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where F = 0 or 1 is the total spin, N the anomalous magnetic moment of the nucleus;

GM(0) = 1+N is the value of the magnetic moment in units of Ze�2M . The corresponding

coordinate-space potential is directly proportional to the magnetization density ⇢M(r).
Details on the charge and magnetization densities, and the coordinate-space potentials are

given in Sec. 2 of the Supplement.

The 1st-order contribution, yields the following hfs interval of the nS-level:

E
�mFF�
nS-hfs

= �1 − 2Z↵mr�rM ��EF

n3
+O[(Z↵)6], 12.

where EF is the Fermi energy, and �rM � = 4⇡ ∫ ∞0 dr r3⇢M(r) is the linear magnetic radius.

At the 2nd order, the interference with the eFF potential of Eq. 1, gives:

E
�mFF��eFF�
nS-hfs

= Z↵mr��rM � − rZ�EF

n3
+O[(Z↵)6], 13.

thus cancelling the linear magnetic radius term from the 1st order, and installing instead

the Zemach radius:

rZ = − 4
⇡
� ∞

0

dQ

Q2
�GE(Q2)GM(Q2)

1 + N
− 1� . 14.

The Fermi-energy contribution is not a finite-size e↵ect, as it is already present for a pointlike

nucleus. The leading finite-size e↵ect in the hfs is therefore of order (Z↵)5,
E

f.s.
nS-hfs = −(2Z↵mr�n3)EF rZ. 15.

At this order, also the polarizability corrections begin to appear. We consider them next.

The Fermi energy:
EF =
8(Z↵)4m3

r(1+N )
3mM

2.2. Two-photon exchange and polarizability e↵ects

Figure 4

The 2� exchange (a), with the t-channel (b) and the s-channel (c) cuts. The cyan blobs represent
e↵ects from nuclear excitations.

Thus far, we considered e↵ects which stem from the one-photon exchange and its iter-

ations, such that the nucleus stays intact and in its ground state. There are also e↵ects

coming from nuclear excitations, which can only be assessed through a 2� exchange, see

Fig. 4(a). This description goes beyond the elastic form factors and involves instead the

polarizabilities and inelastic structure functions, as will be seen in what follows.

The 2� exchange in Fig. 4(a) introduces, in general, a correction V2�(p′ − p;p′, p) which
depends on the relative momenta of the initial and final state, p and p

′, as well as the

momentum transfer q = p′−p. These are four-momenta, but the energy e↵ects can safely be

neglected, since they are suppressed by (Z↵)2mr. The dependence on �p� = �p′� is suppressed
8 A. Antognini, F. Hagelstein and V. Pascalutsa
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Proton structure dependent contributions

! E(el): the elastic structure functions (same as the Friar radius with recoil)
! E⟨2γ ⟩ = E(el) + E(pol): the total 2γ exchange

Despite the moderate effect of the subtraction function, it constitutes the largest uncertainty
of the data-driven evaluations. Models of the subtraction function for the proton are constrained
atQ2 = 0 by the magnetic polarizability βM1, and at asymptotically largeQ2 by perturbative QCD
(78). There is a new idea (85) of how to further constrain it from the dilepton electroproduction
(e−p → e−p e−e+), but that would be an extremely challenging experiment. There is hope that it
can soon be calculated in lattice QCD (84, 86–90).

3.2. Hyperfine Splitting in Hydrogen and Muonic Hydrogen
For the HFS, the 2γ -exchange effects are conventionally split into Zemach radius, recoil, and
polarizability contributions (91):

E⟨2γ ⟩
nS-HFS = EF

n3
(
#Z + #recoil + #pol

)
. 32.

Note that all of these effects begin to contribute at order (Zα)5.While the elastic contributions are
known to better than 1%, the absolute uncertainty of the numerically large Zemach radius contri-
bution is not negligible. Still, the largest uncertainty comes from the polarizability contribution.
In what follows, we discuss the Zemach and polarizability contributions in more detail.

3.2.1. Zemach radius and correlation with the charge radius. The Zemach radius contri-
bution, defined as #Z = −2ZαmrrZ, can be evaluated based on empirically known form factors
using Equation 14. For example, the recent dispersive analysis of the nucleon electromagnetic
form factors from the Bonn group (26) yields the following:

rZp = 1.054
(+0.003
−0.002

)
stat

(+0.000
−0.001

)
syst fm, #Z(µH) = −7403+21

−16 ppm. 33.

On the other hand, one can determine this contribution from the experimental HFS, given pre-
dictions for the remaining theory contributions. So far we have the measurements of the 1SHFS
in H and the 2S HFS in µH. The corresponding extractions of the Zemach radius are shown in
Table 2 and compared with the form-factor determinations. Since baryon χPT (BχPT) gives a
smaller prediction for the polarizability contribution than data-driven evaluations do, it also gives
a smaller Zemach radius. This discrepancy is discussed below (cf. Figure 6).

There is an appreciable linear correlation between the Zemach and charge radii (see Figure 5).
The gray dashed line in Figure 5 represents the usual dipole approximation, 1/(1 + Q2/&2)2, for
the form factorsGE andGM. This correlation is of course more general, given that the proton size
is set predominantly by one QCD scale, &QCD. Essentially all the empirical parameterizations of
the form factors, shown by data points, follow this trend too. For comparison,Figure 5 shows our
present determination of rZp from H (blue band) and rp from µH (solid pink line). The upcoming
1SHFS measurement in µH is expected to have a big impact on the precise determination of rZp.

3.2.2. Polarizability contribution and the spin structure functions. The polarizability con-
tribution is at least an order of magnitude smaller than the Zemach term, but it produces a rela-
tively large uncertainty. Here we look at it in more detail. This contribution is usually split into

Table 2 Determinations of the proton Zemach radius, rZp (fm)

ep scattering µH 2S HFS H 1S HFS
Lin et al. (26) Borah et al. (92) Antognini et al. (2) BχPT (62) Volotka et al. (93) BχPT (62)
1.054+0.003

−0.002 1.0227(107) 1.082(37) 1.041(31) 1.045(16) 1.012(14)

Abbreviations: BχPT, baryon chiral perturbation theory; ep scattering, electron–proton scattering; HFS, hyperfine splitting; µH, muonic hydrogen.
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Antognini, Yong-Hui, Hammer,  Meißner(2022)

1. Structure E↵ects Through Forward Two-Photon Exchange

We are interested in the proton-structure correction, which in turn splits into three terms: Zemach
radius, recoil, and polarizability contributions:

�structure = �Z + �recoil + �pol. . (V.31)

Let us now specify the decomposition of the structure-dependent correction into the three terms of
Eq. (V.31). An examination of di↵erent decompositions of the TPE e↵ect can be found in Ref. [409].
The formalism presented by us is consistent with the choice of Carlson et al. [409].

