
Three garbage collectors: Java, Python, and Julia

Jim Pivarski

Princeton University – IRIS-HEP

January 10, 2024

1 / 46

Dynamic language/programming features

dynamic memory allocation:
malloc, new & delete

dynamic memory management:
garbage collectors

dynamic metaprogramming:
eval, macros, JIT-compilation

dynamic instruction set:
virtual machines

dynamic data types:
runtime type inspection, manipulation

dynamic task scheduling:
parallel & distributed computing

2 / 46

Dynamic language/programming features

alloc reference count GC eval VM type reflect scheduling

Fortran 77

C
√

C++
√

shared_ptr<T> vtable only std library

C++ with ROOT
√

shared_ptr<T>
√ √ √

Rust
√

Rc<T> vtable only
√

Swift
√ √

vtable only
√

Julia
√ √ √ √

std macros

Go
√ √

vtable only
√

Java (JVM languages)
√ √ √ √

std library

Lua
√ √ √ √ √

Python
√ √ √ √ √ √ √

3 / 46

This talk will focus on. . .

Java
Prototypical example of a
language with garbage
collection; some of our
intuitions/preconceptions
about garbage collectors
are Java-specific.

Python
Very dynamic language,
has both reference counting
and mark-and-sweep
garbage collection.

Julia
Up-and-coming language,
potentially ideal for HEP.
JIT-compiled for bare
metal, but has a garbage
collector.

4 / 46

What is the current status of Julia in HEP?

5 / 46

State of language use by particle physicists as of last November

13/275 = 5%

1.0

Selected GitHub users by bios containing
"particle physic" or "high energy physic".

Selection criteria would match 20% of users
who fork CMSSW who write bios (only 10% do).

Google returned about 1/4 of estimated matches.

275 matching users with 3981 non-fork repos.
Identified source code files by file extension.

6 / 46

But physicists are more interested in Julia than, say, Rust or Lua

Among “Materials” (PDFs and TXTs) in CERN’s Indico search since January 2022,

63 refer to Julia the programming language

324 refer to people named Julia

4 other/unclear

12 refer to Rust the programming language
(7 of those same documents also refer to Julia)

10 refer to oxidized metal

3 other/unclear

1 refers to Lua the programming language
(it’s used to configure the SIMION charged particle simulator)

4 refer to the LHC User’s Association

4 other/unclear

7 / 46

Similarly, Julia is increasingly a focus on ACAT and CHEP

ACAT 2022:
▶ Julia: 1 title and 1 abstract

▶ Python: 3 titles and 24 abstracts

CHEP 2023:
▶ Julia: 3 titles and 4 abstracts

▶ Python: 1 title and 35 abstracts

Only other programming languages mentioned: C++ (frequently) and Java (2 times).

8 / 46

Julia has an HSF working group, meetings, and annual workshops

9 / 46

Back to garbage collectors

10 / 46

Reference counting

>>> import sys

>>> x = object()
>>> sys.getrefcount(x)
2

>>> y = x
>>> sys.getrefcount(x)
3

>>> z = [x, x, x, x, x]
>>> sys.getrefcount(x)
8

>>> del x, z
>>> sys.getrefcount(y)
2

11 / 46

Reference counting

>>> import sys

>>> x = object()
>>> sys.getrefcount(x)
2

>>> y = x
>>> sys.getrefcount(x)
3

>>> z = [x, x, x, x, x]
>>> sys.getrefcount(x)
8

>>> del x, z
>>> sys.getrefcount(y)
2

11 / 46

Reference counting

>>> import sys

>>> x = object()
>>> sys.getrefcount(x)
2

>>> y = x
>>> sys.getrefcount(x)
3

>>> z = [x, x, x, x, x]
>>> sys.getrefcount(x)
8

>>> del x, z
>>> sys.getrefcount(y)
2

11 / 46

Reference counting

>>> import sys

>>> x = object()
>>> sys.getrefcount(x)
2

>>> y = x
>>> sys.getrefcount(x)
3

>>> z = [x, x, x, x, x]
>>> sys.getrefcount(x)
8

>>> del x, z
>>> sys.getrefcount(y)
2

11 / 46

Reference counting

>>> import sys

>>> x = object()
>>> sys.getrefcount(x)
2

>>> y = x
>>> sys.getrefcount(x)
3

>>> z = [x, x, x, x, x]
>>> sys.getrefcount(x)
8

>>> del x, z
>>> sys.getrefcount(y)
2

11 / 46

The problem with reference counting

>>> class HasDestructor:
... def __del__(self):
... print("Goodbye, world")
...

