= PRINCETON (g iris
UNIVERSITY hep

Three garbage collectors: Java, Python, and Julia

Jim Pivarski

Princeton University — IRIS-HEP

January 10, 2024

1/46

Dynamic language/programming features

dynamic task scheduling:
parallel & distributed computing

dynamic data types:
runtime type inspection, manipulation

dynamic instruction set:
virtual machines
=
dynamic metaprogramming:
eval, macros, JIT-compilation

dynamic memory management:
garbage collectors

dynamic memory allocation:
malloc, new & delete o

2/46

Dynamic language/programming features

alloc | reference count | GC | eval | VM | type reflect | scheduling
Fortran 77
C Vv
C++ v | shared_ptr<T> vtable only | std library
C++ with ROOT vV shared_ptr<T> V Vv V
Rust Vv Rc<T> vtable only Vv
Swift Vv vV vtable only Vv
Julia Vv NV vV std macros
Go Vv V vtable only Vv
Java (JVM languages) | V v Vv std library
Lua v V|V vi v
Python Y v VivIiv] v v

3/46

This talk will focus on. ..

Java

Prototypical example of a
language with garbage
collection; some of our
intuitions/preconceptions
about garbage collectors
are Java-specific.

Python

Very dynamic language,
has both reference counting
and mark-and-sweep
garbage collection.

Julia

Up-and-coming language,
potentially ideal for HEP.
JIT-compiled for bare
metal, but has a garbage
collector.

4/46

What is the current status of Julia in HEP?

5/46

State of language use by particle physicists as of last November

C/C++/CUDA
web

LaTeX
JavaScript
Mathematica
Fortran
spreadsheet
Java

repo last updated in 2023

repo last updated in 2020-2022
repo last updated in 2015-2019
repo last updated before 2015

Perl
R particle physic
hardware high energy physic
grad/doctoral/phd student/phd candidate
cern
theor Selected GitHub users by bios containing
MATLAB postdoc/post doc "particle physic" or "high energy physic".
atlas
cms Selection criteria would match 20% of users
former who fork CMSSW who write bios (only 10% do).
professor
fellow Google returned about 1/4 of estimated matches.
quant . .
Ihcb 275 matching users with 3981 non-fork repos.
Ihe (not Ihcb) Identified source code files by file extension.
Haskell alice
0.0 0.1 0.2 0.3 0.4 0.5 0.6
fraction of bios with the substring
| : : : : |
0.0 0.2 0.4 0.6 0.8 1.0

fraction of users who created at least one file with the language suffix (non-fork repos)

6/46

But physicists are more interested in Julia than, say, Rust or Lua L

Among “Materials” (PDFs and TXTs) in CERN's Indico search since January 2022,

63
324
4

12

10

refer to Julia the programming language

refer to people named Julia

other/unclear

refer to Rust the programming language

(7 of those same documents also refer to Julia)

refer to oxidized metal

other/unclear

refers to Lua the programming language

(it's used to configure the SIMION charged particle simulator)
refer to the LHC User’s Association

other/unclear

7/46

Similarly, Julia is increasingly a focus on ACAT and CHEP

ACAT 2022:

P> Julia: 1 title and 1 abstract
P> Python: 3 titles and 24 abstracts

CHEP 2023:

» Julia: 3 titles and 4 abstracts
» Python: 1 title and 35 abstracts

Only other programming languages mentioned: C++ (frequently) and Java (2 times).

8/46

Julia has an HSF working group, meetings, and annual workshops

Meetings

The HSF holds regular meetings inits activity
areas and has bi-weekly coordination
meetings as well. All of our meetings are
open for everyone to join.

HSF Coordination Meeting #258, 12
October 2023

HSF Coordination Meeting #257, 28
September 2023

HSF Coordination Meeting #256, 14
September 2023

Upcoming HSF and community events »

Full list of past meetings »

The HEP Software Foundation facilitates cooperation and common
efforts in High Energy Physics software and computing internationally.

more info

JuliaHEP Launches

After alot of rising interest in Julia for HEP
in the last few years, the HSF has started a
new JuliaHEP working group.

We just published a new paper Potential of
the Julia programming language for high
energy physics computing and we're
planning the first JuliaHEP Workshop in
November. Keep an eye out for upcoming
Julia events in the calendar!

Activities

We organise many activities, from our
working groups, to organising events, to
supporting projects as HSF projects, and
helping communication within the
community through our discussion forums
and technical notes.

The HSF can also write letters of
collaboration and cooperation to project
proposals.