1.6.1. Born Contribution

As stated earlier, the master formulae in Section V.1.2 contain all the structure e↵ects to order
(Z↵)5, i.e., also the Fermi energy, which has to be subtracted in the following. The TPE Born
contribution to the HFS splits into the Zemach radius contribution [269]:

�Z =
8Z↵mr

⇡

ˆ 1

0

dQ

Q2


GE(Q2)GM (Q2)

1 + 
� 1

�
⌘ �2Z↵mrRZ, (V.32)

and a recoil-type of correction:

�recoil =
Z↵

⇡(1 + )

ˆ 1

0

dQ

Q

⇢
8mM

vl + v

GM (Q2)

Q2

✓
2F1(Q

2) +
F1(Q2) + 3F2(Q2)

(vl + 1)(v + 1)

◆

�8mr GM (Q2)GE(Q2)

Q
� m

M

5 + 4vl
(1 + vl)2

F 2
2 (Q2)

�
. (V.33)

In contrast to the Zemach radius term, the recoil corrections are not zero in the static limit of the
elastic FFs.

1.6.2. Polarizability Contribution

In the polarizability contribution, we separate contributions due to the spin-dependent structure
functions g1 and g2:

�pol. =
Z↵m

2⇡(1 + )M
[�1 + �2] = �1 + �2, (V.34a)

with:

�1 = 2

ˆ 1

0

dQ

Q

✓
5 + 4vl

(vl + 1)2
⇥
4I1(Q

2)/Z2 + F 2
2 (Q2)

⇤
+

8M2

Q2

ˆ
x0

0
dx g1(x, Q2) (V.34b)

⇢
4

vl +
p

1 + x2⌧�1


1 +

1

2(vl + 1)(1 +
p

1 + x2⌧�1)

�
� 5 + 4vl

(vl + 1)2

�◆
,

= 2

ˆ 1

0

dQ

Q

✓
5 + 4vl

(vl + 1)2
⇥
4I1(Q

2)/Z2 + F 2
2 (Q2)

⇤
� 32M4

Q4

ˆ
x0

0
dx x2g1(x, Q2) (V.34c)

⇢
1

(vl +
p

1 + x2⌧�1)(1 +
p

1 + x2⌧�1)(1 + vl)


4 +

1

1 +
p

1 + x2⌧�1
+

1

vl + 1

��◆
,

�2 = 96M2
ˆ 1

0

dQ

Q3

ˆ
x0

0
dx g2(x, Q2)

⇢
1

vl +
p

1 + x2⌧�1
� 1

vl + 1

�
. (V.34d)

147

Recoil

∆!"#= 200.6(54) ppm

Polarizability

the empirical parametrizations of the form factors, shown by data points, follow this trend

too. For comparison, we show our present determination of rZp from H (blue band) and rp

from µH (solid red line). The upcoming 1S hfs measurement in µH is expected to have a

big impact on the precise determination of rZp.

Figure 5

Correlation between the Zemach and charge radius of the proton.

3.2.2. Polarizability contribution and the spin structure functions. The polarizability con-

tribution is at least an order of magnitude smaller than the Zemach term, but produces a

relatively large uncertainty. Here we look at it in more detail. This contribution is usually

split into terms, in correspondence with the two spin structure functions, g1 and g2:

�pol = �1 +�2 ≡ Z↵m

2⇡(1 + N)M [�1 + �2] , 34a.

�1 = 18

∞
�
0

dQ

Q
0(Q2) I(pol)

1
(Q2) + 16M4

∞
�
0

dQ

Q3

x0

�
0

dx1(x,Q2) g1(x,Q2), 34b.

�2 = 96M2

∞
�
0

dQ

Q3

x0

�
0

dx2(x,Q2) g2(x,Q2), 34c.

where x0 is the inelastic threshold, which usually is associated with pion production. The

kinematical functions, i, have a particularly simple form for H, since one may neglect the

electron mass,

0(Q2) = 1, 1(x,Q2) = �(Q2�x2)�4 + �(Q2�x2)� − 9

4
, 2(x,Q2) = �(Q2�x2) − 1

2
, 35.

with �(t) ≡ �1 +�1 + 4M2

t
�−1. For the more general form see Eq. 37 of the Supplement.

The quantity which stands out in the evaluation of �1 is I
(pol)
1
(Q2), which is the

polarizability (i.e., non-Born) part of the first moment of g1,

I
(pol)
1
(Q2) = I1(Q2) + 1

4
F

2

2 (Q2), I1(Q2) ≡ 2M2

Q2 � x0

0

dxg1(x,Q2), 36.

where the Pauli form factor, F2(Q2), comes from the non-pole piece of the Born term. There

is a large cancellation between the two terms in I
(pol)
1

, which is hard to achieve precisely in
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Carlson et al. 2024

Fermi energy:
EF = 8(Zα)4m3

r (1+κN )
3mM

are relativistic corrections, which can be treated within the Breit-potential formalism or, alterna-
tively, by considering the two-photon (2γ ) exchange, as discussed below. Also important are some
radiative corrections, which come from combining the finite-size and QED effects. In muonic
atoms, the eVP plays an especially prominent role and produces sizable radiative corrections to
the finite-size effects shown in Figure 3c and d (see Section 2.3).

2.1.2. Hyperfine splitting. Assuming a spin-1/2 nucleus, the HFS arises from the magneti-
zation properties of the nucleus described by the magnetic form factor (mFF) GM(Q2). For the
S-levels, the corresponding potential is given by the following (omitting recoil corrections):

V F
mFF(|q|) = 4πZα

3mM

[
F (F + 1) − 3

2

]
GM (q2) = 4Zα

3mM

[
F (F + 1) − 3

2

] ∫ ∞

t0
dt

ImGM (t )
q2 + t

, 11.

where F = 0 or 1 is the total spin, κN is the anomalous magnetic moment of the nucleus, and
GM(0) = 1 + κN is the value of the magnetic moment in units of Ze/2M. The corresponding
coordinate-space potential is directly proportional to the magnetization density ρM(r). Details
regarding the charge and magnetization densities and the coordinate-space potentials are given
in section 2 of the Supplemental Text.