>>> x = HasDestructor()
>>> del x
Goodbye, world

>>> y = HasDestructor()
>>> y.self = y
>>> del y

>>> import gc
>>> gc.collect()
Goodbye, world
47

All references to y are gone: it can’t be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

Now it’s gone.

12 / 46

The problem with reference counting

>>> class HasDestructor:
... def __del__(self):
... print("Goodbye, world")
...

>>> x = HasDestructor()
>>> del x
Goodbye, world

>>> y = HasDestructor()
>>> y.self = y
>>> del y

>>> import gc
>>> gc.collect()
Goodbye, world
47

All references to y are gone: it can’t be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

Now it’s gone.

12 / 46

The problem with reference counting

>>> class HasDestructor:
... def __del__(self):
... print("Goodbye, world")
...

>>> x = HasDestructor()
>>> del x
Goodbye, world

>>> y = HasDestructor()
>>> y.self = y
>>> del y

>>> import gc
>>> gc.collect()
Goodbye, world
47

All references to y are gone: it can’t be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

Now it’s gone.

12 / 46

The problem with reference counting

>>> class HasDestructor:
... def __del__(self):
... print("Goodbye, world")
...

>>> x = HasDestructor()
>>> del x
Goodbye, world

>>> y = HasDestructor()
>>> y.self = y
>>> del y

>>> import gc
>>> gc.collect()
Goodbye, world
47

All references to y are gone: it can’t be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

Now it’s gone.

12 / 46

The problem with reference counting

>>> class HasDestructor:
... def __del__(self):
... print("Goodbye, world")
...

>>> x = HasDestructor()
>>> del x
Goodbye, world

>>> y = HasDestructor()
>>> y.self = y
>>> del y

>>> import gc
>>> gc.collect()
Goodbye, world
47

All references to y are gone: it can’t be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

Now it’s gone.

12 / 46

A common garbage collection algorithm

13 / 46

A common garbage collection algorithm

13 / 46

A common garbage collection algorithm

13 / 46

A common garbage collection algorithm

13 / 46

A common garbage collection algorithm

13 / 46

A common garbage collection algorithm

13 / 46

A common garbage collection algorithm

13 / 46

Garbage collector generations

14 / 46

Example in Python, which has 3 generations

>>> import gc
>>> _ = gc.collect(); gc.disable()
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

>>> uproot.open("Zmumu.root:events").arrays()
<Array [{Type: 'GT', Run: 148031, ...}, ...] type='2304 * {Type: stri...'>
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[33573, 0, 39136]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 56692]

15 / 46

Example in Python, which has 3 generations

>>> import gc
>>> _ = gc.collect(); gc.disable()
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

>>> uproot.open("Zmumu.root:events").arrays()
<Array [{Type: 'GT', Run: 148031, ...}, ...] type='2304 * {Type: stri...'>
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[33573, 0, 39136]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 56692]

15 / 46

Example in Python, which has 3 generations

>>> import gc
>>> _ = gc.collect(); gc.disable()
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

>>> uproot.open("Zmumu.root:events").arrays()
<Array [{Type: 'GT', Run: 148031, ...}, ...] type='2304 * {Type: stri...'>
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[33573, 0, 39136]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 56692]

15 / 46

Example in Python, which has 3 generations

>>> import gc
>>> _ = gc.collect(); gc.disable()
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

>>> uproot.open("Zmumu.root:events").arrays()
<Array [{Type: 'GT', Run: 148031, ...}, ...] type='2304 * {Type: stri...'>
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[33573, 0, 39136]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 56692]

15 / 46

Example in Python, which has 3 generations

>>> import gc
>>> _ = gc.collect(); gc.disable()
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

>>> uproot.open("Zmumu.root:events").arrays()
<Array [{Type: 'GT', Run: 148031, ...}, ...] type='2304 * {Type: stri...'>
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[33573, 0, 39136]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 56692]

15 / 46

Differences among the three languages

Java https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://abiasforaction.net/category/java/gc

Rather than calling malloc for each new object, objects are made from preallocated
memory pools. Each pool represents a different generation; those that survive
mark-and-sweep are copied from one pool into the next.

No stable pointers, but it keeps the memory unfragmented: finding space for new
objects is fast (i.e. especially good for making many short-lived objects).

