Hyperfine splitting in muonic hydrogen

JGU

Ahmed Ouf

Goal

Measure the 1s-HFS in μp with a relative accuracy $~\delta \approx 1 \times 10^{-6}$

1S hyperfine splitting in muonic hydrogen

Extract the nuclear structure contribution with $\approx 1 \times 10^{-4}$ relative accuracy

Proton structure dependent contributions

$$E_{nS-HFS}^{\langle 2\gamma\rangle} = \frac{E_{\rm F}}{n^3} \left(\Delta_Z + \Delta_{\rm recoil} + \Delta_{\rm pol}\right).$$

$$Zemach$$

$$\Delta_Z = -2Z\alpha m_r r_Z \qquad r_Z = -\frac{4}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa_N} - 1 \right].$$

$$\Delta_Z(\mu H) = -7403^{+21}_{-16} \,\text{ppm}$$

Lin, Yong-Hui, Hammer, Meißner (2022)

Recoil

$$\Delta_{\text{recoil}} = \frac{Z\alpha}{\pi(1+\kappa)} \int_0^\infty \frac{\mathrm{d}Q}{Q} \left\{ \frac{8mM}{v_l + v} \frac{G_M(Q^2)}{Q^2} \left(2F_1(Q^2) + \frac{F_1(Q^2) + 3F_2(Q^2)}{(v_l + 1)(v + 1)} \right) - \frac{8m_r G_M(Q^2) G_E(Q^2)}{Q} - \frac{m}{M} \frac{5 + 4v_l}{(1+v_l)^2} F_2^2(Q^2) \right\}.$$

$$\Delta_{\text{recoil}} = 837.6^{+2.8}_{-1.0} \text{ ppm}$$

$$\begin{aligned} & \text{Polarizability} \\ \Delta_{\text{pol}} = \Delta_1 + \Delta_2 \equiv \frac{Z\alpha m}{2\pi (1 + \kappa_N)M} \left[\delta_1 + \delta_2 \right], \\ & \delta_1 = 18 \int_0^\infty \frac{\mathrm{d}Q}{Q} \kappa_0(Q^2) I_1^{(\text{pol})}(Q^2) + 16M^4 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, \kappa_1(x, Q^2) \, g_1(x, Q^2), \\ & \delta_2 = 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, \kappa_2(x, Q^2) \, g_2(x, Q^2), \\ & \Delta_{pol} = 200.6(54) \, \text{ppm} \end{aligned}$$

Carlson et al. 2024

Proton polarizability

Chiral Perturbation theory

Dispersive analysis Data driven

Structure functions, Form factors

 $g_1(x,Q^2), g_2(x,Q^2), F_2 \dots$

$$\Delta_{pol} = 200.6(54) \text{ ppm}$$

Carlson et al. 2024

Ahmed Ouf

The principle of the experiment

- > Stop muon beam in 1 mm H_2 gas target at 22 K, 0.5 bar
- Wait until µp atoms de-excite and thermalize
- > Laser pulse: $\mu p(F=0) + \gamma \rightarrow \mu p(F=1)$
- > De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$

The principle of the experiment

- Diffusion: µp diffuses to Au-coated target walls
- Detection: formed µAu* de-excites producing X-rays
- Resonance: Plot number of X-ray events vs laser frequency

Related Proposals: FAMU at RIKEN/RAL, muonic H at J-PARC

μp thermalization

Laser excitation modeled including collision

$$\begin{split} \frac{d\rho_{11}}{dt}(t) &= -\mathrm{Im} \left(\Omega \rho_{12} e^{i\Delta t} \right) + \Gamma_{\mathrm{sp}} \rho_{22} ,\\ \frac{d\rho_{22}}{dt}(t) &= \mathrm{Im} \left(\Omega \rho_{12} e^{i\Delta t} \right) - \left(\Gamma_i + \Gamma_{\mathrm{sp}} \right) \rho_{22} ,\\ \frac{d\rho_{12}}{dt}(t) &= \frac{i\Omega^*}{2} (\rho_{11} - \rho_{22}) e^{-i\Delta t} - \frac{\Gamma_c}{2} \rho_{12} ,\\ \frac{d\rho_{33}}{dt}(t) &= \Gamma_i \rho_{22} , \end{split}$$

- ✓ Inelastic collisions
- ✓ Elastic collisions
- ✓ Laser bandwidth
- ✓ Doppler broadening

P.Amaro et al. (scipost 2022)

Saturation fluence and lienwidth

Transition	Linewith	Saturation fluence	
2S-2P	20 GHz	0.016 J/cm ²	
HFS	200 MHz	44 J/cm ²	

Thermalized vs laser excited atoms

- ▶ De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$
- µp diffuses to Au-coated target walls

Diffusion to target walls

The laser system

- Tunability 40 GHz

Thin-disk oscillator

Zeyen, Manuel, et al. Optics express, 2023.

Multipass amplifier

Zeyen, Manuel, et al. 2019 K. Schuhmann et al., Appl. Opt. 57, 10323-10333 (2018)

Zeyen, Manuel, et al. Optics express, 2024.

OPOs & OPAs

OPO & OPA @3146 nm

- ✓ Variable outcoupling cavity
- ✓ Infinite locking range (PDH locking)
- ✓ 3.3 mJ @ 3146 nm
- \checkmark M2 = 1.01 (excellent beam quality)
- \checkmark Pulse chirp < 2 MHz
- ✓ Rms energy stability < 2%</p>
- ✓ Tunability of 2 nm

OPO & OPA @2148 nm

Preliminary

- ✓ 1.5 mJ @ 2148 nm
- ✓ Efficiency 40-50 %
- ✓ excellent beam quality
- **OPA** in preparation

Enhancement cavity

Two different configurations

Comparison

JGU

Search for the resonance

- Steps to search for resonance
- Measure 1.4 h at fixed wavelength to expose a 4 σ effect over background
- 1 h to change the laser frequency in steps of 100 MHz

• Simulation of the search for resonance

Simulated resonance

JGU

Collaboration

P. Indelicato, F. Nez, N. Paul, P. Yzombard

Yi-Wei Liu, L.-B. Wang, Yi-Jan Tzu-Ling Chen, Wei-Lin Chen

P. Amaro, P.M. Carvalho, M. Ferro, M. Guerra, J. Machado, J. P. Santos, L. Sustelo

A. Adamczak

T.W. Hänsch

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

A. Ouf, R. Pohl, S. Rajamohanan, F. Wauters

PAUL	SCHE	RRER	INS	TITUT
			П	
	0			

L. Affoltern, D. Göldi, E. Gründeman, O. Kara, K. Kirch, F. Kottmann, J. Nuber, K. Schuhmann, D. Taqqu, M. Zeyen, A. Antognini, M. Hildebrandt, A. Knecht, M. Marszalek, L. Sinkunaite, A. Soter

Universidade de Coimbra

F.D. Amaro, L.M.P. Fernandes, C. Henriques, R.D.P Mano, C.M.B. Monteiro, J.M.F. dos Santos, P Silva

UNIVERSITÄT STUTTGART

INSTITUT FÜR STRAHLWERKZEUGE

STUTTGART LASER TECHNOLOGIES

M. Abdou-Ahmed, T. Graf

Our lab at PSI

Questions?