The first-order contribution yields the following HFS interval of the nS-level:

E⟨mFF⟩
nS-HFS =

(
1 − 2Zαmr⟨rM⟩

)EF

n3
+ O[(Zα)6], 12.

where EF is the Fermi energy, and
〈
rM

〉
= 4π

∫ ∞
0 dr r3ρM (r) is the linear magnetic radius. At the

second order, the interference with the eFF potential of Equation 1 gives

E⟨mFF⟩⟨eFF⟩
nS-HFS = Zαmr

(
⟨rM⟩ − rZ

)EF

n3
+O[(Zα)6], 13.

thus canceling the linear magnetic radius term from the first order, and installing instead the
Zemach radius:

rZ = − 4
π

∫ ∞

0

dQ
Q2

[
GE (Q2)GM (Q2)

1 + κN
− 1

]
. 14.

The Fermi energy contribution is not a finite-size effect, as it is already present for a point-like
nucleus. The leading finite-size effect in the HFS is therefore of order (Zα)5:

E f .s.
nS-HFS = −(2Zαmr/n3)EF rZ. 15.

At this order, the polarizability corrections also begin to appear. We consider them next.

2.2. Two-Photon Exchange and Polarizability Effects
Thus far, we have considered effects that stem from the one-photon exchange and its iterations,
such that the nucleus stays intact and in its ground state.There are also effects coming fromnuclear
excitations, which can be assessed only through a 2γ exchange (see Figure 4a). This description
goes beyond the elastic form factors and involves instead the polarizabilities and inelastic structure
functions, as can be seen in what follows.

The 2γ exchange shown in Figure 4a introduces, in general, a correction V2γ (p′ − p; p′, p),
which depends on the relative momenta of the initial and final states, p and p′, as well as the
momentum transfer q = p′ − p. These are four-momenta, but the energy effects can safely be
neglected because they are suppressed by (Zα)2mr. The dependence on |p| = |p′| is suppressed
by Zαmr and will, to leading order (LO), be neglected too. The dependence on |q| is a bit more
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Lin, Yong-Hui, Hammer,  Meißner (2022)

! E(el): the elastic structure functions (same as the Friar radius with recoil)
! E⟨2γ ⟩ = E(el) + E(pol): the total 2γ exchange

Despite the moderate effect of the subtraction function, it constitutes the largest uncertainty
of the data-driven evaluations. Models of the subtraction function for the proton are constrained
atQ2 = 0 by the magnetic polarizability βM1, and at asymptotically largeQ2 by perturbative QCD
(78). There is a new idea (85) of how to further constrain it from the dilepton electroproduction
(e−p → e−p e−e+), but that would be an extremely challenging experiment. There is hope that it
can soon be calculated in lattice QCD (84, 86–90).

3.2. Hyperfine Splitting in Hydrogen and Muonic Hydrogen
For the HFS, the 2γ -exchange effects are conventionally split into Zemach radius, recoil, and
polarizability contributions (91):

E⟨2γ ⟩
nS-HFS = EF

n3
(
#Z + #recoil + #pol

)
. 32.

Note that all of these effects begin to contribute at order (Zα)5.While the elastic contributions are
known to better than 1%, the absolute uncertainty of the numerically large Zemach radius contri-
bution is not negligible. Still, the largest uncertainty comes from the polarizability contribution.
In what follows, we discuss the Zemach and polarizability contributions in more detail.

3.2.1. Zemach radius and correlation with the charge radius. The Zemach radius contri-
bution, defined as #Z = −2ZαmrrZ, can be evaluated based on empirically known form factors
using Equation 14. For example, the recent dispersive analysis of the nucleon electromagnetic
form factors from the Bonn group (26) yields the following:

rZp = 1.054
(+0.003
−0.002

)
stat

(+0.000
−0.001

)
syst fm, #Z(µH) = −7403+21

−16 ppm. 33.

On the other hand, one can determine this contribution from the experimental HFS, given pre-
dictions for the remaining theory contributions. So far we have the measurements of the 1SHFS
in H and the 2S HFS in µH. The corresponding extractions of the Zemach radius are shown in
Table 2 and compared with the form-factor determinations. Since baryon χPT (BχPT) gives a
smaller prediction for the polarizability contribution than data-driven evaluations do, it also gives
a smaller Zemach radius. This discrepancy is discussed below (cf. Figure 6).

There is an appreciable linear correlation between the Zemach and charge radii (see Figure 5).
The gray dashed line in Figure 5 represents the usual dipole approximation, 1/(1 + Q2/&2)2, for
the form factorsGE andGM. This correlation is of course more general, given that the proton size
is set predominantly by one QCD scale, &QCD. Essentially all the empirical parameterizations of
the form factors, shown by data points, follow this trend too. For comparison,Figure 5 shows our
present determination of rZp from H (blue band) and rp from µH (solid pink line). The upcoming
1SHFS measurement in µH is expected to have a big impact on the precise determination of rZp.

3.2.2. Polarizability contribution and the spin structure functions. The polarizability con-
tribution is at least an order of magnitude smaller than the Zemach term, but it produces a rela-
tively large uncertainty. Here we look at it in more detail. This contribution is usually split into

Table 2 Determinations of the proton Zemach radius, rZp (fm)

ep scattering µH 2S HFS H 1S HFS
Lin et al. (26) Borah et al. (92) Antognini et al. (2) BχPT (62) Volotka et al. (93) BχPT (62)
1.054+0.003

−0.002 1.0227(107) 1.082(37) 1.041(31) 1.045(16) 1.012(14)

Abbreviations: BχPT, baryon chiral perturbation theory; ep scattering, electron–proton scattering; HFS, hyperfine splitting; µH, muonic hydrogen.
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Zemach
Δ# = −2Zα𝑚$𝑟#
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Proton polarizability 
Dispersive analysis Data driven  Chiral Perturbation theory 

∆!"# = 38(62) ppm

Hagelstein, Pascalutsa (2023)

Chiral Dynamics (LO)

pion-production cross section:

(A) (B) (C)

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74, 2852 (2014).

