athulya Kulangara Thouttungal George)
- room-temperature beamline connects to trap
- ➢ Separated by cryogenic valve
 →Pressure below 10⁻¹⁶ mbar

Month long storage of single ions

g-factor Measurement principle

Penning trap

- A combination of *E* and *B* field confine the particle in the trap
- Motion splits into three eigenmotions
- Determine ω_c from the ion motion

Ion detection

- > fA image charge currents
- Cryogenic detector amplifies the signal
- Thermalize the ion to 4 K

without Spin Spin up Spin down

Measure Spinstate

Transport to PT

Precision Physics of Simple Atomic Systems

Hydrogen atom

Hydrogen-like ion

- Stronger Coulomb coupling
- Electric field strength reaches values of 10¹⁶ V/cm

Molecular hydrogen ion

- Simplest available molecule

- Well tested and well understood
- We can add complexity to probe other aspects of the atomic theory

¹¹⁸Sn⁴⁹⁺ *g* factor

- Transistion probability as a function of Γ = ν_L/ν_c
- Maximum-likelihood fit of the data

$$g = 2 \frac{\boldsymbol{\omega}_{\rm L}}{\boldsymbol{\omega}_{\rm c}} \frac{q_{\rm ion}}{e} \frac{m_{\rm e}}{m_{\rm ion}}$$

$$g_{\rm Exp} = 1.910\ 562\ 059\ 0(9) \longrightarrow 5 \times 10^{-10}$$

Lithium-like tin

 $g_{\rm Exp}(2s) = 1.980\ 354\ xxx(1)^1$

- Structure similar to hydrogen-like ٠ theory
- Additional electron-electron interaction terms

Electron Structure

Lithium-like tin

 $g_{\rm Exp}(2s) = 1.980\ 354\ xxx(1)^1$

- Structure similar to hydrogen-like theory
- Additional electron-electron interaction terms

¹Morgner et al., submitted (2024)

Lithium-like tin

 $g_{\rm Exp}(2s) = 1.980\ 354\ xxx(1)^1$

- Structure similar to hydrogen-like theory
- Additional electron-electron interaction terms
- New Theory calculations seem to resolve the discrepancy in the low-Z measurements²

Independent test of the **new** theory in a so far unexplored regime

Precision Physics of Simple Atomic Systems

• We can add complexity to probe other aspects of the atomic theory

Hydrogen-like ion

- Stronger Coulomb coupling
- Electric field strength reaches values of 10¹⁶ V/cm

Molecular hydrogen ion

• Simplest available molecule

Hyperfine Structure of HD⁺

$$f_{rot} \approx cR_{\infty}m_e(\frac{1}{m_d} + \frac{1}{m_p})$$

Why:

- Excited state lifetimes < 140 s
 - ground state preparation
- Rovibrational measurements:
 - determine fundamental constants:
 - $m_{\rm p}/m_{\rm e}$ at 20 ppt
 - Deviations up to 9 σ between theory and experiment¹⁻⁴

Goals:

- Demonstrate single-ion, non-destructive spectroscopy
- Measure hyperfine structure

¹S. Alighanbari et al., Nature 581 (2020), ²S. Patra et al., Science 369 (2020), ³I. V. Kortunov et al., Nat. Phys. vol. 17 (2021), ⁴S. Alighanbari et al., Nat. Phys., vol. 19 (2023)

¹R.A. Hegstrom, Phys. Rev. A 19, 17 (1979), ²J. P. Karr et al., Phys. Rev. A 102, 052827 (2020)

Next Steps: Laser Spectroscopy of HD⁺

Ongoing:

Rovibrational spectroscopy of HD⁺ First step: 1.15 μm for (*v*=0, *N*=0) -> (*v*=5, *N*=1)

> Perform single-ion non-destructive rovibrational spectroscopy of H_2^+

Summary

Hydrogen-like tin:

→ Stringent test of QED in the extremely strong fields of the hydrogen-like tin nucleus

Lithium-like tin:

→ Test the new e-e interaction calculations with a new measurement in an unexplored regime

HD⁺ HFS spectroscopy:

- \rightarrow Non-destructive state detection
- → Testing fundamental theory relevant for fundamental constant $m_{\rm p}/m_{\rm e}$

ALPHATRAP lab

Thank you

ALPHATRAP:

- Matthew Bohman
- Luca Geissler
- Athulya George
- Fabian Heiße
- Charlotte König
- Fabian Raab
- Tim Sailer
- Bingsheng Tu
- Sven Sturm
- Klaus Blaum

Uni Düsseldorf:

- Ivan Kortunov
- Victor Vogt
- Stephan Schiller

Theory:

- Zoltán Harman
- Vladimir Yerokhin
- Bastian Sikora
- Chunhai Lyu
- Vincent Debierre
- Christoph Keitel
- Dimitar Bakalov

EBIT Group

- José Crespo López-Urrutia
- Hendrik Bekker
- Karl Rosner
- Nils Rehbehn

Acknowledgements

This work was supported by the Max-Planck Society, the IMPRS-QD, the DFG (SFB 1225- ISOQUANT) and the EU (ERC Grant No. 832848 Funl).

PSAS 2024 Zürich

12.06.2024