16 / 46

https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://abiasforaction.net/category/java/gc

Differences among the three languages

Python https://devguide.python.org/internals/garbage-collector
https://docs.python.org/3/c-api/memory.html

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONMALLOC
https://rushter.com/blog/python-garbage-collector

CPython relies on reference counting for most memory management; full garbage
collection is just to clean up cycles. (PyPy only has full garbage collection.)

The 3 generations are different doubly-linked lists. Mark-and-sweep marks are in the
low bits of the list pointers so that garbage collection has a constant memory footprint.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
| *_gc_next | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | PyGC_Head
| *_gc_prev | |

object -----> +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
| ob_refcnt | \
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | PyObject_HEAD
| *ob_type | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
| ... |

Objects have stable pointers, which are good for C/C++ extensions, but not managed
by malloc (depends on PYTHONMALLOC environment variable and Python build).

17 / 46

https://devguide.python.org/internals/garbage-collector
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONMALLOC
https://rushter.com/blog/python-garbage-collector

Differences among the three languages

Julia https://docs.julialang.org/en/v1/devdocs/gc
https://discourse.julialang.org/t/18021/3

https://docs.julialang.org/en/v1/devdocs/object
https://github.com/JuliaLang/julia/blob/v1.10.0/src/julia.h#L106-L114

< 2 kB objects are managed in pools, allocated by page; large objects use malloc.

Objects have headers for type reflection, and the first 2 bits are a mark-and-sweep
mark and a generation (1 bit = 2 generations).

typedef struct {
opaque metadata; /* sizeof(uintptr_t) header */
jl_value_t value; /* actual data */

} jl_taggedvalue_t;

Marking is depth-first and parallel; sweeping is serial. Memory is returned to the
operating system on a per-page basis. Once a page has zero surviving objects, it is
freed using madvise on a background thread.

Julia makes stack-versus-heap user-visible, to help users avoid garbage collection.
18 / 46

https://docs.julialang.org/en/v1/devdocs/gc
https://discourse.julialang.org/t/18021/3
https://docs.julialang.org/en/v1/devdocs/object
https://github.com/JuliaLang/julia/blob/v1.10.0/src/julia.h#L106-L114

Experiments on garbage collectors

Part 1: timing experiments

19 / 46

Replacing objects with a lifespan of 16± 0 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

for iE in shuffleE:
array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

20 / 46

Replacing objects with a lifespan of 162 = 256± 0 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
21 / 46

Replacing objects with a lifespan of 163 = 4096± 0 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

for iC in shuffleC:
for iD in shuffleD:

for iE in shuffleE:
array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

22 / 46

Replacing objects with a lifespan of 164 = 65536± 0 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
23 / 46

Replacing objects with a lifespan of 165 = 1048576± 0 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
24 / 46

Replacing objects with a lifespan of 162 = 256± 97.8 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

for iE in shuffleE:
for iD in shuffleD:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
25 / 46

Replacing objects with a lifespan of 163 = 4096± 1660 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

for iE in shuffleE:
for iD in shuffleD:

for iC in shuffleC:
array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

26 / 46

Replacing objects with a lifespan of 164 = 65 536± 26 700 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []

for iE in shuffleE:
for iD in shuffleD:

for iC in shuffleC:
for iB in shuffleB:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
27 / 46

Replacing objects with a lifespan of 165 = 1048 576± 428 000 steps

shuffleA = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, 0, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleC = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffleD = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shuffleE = [14, 11, 10, 8, 0, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(16**5, dtype=object)
for iA in shuffleA:

for iB in shuffleB:
for iC in shuffleC:

for iD in shuffleD:
for iE in shuffleE:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
for iE in shuffleE:

for iD in shuffleD:
for iC in shuffleC:

for iB in shuffleB:
for iA in shuffleA:

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE] = []
28 / 46

Replacing objects in Julia

shuffleA::Vector{Int64} = [7, 6, 4, 10, 0, 15, 9, 8,
13, 5, 12, 14, 3, 11, 2, 1]

...
array::Vector{Union{Vector{Int32},Nothing}} = fill(nothing, 16ˆ5)
for iA in shuffleA

for iB in shuffleB
for iC in shuffleC

for iD in shuffleD
for iE in shuffleE

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE + 1] = []
end
for iE in shuffleE

array[(((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE + 1] = []
end

end
end

end
end

29 / 46

Replacing objects on the JVM (Scala)

val shuffleA = Array[Int](7, 6, 4, 10, 0, 15, 9, 8,
13, 5, 12, 14, 3, 11, 2, 1)

...
val array = Array.fill(Math.pow(16, 5).toInt)(Option.empty[Array[Int]])
for (iA <- shuffleA) {
for (iB <- shuffleB) {

for (iC <- shuffleC) {
for (iD <- shuffleD) {

for (iE <- shuffleE)
array(((((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE)) =

Some(Array[Int]())
for (iE <- shuffleE)

array(((((iA*16 + iB)*16 + iC)*16 + iD)*16 + iE)) =
Some(Array[Int]())

}
}

}
}

30 / 46

Measuring time uniformly across languages

The Scala, Python, and Julia processes each send a byte ('.') to a separate C++
process every 2048 (211) steps, which is listening to an unbuffered, localhost socket.

