Towards the controlled formation of antiprotonic atoms

The antiprotonic atom

the electron.

Electric field

The life of an antiprotonic atom

What about the resulting nuclear fragments?

- Nuclear fragments are (often) radioactive Highly Charged Ions (HCI)
- Sensitive probes for:
 - QED
 - Weak interaction
 - Nuclear structure
- GEANT4/FLUKA simulations of fragments formed from 1 million Pbar annihilations:

Can we trap fragments in a Penning-Malmberg trap?

- Trapping fractions of nuclear fragments determined by charge state (q), E and B-field:
- Axial confinement by electrode potential (~10kV)
- ➢ Radial confinement by B-field (5T)
- Trapping fraction enhanced by charge state. >50% trapped at 10 keV/q

Experiements at the Antimatter factory

- Goal: Forming a cold beam of H
 and measure its trajectory in a gravitational field to <1% accuracy.</p>
- > Pulsed production of \overline{H} achieved using laser excited Rydberg positronium ($\sigma \propto n^4$)
- ➢ Record antiproton catching efficiency.

 $\Delta y = a\tau^2$

Charge exchange reaction:

ਉਂ High resolution ਜੂ CMOS Sensor

Controlled synthesis of antiprotonic atoms using charge-exchange

Controlled synthesis of antiprotonic atoms

Towards the synthesis of antiprotonic atoms

Studying positive ions formed from annihilations with nitrogen in UHV (<1e-8 mbar)

Overview of the ion capture and TOF procedure

TOF spectrum vs scintillator signal

- Observation of a TOF signal formed from antiproton annihilation with nitrogen.
- Signal observed for low energy antiprotons <1 keV.</p>

Identification of trapped HCIs formed from antiproton annihilation

- > TOF spectrum calibrated using e-, \bar{p} and H⁺.
- ≻ HCI trapped with m/q=2.0(1)
- Expected fragments from GEANT4 simulations: (¹⁴N⁷⁺) ,¹²C⁶⁺, ¹⁰B⁵⁺, ⁶Li³⁺, ⁴He²⁺,...

Summary and outlook:

- New program at AEgIS focusing on the controlled synthesis and study of antiprotonic atoms and HCIs.
- Procedure developed at AEgIS for trapping and identifying HCIs formed from annihilation with antiprotons on atoms in UHV.
- > Simulations ongoing to better understand formation mechanism.
- ➢ Planned study of HCI fragments formed from noble gases (Ar, Kr...).

Thank you for your attention

On behalf of the AEGIS collaboration

Collissional ionization with antiprotons?

3000 eV is required to form N^{7+} from the N_2 molecule

Pbar TOF calibration

Traditional HCI formation at radioactive beam facilities:

High energy beam through stripper foil:

Electron beam ionization:

Fig. 2: Principle of operation of an EBIS

The AEGIS experiment

Low energy antiproton interactions

What could result in the formation of m/q=2 from nitrogen?

Antiproton overlap with nucleus

Antiprotonic atoms: setup of the ion injection beamline

TOF calibration using Pbars and electrons

Simulation – Geant4 set up

- Antiproton is created inside a hollow sphere of 500 nm thickness of target material
- Target defined according to data from a config file (N,Z, density)
 - Simulation ran for different isotopes (over 3000 isotopes)
- 1M antiprotons with E=1 keV
- Physics List:
 - FTFP_BERT_HP