1. Proton-Polarizability Contribution at Order ↵5

Eur. Phys. J. C (2014) 74:2852 Page 3 of 10 2852

Fig. 1 The two-photon
exchange diagrams of elastic
lepton–nucleon scattering
calculated in this work in the
zero-energy (threshold)
kinematics. Diagrams obtained
from these by crossing and
time-reversal symmetry are
included but not drawn

(b) (c)(a)

(d) (e) (f)

(g) (h) (j)

of two scalar amplitudes:

T µν(P, q) = −gµν T1(ν
2, Q2) + Pµ Pν

M2
p

T2(ν
2, Q2), (5)

with P the proton 4-momentum, ν = P ·q/Mp, Q2 = −q2,
P2 = M2

p. Note that the scalar amplitudes T1,2 are even
functions of both the photon energy ν and the virtuality Q.
Terms proportional to qµ or qν are omitted because they
vanish upon contraction with the lepton tensor.

Going back to the energy shift one obtains [12]:

"EnS = αem φ2
n

4π3mℓ

1
i

∫
d3q

∞∫

0

dν

× (Q2 − 2ν2) T1(ν
2, Q2) − (Q2 + ν2) T2(ν

2, Q2)

Q4[(Q4/4m2
ℓ) − ν2] . (6)

In this work we calculate the functions T1 and T2 by
extending the BχPT calculation of real Compton scatter-
ing [26] to the case of virtual photons. We then split the
amplitudes into the Born (B) and non-Born (NB) pieces:

Ti = T (B)
i + T (NB)

i . (7)

The Born part is defined in terms of the elastic nucleon form
factors as in, e.g. [13,27]:

T (B)
1 = 4παem

Mp

[
Q4(FD(Q2)+FP (Q2))2

Q4−4M2
pν

2 −F2
D(Q2)

]

, (8a)

T (B)
2 = 16παem Mp Q2

Q4 − 4M2
pν

2

[

F2
D(Q2)+ Q2

4M2
p

F2
P (Q2)

]

. (8b)

In our calculation the Born part was separated by subtract-
ing the on-shell γ N N pion loop vertex in the one-particle-
reducible VVCS graphs; see diagrams (b) and (c) in Fig. 1.

Focusing on the O(p3) corrections (i.e., the VVCS amplitude
corresponding to the graphs in Fig. 1) we have explicitly ver-
ified that the resulting NB amplitudes satisfy the dispersive
sum rules [28]:

T (NB)
1 (ν2, Q2)

= T (NB)
1 (0, Q2) + 2ν2

π

∞∫

ν0

dν′ σT (ν′, Q2)

ν′2 − ν2 , (9a)

T (NB)
2 (ν2, Q2)

= 2
π

∞∫

ν0

dν′ ν′ 2 Q2

ν′2 + Q2

σT (ν′, Q2) + σL(ν′, Q2)

ν′2 − ν2 , (9b)

with ν0 = mπ + (m2
π + Q2)/(2Mp) the pion-production

threshold, mπ the pion mass, and σT (L) the tree-level cross
section of pion production off the proton induced by trans-
verse (longitudinal) virtual photons, cf. Appendix B. We
hence establish that one is to calculate the ‘elastic’ con-
tribution from the Born part of the VVCS amplitudes and
the ‘polarizability’ contribution from the non-Born part,
in accordance with the procedure advocated by Birse and
McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (6) we
obtain the following value for the polarizability correction:

"E (pol)
2S = −8.16 µeV. (10)

This is quite different from the corresponding HBχPT result
for this effect obtained by Nevado and Pineda [11]:

"E (pol)
2S (LO-HBχPT) = −18.45 µeV. (11)

We postpone a detailed discussion of this difference till
Sect. 4.
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Figure VI.2.: The two-photon-exchange diagrams with chiral loops. Figure taken from Ref. [177].

Anticipating the result of this Section, the NLO BChPT prediction of the order-↵5 proton-
polarizability contribution to the LS in µH evaluates to:

Epol.
LS (µH) = 4.9+2.0

�1.3 µeV, (VI.3)

where the contribution of the subtraction function equals:

Esubtr.
LS (µH) = �5.8 ± 2.3 µeV, (VI.4a)

Einel.
LS (µH) = 10.7+2.3

�2.1 µeV. (VI.4b)

The latter compares best to the result of Ref. [175]. In general, the BChPT prediction compares
in a satisfactory manner with the dispersive calculations, see Fig. VI.1.

Based on the elastic FF parametrization of Bradford et al. [316], the Born contribution of
TPE amounts to:

EBorn
LS (µH) = 22.9 ± 1.7 µeV, (VI.5)

where we estimated the error by taking the spread of di↵erent FF fits [112, 113]. Our final result
for the forward TPE e↵ect then reads:

ETPE
LS (µH) = 27.8+2.6

�2.1 µeV. (VI.6)

In the following, we present the individual contributions from chiral loops and the �-exchange.
Afterwards, we will compare to HBChPT and dispersive calculations. Tables VI.3 and VI.4
summarize relevant calculations of the TPE corrections to the µH LS performed by various
authors.

1.1. Chiral Loops

In the �-expansion of ChPT, the LO polarizability contribution is given by the TPE diagrams
with chiral loops, shown in Fig. VI.2. They were calculated in Ref. [177] with the results given in
Table VI.3. Note that the VVCS structures in Figures IV.2 and VI.2 di↵er due to a redefinition
of the nucleon field,1 which is described in Ref. [58, Section 3.1].