How to get involved »

9/46

Back to garbage collectors

10/46

Reference counting &

>>> import sys
>>> x = object ()

>>> sys.getrefcount (x)
2

11/46

Reference counting &

>>> import sys

>>> x = object ()
>>> sys.getrefcount (x)
2

>>> y = X
>>> sys.getrefcount (x)

11/46

Reference counting &

>>> import sys

>>> x = object ()
>>> sys.getrefcount (x)
2

>>> y = X
>>> sys.getrefcount (x)

>>> z = [X, X, X, X, X]
>>> sys.getrefcount (x)

11/46

Reference counting &

>>> import sys

>>> x = object ()
>>> sys.getrefcount (x)
2

>>> y = X
>>> sys.getrefcount (x)

3

>>> z = [X, X, X, X, X]
>>> sys.getrefcount (x)
8

>>> del x, z
>>> sys.getrefcount (y)

11/46

Reference counting &

>>> import sys

>>> x = object ()
>>> sys.getrefcount (x)
2

>>> y = x ‘! ,. ‘!
>>> sys.getrefcount (x)
3 @ 0 2

>>> z =[x, X, X, X, X] Reference Reference Reference
>>> sys.getrefcount (x) Count: 2 Count: 1 Count: 0
8

>>> del x, z
>>> sys.getrefcount (y)

11/46

The problem with reference counting

>>> class HasDestructor:
def _ del_ (self):
print ("Goodbye, world")

>>> x = HasDestructor()
>>> del x
Goodbye, world

12/46

The problem with reference counting

>>> class HasDestructor:
def _ del_ (self):
print ("Goodbye, world")

>>> x = HasDestructor()
>>> del x
Goodbye, world

>>> y = HasDestructor ()

>>> y.self =y
>>> del y

12/46

The problem with reference counting

>>> class HasDestructor:
def _ del_ (self):
print ("Goodbye, world")

>>> x = HasDestructor()
>>> del x
Goodbye, world

All references to y are gone: it can't be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

>>> y = HasDestructor ()
>>> y.self =y
>>> del y

12/46

The problem with reference counting

>>> class HasDestructor:
def _ del_ (self):
print ("Goodbye, world")

>>> x = HasDestructor()
>>> del x
Goodbye, world

All references to y are gone: it can't be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

>>> y = HasDestructor ()
>>> y.self =y
>>> del y

>>> import gc
>>> gc.collect ()
Goodbye, world
47

12/46

The problem with reference counting

>>> class HasDestructor:
def _ del_ (self):
print ("Goodbye, world")

>>> x = HasDestructor()
>>> del x
Goodbye, world

All references to y are gone: it can't be accessed
anymore. But it has not been deleted (__del__ has
not been called) because its self-reference keeps its
reference count from reaching zero.

>>> y = HasDestructor ()
>>> y.self =y
>>> del y

>>> import gc
>>> gc.collect ()
Goodbye, world
47

Now it's gone.

12/46

A common garbage collection algorithm

Mark and sweep (MARK)

GC root

allocated objects + references

MARK

13/46

A common garbage collection algorithm

Mark and sweep (MARK)

GC root

allocated objects + references

MARK |

13/46

A common garbage collection algorithm

Mark and sweep (MARK)

GC root

allocated objects + references

MARK

13/46

A common garbage collection algorithm

Mark and sweep (MARK)

GC root

allocated objects + references

MARK

13/46

A common garbage collection algorithm

Mark and sweep (MARK)

GC root

allocated objects + references

MARK |

13/46

A common garbage collection algorithm

Mark and sweep (SWEEP)

GC root

allocated objects + references

SWEEP

13/46

A common garbage collection algorithm

Mark and sweep (SWEEP)

GC root

allocated objects + references

SWEEP

13/46

Garbage collector generations

New
Object
Creatlor\ Promotion From Young to Old Generation
v 5
Metadata Survivor Survivor
Space Eden Space Space 0 Space 1 Tenured Space

\ /\ / JVM Heap Space

Promotion Inside Young Generation

14 /46

Example in Python, which has 3 generations

>>> import gc
>>> _ = gc.collect(); gc.disable()

>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

15/46

Example in Python, which has 3 generations

>>> import gc

>>> _ = gc.collect(); gc.disable()

>>> [len(gc.get_objects (gen))
[8, 0, 8220]

>>> import uproot
>>> [len(gc.get_objects (gen))
[57034, 0, 8199]

for gen in

for gen in

(0,

(0,

15/46

Example in Python, which has 3 generations

>>> import gc
>>> _ = gc.collect(); gc.disable()

>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot

>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

15/46

Example in Python, which has 3 generations

>>> import gc

>>> _ = gc.collect(); gc.disable()

>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot

>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

>>> uproot.open ("Zmumu.root:events") .arrays ()

<Array [{Type: 'GT', Run: 148031, ...}, ...] type='2304 x {TIype: stri...

