One-dimensional chirp cooling of positronium

Kenji Shu¹, Y. Tajima¹, R. Uozumi¹, N. Miyamoto¹, S. Shiraishi¹, T. Kobayashi¹, A. Ishida¹, K. Yamada¹, R. W. Gladen¹, T. Namba¹, S. Asai¹, K. Wada²,
I. Mochizuki², T. Hyodo², K .Ito³, K. Michishio³, B. E. O'Rourke³, N. Oshima³, and K. Yoshioka¹

¹The University of Tokyo, ²High Energy Accelerator Research Organization (KEK), ³National Institute of Advanced Industrial Science and Technology (AIST)

PSAS'2024-International Conference on Precision Physics of Simple Atomic Systems

Groups

Yoshioka group, UTokyo -AMO and laser

Yoshioka group's photo

Asai group and ICEPP, UTokyo –particle physics and positronium science

SPF, IMSS, KEK -positron diffraction and accelerator-based slow positron beam

AIST

-positron microbeam, e^+/Ps chemistry, and multiple slow positron beams

K. Shu (Univ. of Tokyo)

Simplest atom in QED: positronium

- Only light leptons
- Weak and QCD effects are small

Constitution of positronium (Ps)

Precise prediction by m_e (w/ CPT), α , and QED Textbook system for testing QED and beyond the Standard Model

K. Shu (Univ. of Tokyo)

Why cold Ps?

Setup of $1^3S_1 - 2^3S_1$ spectroscopy

Observed resonance vs some widths

Precision and accuracy in spectroscopy

K. Shu (Univ. of Tokyo)

Why cold Ps?

Bose–Einstein condensation Nobel Prize in 2001

BEC phase diagram

Vol 449 13 September 2007 dol:10.1038/nature060

LETTERS

The production of molecular positronium

D. B. Cassidy¹ & A. P. Mills Jr

Dense Ps created

PHYSICAL REVIEW A 92, 023820 (2015)

Gamma-ray laser

First BEC with antimatters and gamma-ray laser

K. Shu (Univ. of Tokyo)

Proposal of Ps laser cooling

E. P. Liang and C. D. Dermer, Opt. Commun. 65, 419 (1988)

ortho-Ps level diagram

Cooling efficiency estimation

oPs Transitions	λ(Å)	$A(s^{-1})$	T _{min} (mK)	$\Delta t_1(\mathbf{s})$
1s-2p	2431	3.17×10^{8}	21.2	1.73×10 ⁻⁷

Laser cooling on Ps should work

K. Shu (Univ. of Tokyo)

Difficulty in Ps laser cooling

K. Shu (Univ. of Tokyo)

Novel laser for Ps cooling

- K. Yamada et al., Phys. Rev. Appl. 16, 014009 (2021).
- K. Shu et al., Phys. Rev. A 109, 043520 (2024).

K. Shu (Univ. of Tokyo)

How the laser works

K. Shu (Univ. of Tokyo)

Measured emission from the cooling laser

Measured time evolution of power

Pulse train continues for 300 ns

Measured time-resolved spectrum

Sweeps 150 GHz with 0.5 GHz/ns Optimul rate aligned with Ps deceleration rate: **Chirp cooling**

K. Shu (Univ. of Tokyo)

Optimul spectral width of each pulse

Fine splitting, recoil shift, and spectral width

Cooling and repump from dark for efficient cooling

K. Shu (Univ. of Tokyo)

1D chirp cooling experiment

Experimental setup

Timing chart

arXiv:2310.08761 under review

K. Shu (Univ. of Tokyo)

Setup photo

Beamline and chamber

Top view in the chamber

K. Shu (Univ. of Tokyo)

Initial distribution and control measurement

K. Shu (Univ. of Tokyo)

Observed effect of laser cooling

K. Shu (Univ. of Tokyo)

Observed clear evidence of chirp cooling

K. Shu (Univ. of Tokyo)

Comparison with optical Bloch equation simulation

K. Shu (Univ. of Tokyo)

Improvements?

Reproduced profile for the observed spectrum, obtained from simulations

Evaluation of the cooling performance

- Temperature of the cooled: ≃1 K
- Cooled ratio: ≃10% of the total

 $1^{3}S_{1}-2^{3}S_{1}$ spectroscopy with 1 K Ps

- Transit-time broadening: 1.6 MHz
- 2nd-order Doppler shift: 0.05 MHz

Narrow as $\Gamma_{nat.} \simeq 1.3$ MHz is expected

Straightforward ratio improvement (×2) Current: 40 nm pore at 300 K \rightarrow 600 K Ps Better: Cold 5 nm pore \rightarrow 150 K Ps

S. Mariazzi et al., PRL 104, 243401 (2010)

K. Shu (Univ. of Tokyo)

Optimization of cooling condition

Simulated velocity distribution with different laser parameters

Longer cooling time would be better. Study for suppressing side peaks.

K. Shu (Univ. of Tokyo)

Faster cooling

- Cooling rate is limited by the spontaneous emission rate.
- Use decelerating stimulated emission for de-excitation.
- c.f. J. P. Bartolotta et al., Laser Cooling by Sawtooth-Wave Adiabatic Passage, PRA 98, 023404 (2018).

Cooling process. J. Malamant et al., arXiv:2402.17052.

Velocity distribution can be $\frac{1}{2(=N_{\text{levels}})}$ in 3.2 ns! 25000 m/s at RT vs 1500 m/s deceleration in \approx 3 ns

K. Shu (Univ. of Tokyo)

Summary and prospect

Summary

- First demonstration of 1D chirp cooling of positronium
- Narrow velocity distribuion corresponding 1K was obtained

Prospects

- Optimized configuration & 3D cooling
- Precision spectroscopy

Another and simultaneous demonstration with different scheme *c.f.* L. T. Glöggler *et al.* (AEgIS Collaboration), Phys. Rev. Lett. **132**, 083402 (2024)

K. Shu (Univ. of Tokyo)