Alarcón et al. [177] established the LEX in Eq. (VI.1) as a very good approximation for the
TPE polarizability e↵ect in the LS. The high-energy contribution to their result was found

1N ! ⇠N with ⇠ = exp (igA⇡a⌧a�5/2f⇡)

155

2γ exchange with pion-nucleon loops:

Franziska Hagelstein, AEC Uni Bern

Eh⇡Ni pol.
LS

(µH) = 8.2+2.5
�1.2 µeV

Eh⇡Ni pol.
HFS

(2S, µH) = 0.85+0.85
�1.08 µeV
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The principle of the experiment

Ø Stop muon beam in 1 mm H2 gas target at 22 K, 0.5 bar

Ø Wait until µp atoms de-excite and thermalize

Ø Laser pulse: µp(F=0) + ɣ → µp(F=1)

Ø De-excitation: µp(F=1) + H2→µp(F=0) + H2 + Ekin

Principle of the CREMA hfs experiment

The hfs experiment by the CREMA Collaboration follows the sequence illustrated in Fig. 7. A negative muon

of 11 MeV/c momentum passes an entrance detector triggering the laser system and is stopped in a H2 gas target

(∼ 1 mm thickness, 0.5 bar pressure, 20 K temperature), wherein a µH atom is formed. While the laser pulse is being

generated, the µH atom is de-exciting to the F = 0 sublevel (see inset in Fig. 7) of the 1S-state and thermalizing

to the H2 gas temperature. After 1 µs, the µH is thermalized and the generated laser pulse of 1 mJ energy at a

wavelength of 6.8 µm (equivalent to a frequency of 44 THz and an energy of 0.18 eV) is coupled into a multi-pass

cavity surrounding the muon stopping region. The multiple reflections occurring in this toroidal cavity allow the

illumination of a disk-shaped volume with a diameter of 15 mm and a thickness of 0.5 mm with a laser fluence of

O(10) J/cm2. The on-resonance laser pulse excites the muonic atom from the singlet F = 0 to the triplet F = 1

sublevels. Within a short time, an inelastic collisions between the µH atom and one H2 molecule of the gas target

de-excites the µH atom from the triplet back to the singlet sublevels. In this process, the hfs transition energy

is converted into kinetic energy: on average the µH atom acquires 0.1 eV kinetic energy, the rest goes to the H2

molecule. With this extra kinetic energy, which is much larger than the thermal energy, the µH atoms start di↵using

in the H2 gas reaching the target walls 100 − 400 ns after laser excitation, as shown by the peak in Fig. 7 (right). At

the gold-coated target walls the muon is transferred from µH to the nucleus, forming muonic gold (µAu∗) in highly

excited states. The µAu∗ de-excitation produces various X-rays of MeV energy which are used as signature of a

successful laser-induced transition, so that the hfs resonance can be exposed by counting the number of µAu cascade

events after laser excitation as a function of the laser frequency.
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Figure 7

Setup, principle and level scheme of the CREMA hfs experiment. (Left) The setup in which the muon beam is stopped in
a hydrogen-gas target and the formed µH atoms are excited by the laser pulse. A successful excitation of the hfs transition
leads to a µH atom with extra kinetic energy that e�ciently di↵uses to one of the target walls where X-rays are produced.
(Right) Probability (normalized to the number of entering muons) that a µH is reaching the target walls versus time at
typical target conditions and laser performance. The laser excitation occurs at 1.0 µs. The laser induced events are well
visible.
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The principle of the experiment

Ø Diffusion: µp diffuses to Au-coated target walls

Ø Detection: formed µAu* de-excites producing X-rays

Ø Resonance: Plot number of X-ray events vs laser 

frequency

Related Proposals: FAMU at RIKEN/RAL, muonic H at J-PARC

2.2. HyperMu - Measuring the 1s hyperfine splitting in µp 11

laser frequency

nu
m

be
r o

f x
-ra

ys

background
level

resonance

(a) Resonance curve (example) (b) Potential cavity design

Figure 2.8.: (a) Resonance curve as it may be obtained from the HFS measurement and
(b) 3D model of a possible laser cavity with toroidal geometry to enhance the
laser fluence.

again within few nanoseconds, receiving the kinetic energy kick discussed above. From
now on, this muonic atom has a higher probability to reach the wall and cause x-rays than
it would have without the energy kick.
In order to infer the energy of the hyperfine transition, the laser frequency is stepwise
tuned. When the laser frequency comes close to the atomic transition frequency (on
resonance), the number of x-rays increases because more muonic atoms reach the wall
due to the energy kick. Plotting the number of x-rays in a certain time window after the
laser excitation against the laser frequency, one obtains a resonance curve as qualitatively
illustrated in Fig. 2.8 (a). In the same time window, there are µp atoms reaching the
target walls that were not excited by the laser light. These atoms give rise to background.
To obtain a significant result for the transition energy the resonance has to be measured
very precisely. Due to limited experimental time it is therefore important to have optimal
conditions in the target for a good ratio between true signal hits and background hits.
The focus of the di↵usion simulations for HyperMu in this thesis will therefore be on the
investigation of important target parameters as, e.g., geometric extent and pressure. The
results are used to optimize the design of the target. However, the final target geometry
will be a compromise between optimal di↵usion conditions and realizability regarding the
laser cavity. A potential cavity design using a toroidal shape is shown in Fig. 2.8 (b).
The cavity is not stable, so that the laser beam changes its direction when reflected by
the mirror. Like this, the region around the center of the cavity is illuminated relatively
uniformly. The direction of the muon beam is perpendicular to the laser-illuminated plane.
The space in the cavity is filled with H2 gas to stop the muons and form µp atoms.
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to the H2 gas temperature. After 1 µs, the µH is thermalized and the generated laser pulse of 1 mJ energy at a

wavelength of 6.8 µm (equivalent to a frequency of 44 THz and an energy of 0.18 eV) is coupled into a multi-pass

cavity surrounding the muon stopping region. The multiple reflections occurring in this toroidal cavity allow the

illumination of a disk-shaped volume with a diameter of 15 mm and a thickness of 0.5 mm with a laser fluence of

O(10) J/cm2. The on-resonance laser pulse excites the muonic atom from the singlet F = 0 to the triplet F = 1

sublevels. Within a short time, an inelastic collisions between the µH atom and one H2 molecule of the gas target

de-excites the µH atom from the triplet back to the singlet sublevels. In this process, the hfs transition energy

is converted into kinetic energy: on average the µH atom acquires 0.1 eV kinetic energy, the rest goes to the H2

molecule. With this extra kinetic energy, which is much larger than the thermal energy, the µH atoms start di↵using

in the H2 gas reaching the target walls 100 − 400 ns after laser excitation, as shown by the peak in Fig. 7 (right). At

the gold-coated target walls the muon is transferred from µH to the nucleus, forming muonic gold (µAu∗) in highly

excited states. The µAu∗ de-excitation produces various X-rays of MeV energy which are used as signature of a

successful laser-induced transition, so that the hfs resonance can be exposed by counting the number of µAu cascade

events after laser excitation as a function of the laser frequency.
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Figure 7