>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[33573, 0, 39136]

>

15/46

Example in Python, which has 3 generations

>>> import gc

>>> _ = gc.collect(); gc.disable()
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[8, 0, 8220]

>>> import uproot
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[57034, 0, 8199]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 39192]

>>> uproot.open ("Zmumu.root:events") .arrays ()

<Array [{Type: 'GT', Run: 148031, ...}, ...] type='2304 x {Type: stri...'>
>>> [len(gc.get_objects(gen)) for gen in (0, 1, 2)]

[33573, 0, 39136]

>>> _ = gc.collect(); [len(gc.get_objects(gen)) for gen in (0, 1, 2)]
[3, 0, 56692]

15/46

Differences among the three languages

J a Va https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc0l/index.html

https://abiasforaction.net/category/java/gc

Rather than calling malloc for each new object, objects are made from preallocated
memory pools. Each pool represents a different generation; those that survive
mark-and-sweep are copied from one pool into the next.

Eden

100

S0 survivor space

oopong f......

S1 survivor space
|:| Referenced

No stable pointers, but it keeps the memory unfragmented: finding space for new
objects is fast (i.e. especially good for making many short-lived objects).

16 /46

https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://abiasforaction.net/category/java/gc

Differences among the three languages

https://devguide.python.org/internals/garbage-collector

yt On https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONMALLOC
https://rushter.com/blog/python-garbage-collector

CPython relies on reference counting for most memory management; full garbage
collection is just to clean up cycles. (PyPy only has full garbage collection.)

The 3 generations are different doubly-linked lists. Mark-and-sweep marks are in the
low bits of the list pointers so that garbage collection has a constant memory footprint.

e s e T e s St Tt S

| *_gc_next

R e e i e A At

| *_gc_prev |
object —---- D L s e s A St

| ob_refecnt |

PyGC_Head

PyObject_HEAD

\
|
|
|
/
\
|
|
/

| *ob_type |

Objects have stable pointers, which are good for C/C++ extensions, but not managed

by malloc (depends on PYTHONMALLOC environment variable and Python build).
17/46

https://devguide.python.org/internals/garbage-collector
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONMALLOC
https://rushter.com/blog/python-garbage-collector

Differences among the three languages

https://docs.julialang.org/en/vl/devdocs/gc

.
J u | Ia https://discourse.julialang.org/t/18021/3

https://docs.julialang.org/en/vl/devdocs/object
https://github.com/Julialang/julia/blob/v1.10.0/src/julia.h#L106-L114

< 2 kB objects are managed in pools, allocated by page; large objects use malloc.

Objects have headers for type reflection, and the first 2 bits are a mark-and-sweep
mark and a generation (1 bit = 2 generations).
typedef struct {
opagque metadata; /+ sizeof (uintptr_t) header */
Jl_value_t value; /* actual data =/
} Jjl_taggedvalue_t;

Marking is depth-first and parallel; sweeping is serial. Memory is returned to the
operating system on a per-page basis. Once a page has zero surviving objects, it is
freed using madvise on a background thread.

Julia makes stack-versus-heap user-visible, to help users avoid garbage collection.
18/ 46

https://docs.julialang.org/en/v1/devdocs/gc
https://discourse.julialang.org/t/18021/3
https://docs.julialang.org/en/v1/devdocs/object
https://github.com/JuliaLang/julia/blob/v1.10.0/src/julia.h#L106-L114

Experiments on garbage collectors

Part 1: timing experiments

19/46

Replacing objects with a lifespan of 16 + 0 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]

Il
—_
-

for iE in shuffleE:

array[(((iAx16 + iB)*x16 + iC)=*16 + iD)x16 + iE] = []
20/46

Replacing objects with a lifespan of 16% = 256 4 0 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]

Il
—_
-

for iD in shuffleD:
for iE in shuffleE:

array[(((1iAx16 + iB)*x16 + iC)*16 + iD)x16 + iE] = []
21/46

Replacing objects with a lifespan of 163 = 4096 + 0 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]

Il
—_
-

for iC in shufflecC:
for iD in shuffleD:
for iE in shuffleE:

array[(((1iAx16 + iB)*x16 + iC)*16 + iD)x16 + iE] = []
22/46

Replacing objects with a lifespan of 16* = 65536 + 0 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]

Il
—_
-

for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:

array[(((iAx16 + iB)*x16 + iC)=*16 + iD)x16 + iE] = []
23/46

Replacing objects with a lifespan of 16°> = 1048576 + 0 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]
for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)*x16 + iC)*16 + iD)x16 + iE] = []

Il
—_
-

24/ 46

Replacing objects with a lifespan of 162 = 256 4 97.8 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]