The C++ process records time differences between each received byte.

using namespace std::chrono;

do {
recv(new_socket, &buffer, 1, 0);
stop = std::chrono::steady_clock::now();
printf("%d\n", duration_cast<microseconds>(stop - start).count());
start = stop;

}
while (buffer == '.');

When Scala, Python, or Julia are stopped by a garbage collector pause, it shows up as
an unusually long time between pings.

31 / 46

Java: actively researching garbage collectors for decades

0 5000 10000 15000 20000 25000 30000
steps / 2048

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Java Serial (original) garbage collector
object lifespan: 65536 ± 0
mutable objects (empty arrays)
numerical array (no objects)

32 / 46

Java: actively researching garbage collectors for decades

0 5000 10000 15000 20000 25000 30000
steps / 2048

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Java 1.8.0 garbage collector
object lifespan: 65536 ± 0
mutable objects (empty arrays)
numerical array (no objects)

32 / 46

Java: actively researching garbage collectors for decades

0 5000 10000 15000 20000 25000 30000
steps / 2048

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Java 21.0.1 garbage collector
object lifespan: 65536 ± 0
mutable objects (empty arrays)
numerical array (no objects)

32 / 46

Java: actively researching garbage collectors for decades

0 5000 10000 15000 20000 25000 30000
steps / 2048

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Java Z garbage collector
object lifespan: 65536 ± 0
mutable objects (empty arrays)
numerical array (no objects)

32 / 46

Java: actively researching garbage collectors for decades

0 5000 10000 15000 20000 25000 30000
steps / 2048

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Java Shenandoah garbage collector
object lifespan: 65536 ± 0
mutable objects (empty arrays)
numerical array (no objects)

32 / 46

Java: actively researching garbage collectors for decades

The OpenJDK and other JDK implementations come with many algorithms:

and each has many tuning options (not explored in this talk), to address different
throughput-versus-latency tradeoffs.

33 / 46

Examples of throughput-versus-latency tradeoffs

Example I’ve encountered: in a distributed system, one service was sending messages
to another. During the garbage collector pauses, the recipient’s input
queue would overflow, which created yet more objects to garbage-collect,
in a viscious cycle.

I spent days or weeks testing and tuning alternate garbage collectors.

Obvious cases for HEP: triggers, data acquisition, monitoring. Any real-time system.

34 / 46

Java: scaling with object lifespan

6000 8000 10000 12000 14000 16000 18000 20000
steps / 2048

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Java 1.8.0 garbage collector (zoom)
lifespan: 16 ± 0
lifespan: 256 ± 0
lifespan: 4096 ± 0
lifespan: 65536 ± 0
no lifespan (numerical)

35 / 46

Java: scaling with object lifespan

6000 8000 10000 12000 14000 16000 18000 20000
steps / 2048

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Java 1.8.0 garbage collector (zoom)
lifespan: 16 ± 0
lifespan: 256 ± 97.8
lifespan: 4096 ± 1660
lifespan: 65536 ± 26700
no lifespan (numerical)

35 / 46

Python: only triggered for mutable objects

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
steps / 2048

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s
Python 3.12.1 garbage collector

object lifespan: 65536 ± 0
cyclic references (lists containing self)
mutable objects (empty lists)
immutable objects (tuples)
numerical array (no objects)

36 / 46

Python: only triggered for mutable objects

0 200 400 600 800 1000
steps / 2048

103

s b
et

we
en

 2
04

8
st

ep
s

Python 3.12.1 garbage collector (zoom)
object lifespan: 65536 ± 0

cyclic references (lists containing self)
mutable objects (empty lists)
immutable objects (tuples)
numerical array (no objects)

36 / 46

PyPy: triggered for all objects

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
steps / 2048

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

PyPy 7.3.13 (~Python 3.9.18) garbage collector
object lifespan: 65536 ± 0

cyclic references (lists containing self)
mutable objects (empty lists)
immutable objects (tuples)
numerical array (no objects)