Setup, principle and level scheme of the CREMA hfs experiment. (Left) The setup in which the muon beam is stopped in
a hydrogen-gas target and the formed µH atoms are excited by the laser pulse. A successful excitation of the hfs transition
leads to a µH atom with extra kinetic energy that e�ciently di↵uses to one of the target walls where X-rays are produced.
(Right) Probability (normalized to the number of entering muons) that a µH is reaching the target walls versus time at
typical target conditions and laser performance. The laser excitation occurs at 1.0 µs. The laser induced events are well
visible.
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collision between the µp atom and a H2 molecule that deexcites the µp atom back to the singlet
sublevel. In this process, the HFS transition energy is converted into kinetic energy so that the
µp atom acquires on average 0.1 eV of kinetic energy. Because this energy is much higher
than the thermal energy, the µp atom can quickly diffuse out of the laser-illuminated volume
and reach one of the target walls coated with gold. When the µp reaches the gold-coated
walls, the negative muon of the µp atom is transferred to a gold atom forming muonic gold
(µAu⇤) in a highly excited state. Through a cascade of mainly radiative deexcitation, the µAu⇤

immediately reaches the ground state under the emission of several x-rays of MeV energy
which can be detected as a signature of a successful laser excitation. The HFS resonance can
be thus obtained by counting the number of µAu⇤ cascade processes (referred in the following
as µAu events) in a certain time window (event time window) after the laser excitation as a
function of the laser frequency.

3 µp-H2 collisional processes

In this section we provide an introduction to the µp-H2 scattering processes relevant for this
study. There are four molecular scattering processes relevant for µp atoms in the 1S state
which are classified according to the initial and final hyperfine states (total spin F), that can
assume the values F = 0 or F = 1:

µpF=0 +H2! µpF=0 +H⇤2 , (1a)

µpF=0 +H2! µpF=1 +H⇤2 , (1b)

µpF=1 +H2! µpF=0 +H⇤2 , (1c)

µpF=1 +H2! µpF=1 +H⇤2 . (1d)

The superscript “*” indicates that the rotational-vibrational state of H2 can be altered by the
scattering process. Hence, none of these processes are strictly-speaking elastic but we refer to
the processes of Eqs. (1a) and (1d) as "elastic" in the sense that the total spin state F of the µp
is conserved.

In the collisions of Eqs. (1), the hyperfine state of the µp atoms can be either conserved
or changed by a spin-flip reaction, in which the muon is transferred to a proton of the H2
molecule. This transfer reactions can thus lead to transitions between the two hyperfine levels
depending on the spin of the proton to which the muon has been transferred. Note, that the
deexcitation rate of the upper spin state (F = 1) at our typical target conditions is several
orders of magnitude larger than the muon-decay rate, which on his turn is several orders of
magnitude larger than the radiative deexcitation rate [17,23].

Calculations of the differential cross sections for processes (1) use the cross sections for
corresponding "nuclear" scattering processes of µp on single protons, for which scattering am-
plitudes are available [24–26]. In addition, they take into account effects of molecular binding
of the protons in H2, electron screening and spin correlations for specific rotational states of H2.
A method for calculating the partial differential cross sections of these processes is described
in Ref. [27, 28] and the numerical results for the cross sections are tabulated for energies
 100 eV in Ref. [27]. The total cross sections �CM

if are given in Fig. 2 as functions of collision
energy in the center of mass (CM) frame of the µp + H2 system. The indices i and j denote
the initial and final hyperfine states, respectively. These cross sections account for all possible
ro-vibrational excitations of the H2 molecule.

The blue curves have been calculated assuming that all the H2 molecules are in the rota-
tional state K = 0 prior to collision. For comparison, the cross sections �CM

10 and �CM
11 are also

given assuming all H2 molecules are in the K = 1 rotational state prior to collision. As can

4
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and H2. The partial differential rates @ 2�if/(@ E
0@⌦) in the LAB system can be obtained from

the calculated differential cross sections @ 2�CM
if /(@ E

0
CM@⌦CM) in the CM system:

@ 2�if(E(v))
@ E0@⌦

=
⇢

2

X

E
0
CM,⌦CM

Z
dV gM (V )
Z 1

�1
dz↵ vrel(V, z↵; v)

@ 2�CM
if (ECM)

@ E
0
CM@⌦CM

, (3)

where E, E
0, ⌦ and ECM, E

0
CM, ⌦CM denote the initial and final µp energies and the solid

scattering angle in LAB and CM system, respectively. The relative velocity vrel depends on
the µp speed (v), on the H2 speed (V ) – both of them in the LAB reference system – and on
z↵ = cos(↵), where ↵ is the impact angle. The H2 velocities are described by the Maxwell-
Boltzmann distribution gM at a temperature T . The summation over E

0
CM and ⌦CM includes

only contributions to the small intervals �E
0 around E

0 and �⌦ around ⌦ from the differential
cross section in CM system. Finally, the rate is averaged over a distribution of the initial
rotational energy levels for a given H2 target, which is denoted by the horizontal line.

The calculated total rates �if of the processes given in Eqs. (1) are shown in Fig. (3) as
functions of the µp kinetic energy for a target temperature of 22 K and for a liquid hydrogen
density (LHD) ⇢ = ⇢0 = 2.125⇥ 1022 molecules/cm3.

