THE ANTIMATTER EXPERIMENT

Gravity | Interferometry | Spectroscopy

How does gravity affect antimatter?

- Exact value of \bar{g} unknown (ALPHA-g 2023: $a_{\bar{g}}/a_g = 0.75 \pm 0.16 \pm 0.13$)
- Low precision on WEP tests for antimatter (Normal matter: precision 10⁻¹⁵, MICROSCOPE 2022)
- Other observations limit possible anomalies
 (e.g. neutrinos from SN1987A, BASE 2022)
- Direct free-fall type experiments with antimatter are very challenging!

Production of antihydrogen

Charge exchange reaction:

$$Ps^* + \overline{p} \rightarrow e^- + \overline{H}^*$$

How to get positronium?

June 13, 2024

QUASAR

Hbar cross-section 2023

 $E_{ion} = v_{Ps} \times B = \frac{6.8}{9a_0n^4}$

cross

section

(cm²

 $\sigma_{\overline{H}} \sim n^4$

Phys. Rev. A 94, 022714 (2016) https://doi.org/10.1103/PhysRevA.94.022714

Commun. Phys 4, 19 (2021) https://doi.org/10.1038/s42005-020-00494-z

QUASAR

Hbar cross-section ideal

 $\sigma_{\overline{H}} \sim n^{4}$ $E_{ion} = v_{Ps} \times B = \frac{6.8}{9a_{0}n^{4}}$

cross-

section

(cm²)

June 13, 2024

7

Technical paper submitted to **Optics and Laser Technology** "An alexandrite laser system for positronium laser cooling"

AEgIS choice: Broadband 70ns laser pulse

SSPALS reference by 205 probing laser

 $A_{205+1064} - A_{\rm off}$ $S_{205+1064}$ < 0 A_{off}

Result for the 205nm probing laser alone

Ps Doppler Scan on the 1³S – 3³P transition

From the width of a Gaussian fit and the 205 BW (180 GHz):

 v_{rms} = (5.4 ± 0.2)·10⁴ ms⁻¹ T= (380 ± 20) K

SSPALS with 243 cooling laser alone

$$S_{243} = \frac{A_{243} - A_{\text{off}}}{A_{\text{off}}} >$$

First experimental observation:

"Laser-induced preservation of decaying atoms"

The average lifetime of the excitable Ps fraction during the interaction with the cooling laser pulse is ≈**284ns**

0

Result for the 243nm cooling laser alone

Ps Doppler Scan on the $1^{3}S - 2^{3}P$ transition

From a 2-Gaussian fit and the 243 BW (100 GHz):

 v_{rms} = (4.9 ± 0.4)·10⁴ ms⁻¹ T = (320 ± 50) K

Timing synchronisation between 243 and 205 lasers

June 13, 2024

Positronium laser cooling: result

1D rms-velocity reduces from 5.4 \cdot 10⁴ $\frac{m}{c}$ to 3.7 \cdot 10⁴ $\frac{m}{c}$

Phys. Rev. Lett. **132**, 083402 (2024) https://doi.org/10.1103/PhysRevLett.132.083402

A maximum increase **of 58(9)%** of Ps with |v| < 3.7e4 at -0.35 THz red-detuning

Gravitational tests with Ps?

 $E_{0+g} = mc^2 + U(x)$

Standard Model of Elementary Particles

AN AN STA

The absolute gravitational potential U(x) affects energy levels and transition frequencies (clocks)

Savely G Karshenboim 2016 J. Phys. B: At. Mol. Opt. Phys. **49** 144001 https://doi.org/10.1088/0953-4075/49/14/14400

The gravitational redshift of clocks is a measure for U(x)

If you know U(x) for a matter system from spectroscopic measurements, you can measure and compare the redshift of an antimatter system

Ps has no nucleus, theory well described by QED -> Tests for (W)EP are very interesting ... but are limited by the second order Doppler shift by the Ps velocity

Cool Ps further!

Summary

- 1D Ps laser cooling with broadband
 70ns long laser pulse along the
 1³S->2³P transition achieved
- Cooling by 200K or 1.7e4 ms⁻¹, i.e. maximum momentum transfer that can be achieved within 70ns
- Next steps: 2D (3D) laser cooling; using cryogenically precooled Ps; applying the technique to AEgIS' antihydrogen production scheme

Backup: The cooling laser

Table	1:	Laser	parameters

Energy at 729 nm	up to 40 mJ
Energy at 243 nm	up to 2 mJ
Spectral bandwidth at $730 \mathrm{nm}$ (σ)	$130(15)\mathrm{GHz}$
Spectral bandwidth at 243 nm (σ)	$101(3) \mathrm{GHz}$
Pulse duration at 730 nm (FWHM)	$266\mathrm{ns}$
Pulse duration at 243 nm (FWHM)	$203\mathrm{ns}$