37 / 46

PyPy: triggered for all objects

3075 3100 3125 3150 3175 3200 3225 3250
steps / 2048

103

104

s b
et

we
en

 2
04

8
st

ep
s

PyPy 7.3.13 (~Python 3.9.18) garbage collector (zoom)
object lifespan: 65536 ± 0

cyclic references (lists containing self)
mutable objects (empty lists)
immutable objects (tuples)
numerical array (no objects)

37 / 46

Julia: has pauses, but very regular; may be easy to reason about

0 5000 10000 15000 20000 25000 30000 35000
steps / 2048

100

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Julia 1.9.4 garbage collector
object lifespan: 65536 ± 0
mutable objects (empty vectors)
mutable objects with GC OFF
numerical array (no objects)
numerical array with GC OFF

38 / 46

Julia: has pauses, but very regular; may be easy to reason about

12000 12250 12500 12750 13000 13250 13500 13750 14000
steps / 2048

100

101

102

103

104

s b
et

we
en

 2
04

8
st

ep
s

Julia 1.9.4 garbage collector (zoom)
object lifespan: 65536 ± 0
mutable objects (empty vectors)
mutable objects with GC OFF
numerical array (no objects)
numerical array with GC OFF

38 / 46

Julia: short object lifespan still has second-long pauses

0 5000 10000 15000 20000 25000 30000
steps / 2048

100

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Julia 1.9.4 garbage collector (zoom)
lifespan: 16 ± 0
lifespan: 256 ± 0
lifespan: 4096 ± 0
lifespan: 65536 ± 0
no lifespan (numerical)

39 / 46

Julia: short object lifespan still has second-long pauses

0 5000 10000 15000 20000 25000 30000
steps / 2048

100

101

102

103

104

105

106

107

108

s b
et

we
en

 2
04

8
st

ep
s

Julia 1.9.4 garbage collector (zoom)
lifespan: 16 ± 0
lifespan: 256 ± 97.8
lifespan: 4096 ± 1660
lifespan: 65536 ± 26700
no lifespan (numerical)

39 / 46

Alternative garbage collectors in Python and Julia

Python’s and Julia’s garbage collectors are not as tunable as Java’s, but you can. . .

▶ Turn them off completely, at least for debugging: gc.disable() (Python) and
GC.enable(false) (Julia).

▶ Invoke them manually: gc.collect() (Python) and GC.gc() (Julia).

▶ Python’s garbage collector is triggered by the number of objects since last
collection, which can be tuned: gc.set_threshold(700, 10, 10).

▶ Both can be logged, and in Python, you can also set callbacks (code) on various
garbage collector phases.

▶ Python has an alternate implementation, PyPy, which only does tracing garbage
collection (no reference counting) and is tuned differently:
https://doc.pypy.org/en/latest/gc_info.html.

40 / 46

https://doc.pypy.org/en/latest/gc_info.html

Julia community helps its members avoid heap-allocation

Heap-allocation and garbage collection exist for prototyping and early iterations of
development, but the Julia community actively helps users eliminate it from hot loops.

▶ Same philosophy as with other dynamic features, such as type reflection.

▶ https://docs.julialang.org/en/v1/manual/performance-tips/

#Measure-performance-with-[@time](@ref)

-and-pay-attention-to-memory-allocation

▶ https://stackoverflow.com/questions/tagged/julia+allocation

▶ Static allocation-checker: https://github.com/JuliaLang/AllocCheck.jl.

41 / 46

https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation
https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation
https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation
https://stackoverflow.com/questions/tagged/julia+allocation
https://github.com/JuliaLang/AllocCheck.jl

Experiments on garbage collectors

Part 2: memory footprint

42 / 46

Does garbage collection run more often if there’s less memory?

Java: YES. That’s what the -Xms (min) and -Xmx (max) arguments are for.

Python and Julia: ? I had always assumed so, but let’s test it.

The following runs command X with at most 1000M of memory:

systemd-run --user --scope -p MemoryMax=1000M -p MemorySwapMax=0M X

43 / 46

Does garbage collection run more often if there’s less memory?

Java: YES. That’s what the -Xms (min) and -Xmx (max) arguments are for.

Python and Julia: ? I had always assumed so, but let’s test it.

The following runs command X with at most 1000M of memory:

systemd-run --user --scope -p MemoryMax=1000M -p MemorySwapMax=0M X

43 / 46

Does garbage collection run more often if there’s less memory?

Java: YES. That’s what the -Xms (min) and -Xmx (max) arguments are for.