The results are shown for two distributions of the initial rotational states of H2 molecules.
The Boltzmann distribution corresponds to the distribution of rotational states in hydrogen
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Figure 3: Collision rates �ij for the processes given in Eqs. (1) calculated from Eq. (3)
as a function of the µp collision energy in the LAB frame at 22 K and liquid hydrogen
density. The index i denotes the total angular momentum of the initial hyperfine
state, the index j the total angular momentum of the final hyperfine state. We con-
sidered both the Boltzmann and the 3:1 distribution of the initial rotational states of
the H2 molecules. Since the rates �00 and �01 for both initial rotational distributions
practically do not differ, these rates are plotted for the Boltzmann distribution only.

gas in thermal equilibrium. At 22 K this means that practically all H2 molecules are in the
state K = 0. The 3:1 distribution instead denotes a mixture of the states K = 1 and K = 0
that corresponds to the degeneracy of both levels (3:1), as it is present in H2 gas at room
temperature. When cooling down hydrogen gas to 22 K, the gas will remain with the 3:1
rotational distribution for a long time (weeks at our conditions) because the relaxation process
from K = 1 to K = 0 is very slow [31].
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Figure 4: (a) Time evolution of the average kinetic energy of the µp atom. We
assumed that 50 % of the µp atoms have an initial kinetic energy of 1 eV and for
50 % the initial energy is distributed uniformly between 0 and 100 eV. Initially, 75 %
of the µp atoms are assumed to be in the triplet state. (b) Time evolution of the
population in the triplet state. (c) Fraction of µp atoms that has reached one of the
target walls. (d) Spatial distribution of the µp atoms 1 µs after their formation for a
target of thickness d = 1 mm. The horizontal line represents the distribution at time
t = 0 when the muonic atoms are formed.
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Figure 1: (a) Hyperfine structure of the 1s-state in µp divided into the triplet (F = 1)
and the singlet (F = 0) states depending on the total angular momentum of the muon-
proton system. (b) The three-level system used in the Bloch equations to model the laser
excitation followed by collisional deexcitation with an increase of kinetic energy (Ekin).
Initially all µp atoms are thermalized (average of Ekin ⇡ 5 meV) to the singlet state with
population ⇢11. The laser pulse drives the HFS transition, exciting the µp atoms into the
triplet state with population ⇢22. An inelastic collision then deexcites the triplet state
back to the singlet state converting the transition energy into kinetic energy. This singlet
state with additional kinetic energy is the third level in the optical Bloch equations with
population ⇢33 and Ekin ⇡ 100 meV.

(CREMA) collaboration in recent years has performed laser spectroscopy of the 2s � 2p (Lamb
shift) transitions in muonic hydrogen (µp) [4, 6], muonic deuterium (µd) [8] and muonic he-
lium (µ4He+) [9] and extracted the corresponding nuclear charge radii with an unprecedented
accuracy. The impact of the µp measurements on beyond-standard-model searches, on precision
atomic physics, and on the proton structure can be found in recent reviews [7, 10–12]. Along
this line of research, the CREMA collaboration is presently aiming at the measurement of the
ground-state hyperfine splitting (HFS) in µp with 1 ppm relative accuracy by means of pulsed
laser spectroscopy.

From the measurement of the HFS, precise information about the magnetic structure of the
proton can be extracted [13–23]. Specifically, by comparing the measured HFS transition fre-
quency with the corresponding theoretical prediction based on bound-state QED calculations [5,
13,19,20], the two-photon-exchange contribution can be extracted with approximately 2⇥ 10�4

relative accuracy. Because the two-photon-exchange contribution can be expressed as the sum of
a finite-size (static, elastic) part proportional to the Zemach radius (RZ) and a polarizability part
(dynamic, virtual excitation), its determination can be used to extract separately the two parts: the
Zemach radius when the polarizability contribution is assumed from theory [13,15,16,18,21–25],
and the polarizability contribution when taking RZ from electron-proton scattering or hydrogen
spectroscopy [19,26–28].

In this paper, we calculate the laser transition probability between singlet and triplet sublevels
of the ground state hyperfine-splitting in µp (see Figure 1), accounting for the actual detection
scheme used in the experiments and considering collisional and Doppler effects. This transition
probability is one of the key quantities needed to evaluate the feasibility of the CREMA hyperfine-

3
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Figure 2: (Color online) Schematic (not to scale) of the setup for measuring the HFS in

µp. A negative muon beam is stopped in a H2 gas target at cryogenic temperatures, pres-

sures of about 1 bar, and a thickness of about 1 mm. The formed µp atoms are excited

by the laser pulse whose intensity is enhanced in the multi-pass cavity. A successful laser

excitation of the µp atoms followed by a collisional deexcitation leads to a µp atom with

extra kinetic energy. With this extra kinetic energy, the µp atom diffuses to the target

walls where x-rays are produced.

In this process the HFS transition energy of 0.18 eV is converted into kinetic energy: on average

0.1 eV of kinetic energy is imparted to the µp. This kinetic energy, which is much larger than the

thermal energy, causes the µp atom to diffuse away from the laser-illuminated volume, reaching

one of the gold-coated target walls in a time window between 100 and 300 ns after the laser

excitation. When the µp atom reaches the wall, the muon is transferred to a gold atom forming

muonic gold (µAu⇤) in highly excited states. The various x-rays of MeV energy produced in the

subsequent deexcitation of µAu⇤ are used as signature of a successful laser excitation, so that the

HFS resonance can be determined by counting the number of µAu x-rays as a function of the laser

frequency.
In this paper, we present the calculation of the probability that a µp atom initially in the singlet

state and thermalized at the temperature of the hydrogen gas will undergo the above described

sequence of laser excitation and collisional deexcitation, acquiring the extra ⇠ 0.1 eV of kinetic

energy needed to provide the observable signal.

3 Theoretical framework

3.1 Bloch equations

The laser excitation and the population dynamics between hyperfine states is investigated in the

framework of the density-matrix formalism, using optical Bloch equations expressed as [39],

d⇢11

d t
(t) = �Im
�
⌦⇢12ei�t
�
+ �sp⇢22 ,

(1)

d⇢22

d t
(t) = Im
�
⌦⇢12ei�t
�
� (�i + �sp)⇢22 ,

(2)

d⇢12

d t
(t) =

i⌦⇤

2
(⇢11�⇢22)e

�i�t �
�c
2
⇢12 ,

(3)

d⇢33

d t
(t) = �i⇢22 ,

(4)

5

ü Inelastic collisions
ü Elastic collisions
ü Laser bandwidth
ü Doppler broadening

P.Amaro et al. (scipost 2022)



Ahmed Ouf PSAS’2024 Zurich    14.06.2024

𝐒𝐚𝐭𝐮𝐫𝐚𝐭𝐢𝐨𝐧 𝐟𝐥𝐮𝐞𝐧𝐜𝐞 𝐚𝐧𝐝 𝐥𝐢𝐞𝐧𝐰𝐢𝐝𝐭𝐡



Ahmed Ouf PSAS’2024 Zurich    14.06.2024

Thermalized vs laser excited atoms
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Diffusion to target walls
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The laser system
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Requirements
q Pulse energy 5mJ
q Wavelength 6.8 𝝁𝒎

q Linewidth < 100 MHz
q Stochatic trigger (detected muon)

q Response time 𝟏 𝝁𝒔

q Tunability 40 GHz
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Thin-disk oscillator

Zeyen, Manuel, et al. review of scientific instruments 2023.

