Polarisation effects in spectroscopy of the positronium n = 2 fine structure intervals

Ps

Ross E. Sheldon*, Rebecca J. Daly, Krzysztof P. Habdas, and David B. Cassidy Department of Physics and Astronomy, University College London, UK

150

WR-75 Horn Antenna

Coil

Ps

Introduction

ross.sheldon.18@ucl.ac.uk

- The n = 2 Positronium (Ps, the bound state of an electron and positron) fine structure intervals have been measured several times to test bound-state quantum electrodynamics.^[1]
- All previous measurements

Saturation Measurements

- v_1 saturation data is consistent with all 2³S₁ states being depopulated.
- H orientation requires more power to saturate due to $2^{3}S_{1}$ (0) only being depopulated by low-intensity unpolarised reflections.

 $\rightarrow \Delta M_{I} = 0$ were performed using -5415 10050 waveguides of fixed polarisation.^[2,3,4] $B_{z}(G)$

- Horn antennas offer a way to change the polarisation of the microwave radiation.
- We drove $2 {}^{3}S_{1} \rightarrow 2 {}^{2S+1}P_{1}$ (S = 0, 1) transitions, known as v_F and v_1 , using a horn antenna to evaluate the effect of polarisation in free-space Ps microwave spectroscopy.

Low line shape power

High line shape power

Horizontal

Vertical

• v_{F} does not fully depopulate the $2^{3}S_{1}$ state in V orientation, indicating depopulation of at least one $2^{3}S_{1}$ state is highly limited.

40

20

Line Shape Measurements

Line shapes fitted with Lorentzian functions to extract the resonance frequency. Comparison made to average Zeeman shift for each polarisation.

the eigenvectors of the full Hamiltonian matrix A_{mi}.

Experimental Methods

- $1^{3}S_{1}$ Ps was made by implanting positron pulses into a mesoporous SiO₂ film in a field of $\langle B_{z} \rangle = 131$ G.^[6]
- $2^{3}S_{1}$ Ps was made by single photon excitation in an electric field: $1^{3}S_{1} \xrightarrow{\lambda_{UV} = 243 \text{ nm}} 2^{3}S_{1}' \xrightarrow{F \approx 2 \rightarrow 0 \text{ kV/cm}} 2^{3}S_{1}.^{[7]}$

Ŕ

- Retroreflection Time resolved gamma-ray spectroscopy using scintillation detectors allows differentiation Coil of long- and short-lived states.^[6] \succ
- A horn antenna emitted radiation parallel to B_7 when orientated horizontally (H), and orthogonal to B_{τ} when orientated vertically (V).

are consistent with transitions driven by fully polarised radiation.

- But v_{F} is shifted 4.1 σ from theory in the H case. Being consistent with only $2^{3}S_{1}(\pm 1) \rightarrow 2^{1}P_{1}$ (± 1) being driven.
- High power measurements for H show a shift toward V, indicating low-intensity reflections do become significant.

Conclusions

We have verified that horn antennas can be used to perform polarisation resolved Ps spectroscopy in freespace. Although near the saturation regime unpolarised

reflections can drive additional transitions.

- The $v_{\rm F}$ saturation and line shape data display unexpected behaviour, likely due to an incomplete model of the Zeeman mixing.
- Ongoing waveguide measurements will further investigate the behaviour of $v_{\rm F}$.
- [1] S. G. Karshenboim, *Phys. Reports*, **422**, 1-63 (2005) [2] S. Hatamian et al., *PRL*, **58**, 1833 (1987) [3] R. Ley et al., *Hyperfine interactions*, **89**, 327 (1994) [4] R. E. Sheldon et al., *PRL*, **131**, 043001 (2023) [5] R. E. Sheldon et al., *PRA*, **107**, 042810 (2023) [6] B. S. Cooper et al., *Rev. Sci. Intrum.*, **86**, 103101 (2015) [7] A. M. Alonso et al., *PRA*, **95**, 033408 (2017) For more information check out our website: www.antimattergravity.com

