SCALE SEPARATION IN EXOTIC ATOMS

PRECISION SPECTROSCOPY AS WINDOW TO NEW PHYSICS

SOTIRIS PITELIS

INSTITUT FÜR KERNPHYSIK, Johannes Gutenberg-Universität Mainz

SEPARATION OF SCALES ACROSS HYDROGEN-LIKE ATOMS

The **Bohr radii** of hydrogen-like atoms vary based on the **reduced mass** of the atom:

ENHANCED SOFT CONTRIBUTIONS IN THE STANDARD MODEL

• Soft contributions can break the finite-size expansion: see f.i. the light particle cut across the upper loop of the diagram in FIG 2.

This leads to **significant differences** in their atomic spectra.

FIG 1: Leading contributions to the H (left) and µH (right) Lamb Shift.

$\simeq 1.02 \text{ MeV}$ π

FIG 2: Soft SM contribution to the proton form factor which breaks the finite-size expansion

- Breaking occurs in systems with $Z\alpha m_r \sim 2m_e$, like μ H.
- Not a problem with current experimental accuracy, but...

In hydrogen-like atoms, contributions may be enhanced depending on their lightest t-channel cut compared to the scale of the Bohr radius!

> **TABLE II:** Breaking of the expansion in moments of charge distribution for the 2-loop diagram in **FIG** 2. Contribution to LS

SYSTEM	EXACT CALCULATION	EXPANSION	CURRENT EXPERIMENTAL ACCURACY
H [kHz]	4×10 ⁻¹¹	3×10 ⁻¹¹	3.2
μΗ [μeV]	-8×10 ⁻¹⁰	3×10 ⁻⁸	2.3

Each observable should be studied separately. For instance, the expansion of the HFS contribution is breaking for both H and μ H.

FINITE-SIZE CONTRIBUTION: **TO EXPAND OR NOT?**

• Finite-size contribution to the 2P-2S Lamb shift in hydrogen-like systems due to the proton electric Sachs form factor $G_E(Q^2)$:

 m_r is the reduced mass of the proton-lepton system, $Q^2 = -q^2$ is the squared momentum transfer, and t_0 is the lowest particle-production threshold in the t channel.

• Finite-size expansion:

$$E_{\rm LS}^{\rm fin.} \simeq -\frac{(Z\alpha)^4 m_r^3}{12} \left[\langle r^2 \rangle_E - Z\alpha m_r \langle r^3 \rangle_E \right] + O(\alpha^6)$$

where $\langle r^2 \rangle_E$ and $\langle r^3 \rangle_E$ are the second and third moments of the proton charge distribution.

TABLE III: Breaking of the expansion in moments of charge
 distribution for the 2-loop diagram in FIG 2. <u>Contribution to 1S HFS</u>

SYSTEM	EXACT CALCULATION	EXPANSION	CURRENT EXPERIMENTAL ACCURACY
H [10 ⁻⁶ kHz]	-0.009	-0.4	2
μΗ [μeV]	-10-7	-10-5	3 (1 ppm, projected)

NEW PHYSICS SEARCHES: **PICKING THE RIGHT TOOL FOR THE JOB**

- Different atoms are sensitive to different ranges of New Physics parameters.
 - <u>A dark matter example:</u>
- State of the art results for the Lamb shift (in µeV):
 - Mu: 4.3309(105) H: 4.37483(1) μH: 202 370.6(2.3)

• Breaks down when $\sqrt{t_0}$ becomes comparable to $Z\alpha m_r$, which is the inverse Bohr radius of the system.

TABLE I: Inverse Bohr radii of hydrogen-like atoms

SYSTEM	Ps	Mu	Η	μH
$Z\alpha m_r$ [MeV]	1.86×10 ⁻³	3.71×10 ⁻³	3.73×10^{-3}	0.693

FIG 3: Sensitivity plot for a potential dark matter fermion contribution, indicating when the size of the contribution reaches the present experimental accuracy for the individual atoms

- µH is less accurately measured than Mu, but it is equally or more sensitive.
- H is measured most accurately, but μ H is still more sensitive at higher $m_{\chi}!$

When using hydrogen-like atoms as labs for New Physics searches, we can use the range of their Bohr radii to our

advantage!

How does this affect our

calculations?

LIGHT NEW PHYSICS?

DISCUSS!

This work is supported by the Deutsche Forschungsgemeinschaft through the Emmy Noether Programme (grant 449369623).