Python and Julia: ? I had always assumed so, but let’s test it.

The following runs command X with at most 1000M of memory:

systemd-run --user --scope -p MemoryMax=1000M -p MemorySwapMax=0M X

43 / 46

Does garbage collection run more often if there’s less memory?

Java: YES. That’s what the -Xms (min) and -Xmx (max) arguments are for.

Python and Julia: ? I had always assumed so, but let’s test it.

The following runs command X with at most 1000M of memory:

systemd-run --user --scope -p MemoryMax=1000M -p MemorySwapMax=0M X

43 / 46

Julia: YES

0 10 20 30 40 50 60 70 80
time (seconds)

0

2

4

6

8

10

m
em

or
y

(G
B)

 in
 U

ni
qu

e
Se

t S
ize

 (U
SS

)
Julia 1.9.4

cap on memory
50 GB
20 GB
15 GB
10 GB
9 GB
8 GB
7 GB
6 GB
5 GB
4 GB
3 GB
2 GB

https://discourse.julialang.org/t/64592

44 / 46

https://discourse.julialang.org/t/64592

Python: NO

0 10 20 30 40 50 60 70 80
time (seconds)

0

2

4

6

8

10

m
em

or
y

(G
B)

 in
 U

ni
qu

e
Se

t S
ize

 (U
SS

)
Python 3.12.1

cap on memory
50 GB
10 GB
5 GB
4 GB

45 / 46

Python: NO

0 10 20 30 40 50 60 70 80
time (seconds)

0

2

4

6

8

10

m
em

or
y

(G
B)

 in
 U

ni
qu

e
Se

t S
ize

 (U
SS

)
Python 3.12.1 with gc.threshold × 10

cap on memory
50 GB
10 GB
9 GB
8 GB

45 / 46

Conclusions

▶ Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

▶ Julia is an up-and-coming language, which could be ideal for HEP.

▶ Java’s garbage collector is generational, compacting, scales with available
memory, and has many, many options.

▶ Python’s garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

▶ Julia’s garbage collector is generational (2), not compacting, and scales with
available memory. Also, I’d characterize it as “well-behaved.”

▶ The Julia community considers avoiding heap-allocation a priority and helps
users to achieve it.

46 / 46

Conclusions

▶ Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

▶ Julia is an up-and-coming language, which could be ideal for HEP.

▶ Java’s garbage collector is generational, compacting, scales with available
memory, and has many, many options.

▶ Python’s garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

▶ Julia’s garbage collector is generational (2), not compacting, and scales with
available memory. Also, I’d characterize it as “well-behaved.”

▶ The Julia community considers avoiding heap-allocation a priority and helps
users to achieve it.

46 / 46

Conclusions

▶ Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

▶ Julia is an up-and-coming language, which could be ideal for HEP.

▶ Java’s garbage collector is generational, compacting, scales with available
memory, and has many, many options.

▶ Python’s garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

▶ Julia’s garbage collector is generational (2), not compacting, and scales with
available memory. Also, I’d characterize it as “well-behaved.”

▶ The Julia community considers avoiding heap-allocation a priority and helps
users to achieve it.

46 / 46

Conclusions

▶ Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

▶ Julia is an up-and-coming language, which could be ideal for HEP.

▶ Java’s garbage collector is generational, compacting, scales with available
memory, and has many, many options.

▶ Python’s garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

▶ Julia’s garbage collector is generational (2), not compacting, and scales with
available memory. Also, I’d characterize it as “well-behaved.”

▶ The Julia community considers avoiding heap-allocation a priority and helps
users to achieve it.

46 / 46

Conclusions

▶ Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

▶ Julia is an up-and-coming language, which could be ideal for HEP.

▶ Java’s garbage collector is generational, compacting, scales with available
memory, and has many, many options.

▶ Python’s garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

▶ Julia’s garbage collector is generational (2), not compacting, and scales with
available memory. Also, I’d characterize it as “well-behaved.”

▶ The Julia community considers avoiding heap-allocation a priority and helps
users to achieve it.

46 / 46

Conclusions

▶ Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

▶ Julia is an up-and-coming language, which could be ideal for HEP.

▶ Java’s garbage collector is generational, compacting, scales with available
memory, and has many, many options.

▶ Python’s garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

▶ Julia’s garbage collector is generational (2), not compacting, and scales with
available memory. Also, I’d characterize it as “well-behaved.”

▶ The Julia community considers avoiding heap-allocation a priority and helps
users to achieve it.

46 / 46