Zeyen, Manuel, et al. Optics express, 2023.

ü Delay:   700 ns

ü Energy: 50 mJ  
ü Pulse-to-pulse stability: <0.5% (rms)

ü Single-frequency operation

ü Laser chirp < 2 MHz
ü PDH lock scheme with infinite dynamic 

range
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Multipass amplifier

K. Schuhmann et al., Appl. Opt. 57, 10323-10333 (2018) 

Zeyen, Manuel, et al.  2019

Zeyen, Manuel, et al. Optics express, 2024.

amplification

Fourier transform

amplfication
4f
4f

4f

amplification

Fourier transform

amplfication

amplification

Fourier transform

amplfication

4f
4f

4f
4f.
.
.

Sequence 

ü Insensitive to thermal lensing

ü Energy: 330 mJ  
ü M2 < 1.17

ü Pointing stability
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OPOs & OPAs

cw seed
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reference

Pump diodes
3 kW, 940 nm

3143 nm

2148 nm

5 mJ

TDL osc.
50 mJ

1030 nm

TDL osc.
50 mJ

1030 nm

cw seed
1030 nm

atomic
reference



Ahmed Ouf PSAS’2024 Zurich    14.06.2024

OPO & OPA @3146 nm

ü Variable outcoupling cavity

ü Infinite locking range (PDH locking)
ü 3.3 mJ @ 3146 nm

ü M2 = 1.01 (excellent beam quality)

ü Pulse chirp < 2 MHz
ü Rms energy stability < 2% 

ü Tunability of 2 nm 
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OPO & OPA @2148 nm

ü 1.5 mJ @ 2148 nm
ü Efficiency 40-50 %  
ü excellent beam quality
q OPA in preparation

Preliminary
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Enhancement cavity

M. Marszalek et.al , arXiv:2402.07223
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Two different configurations
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Comparison

  

Expected average 4uence
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Search for the resonance

0.16 meV (40 GHz) search range

• Measure 1.4 h at fixed wavelength to expose a 4 𝜎
effect over background

• 1 h to change the laser frequency in steps of 100 
MHz

SciPost Physics Core Submission
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Figure 10: (a) Simulation of the resonance search in which a time 1.4t4� is spent
at each frequency point. ⌫ denotes the laser frequency, ⌫0 the resonance frequency.
(b) Ranking of the frequency points in correspondence of the resonance. For 97.43%
of the cases the simulated pseudo-data have a maximum in correspondence of the
resonance. For 1.84% of the cases the second largest point is in correspondence of
the resonance and so on.

the maximum of the simulated pseudo-data has been found in correspondence of the resonance
(see Fig. 10 (b)). As can be seen from the same figure, the probability that the second highest
point is at the position of the resonance is of about 1.84% and the probability that the third
highest point is at the position of the resonance is 0.39%. Summing up these probabilities
we obtain 99.66% which basically corresponds to the probabability of identifying the position
of the resonance by adding some statistics to three frequency points at maximum. On top
of this we have also investigated what is the probability that in the correspondence of the
resonance there are two adjacent frequency points whose sum deviates more than 4� from
background. Considering also this search criteria we obtain that with 99.93% we are able to
correctly identify the resonance position. Hence, we confirm that the above described simple
procedure to search for the resonance with 100 MHz steps and by accumulating statistics at
each frequency point for a time of 1.4t4� is adequate.

The maximal time needed to search for the resonance (using the simple procedure de-
scribed above) can be estimated to be 400⇥(1.4t4�+ t��change)

1
"uptime

= 820300 miniutes corre-
sponding to 8.2 weeks. For this estimate we have used conservative values for the experimental
performance: an uptime (including accelerator) of "uptime = 70%, a time t��change = 1 h to
change the laser frequency, a laser pulse energy of 1 mJ, a laser bandwidth of 100 MHz, a
cavity reflectivity of 99.2%, a muon rate of 500 1/s, "Au = 0.7, "Au-false = 0.09, a target thick-
ness of 1.2 mm, and scan range of 40 GHz. Moreover we assumed that all µp atoms have
100 eV initial kinetic energy. Most probably the resonance can be found much faster if a sig-
nificant deviation from background is found earlier and by adapting our search strategy (i.e.
accumulating more statistics on points with significant deviations from background).

We have also simulated 105 pseudo-measurements of the HFS resonance after its discovery,
assuming that two weeks of beamtime can be used to measure the resonance (this time does
not include the time needed to change the laser wavelength and the time when the setup or
the accelerator are not operative). A simulation of a resonance measurement for conservative
assumptions is shown in Fig. 11a. Figure 11b shows a similar simulation for slightly less

19

• Simulation of the search for resonance• Steps to search for resonance
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Simulated resonance

SciPost Physics Core Submission
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Figure 11: (a) Simulated pseudo-measurement of the HFS transition for two weeks
of measurement. We assumed here an initial µp energy of 100 eV, a laser pulse
energy of 1 mJ, a laser bandwidth of 100 MHz, a cavity reflectivity of 99.2%, a muon
rate of 500 1/s, "Au = 0.7, "Au-false = 0.09, a target thickness of 1.2 mm and an
accidental rate of 0.2 1/s. (b) Similar to (a) but for a pulse energy of 1.5 mJ, a laser
bandwidth of 10 MHz and the more realistic initial kinetic energy distribution as
presented in Sec. 5. (c) Distribution of the bias obtained by fitting a Voigt function to
the resonance data for 105 pseudo-measurements. The orange distribution has been
obtained from data generated at the conditions used in (a), the blue distribution from
data generated at the conditions used in (b). (d) Fit uncertainties of the centroid
position obtained from the fits discussed in (c).
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• Theory improvement needed

Ø Laser pulse 1mJ

Ø Target length 1.2 mm

Ø Cavity R = 99.2% 

Ø Detection system: ϵ$% = 70% , ϵ$%&'()*+ = 9%

Assuming the resonance has been found and given:
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Collaboration
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Our lab at PSI
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Questions ?

Questions