Il
—_
-

for iE in shuffleE:
for iD in shuffleD:

array[(((1iAx16 + iB)*x16 + iC)*16 + iD)x16 + iE] = []
25 /46

Replacing objects with a lifespan of 163 = 4096 + 1660 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]

Il
—_
-

for iE in shuffleE:
for iD in shuffleD:
for iC in shuffleC:

array[(((1iAx16 + iB)*x16 + iC)*16 + iD)x16 + iE] = []
26 /46

Replacing objects with a lifespan of 16* = 65536 4 26 700 steps

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]

Il
—_
-

for iE in shuffleE:
for iD in shuffleD:
for iC in shuffleC:
for iB in shuffleB:

array[(((iAx16 + iB)*x16 + iC)=*16 + iD)x16 + iE] = []
27 /46

Replacing objects with a lifespan of 16° = 1048576 + 428 000 step

shufflea = [7, 6, 4, 10, 0, 15, 9, 8, 13, 5, 12, 14, 3, 11, 2, 1]
shuffleB = [3, 8, O, 15, 11, 2, 6, 7, 12, 9, 1, 14, 5, 13, 4, 10]
shuffleCc = [2, 13, 6, 7, 4, 5, 10, 3, 12, 15, 8, 9, 14, 1, 0, 11]
shuffled = [7, 5, 9, 15, 4, 2, 13, 12, 0, 8, 11, 6, 3, 1, 10, 14]
shufflet = [14, 11, 10, 8, O, 6, 5, 1, 13, 9, 7, 4, 2, 12, 3, 15]
array = np.empty(l6xx5, dtype=object)

for iA in shuffleA:
for iB in shuffleB:
for iC in shuffleC:
for iD in shuffleD:
for iE in shuffleE:
array[(((iAx16 + iB)«x16 + iC)«*16 + iD)«*16 + 1iE]
for iE in shuffleE:
for iD in shuffleD:
for iC in shuffleC:
for iB in shuffleB:
for iA in shuffleA:
array[(((iAx16 + iB)*x16 + iC)*16 + iD)x16 + iE] = []

Il
—_
-

28/46

Replacing objects in Julia

shuffleA::Vector{Int64} - [7, 6, 4, 10, 0, 15, 9, 8,
13, 5, 12, 14, 3, 11, 2, 1]

array: :Vector{Union{Vector{Int32},Nothing}} = fill (nothing, 1675)
for iA in shuffleA
for iB in shuffleB
for iC in shuffleC
for iD in shuffleD
for iE in shuffleE

array[(((iAx16 + iB)*16 + 1C)*16 + iD)x16 + 1iE + 1] = []

end

for iE in shuffleE
array[(((1Ax16 + iB)*x16 + iC)*16 + iD)x16 + iE + 1] = T[]

end

end
end
end
end

29/46

Replacing objects on the JVM (Scala)

val shuffleA - Array[Int](7, 6, 4, 10, 0, 15, 9, 8,

val array

13, 5, 12, 14, 3, 11, 2, 1)

= Array.fill (Math.pow (16, 5).toInt) (Option.empty[Array[Int]])

for (iA <- shuffledh) {

for (iB

<- shuffleB) {

for (iC <- shuffleC) {

for

(1D <- shuffleD) {

for (1iE <- shuffleE)

array (((((iA+16 + iB)*16 + iC)*16 + iD)«16 + iE)) =
Some (Array [Int] ())

for (iE <- shuffleEk)

array (((((iAx16 + iB)*16 + 1iC)«*16 + iD)x16 + 1iE)) =
Some (Array[Int] ())

30/46

Measuring time uniformly across languages

The Scala, Python, and Julia processes each send a byte (' . ') to a separate C++
process every 2048 (211) steps, which is listening to an unbuffered, localhost socket.

The C++ process records time differences between each received byte.

using namespace std::chrono;

do {
recv (new_socket, &buffer, 1, 0);
stop = std::chrono::steady_clock: :now();
printf ("%$d\n", duration_cast<microseconds> (stop — start) .count());

start = stop;

}
while (buffer == '.");

When Scala, Python, or Julia are stopped by a garbage collector pause, it shows up as

an unusually long time between pings.
31/46

Java: actively researching garbage collectors for decades

us between 2048 steps

108 N
107 .
106 4
105 N
104 4
103 N

102 4

10!

Java Serial (original) garbage collector

—— mutable objects (empty arrays)

object lifespan: 65536 + 0

—— numerical array (no objects)

5000

10000

15000
steps /2048

20000 25000

30000

32/46

actively researching garbage collectors for decades

Java 1.8.0 garbage collector

108 1 object lifespan: 65536 + 0
—— mutable objects (empty arrays)

107 4 —— numerical array (no objects)

a

(]

% 106 4

3

8 105 4

C

(]

g 104 _

5

" 103 N

3

BT T e T et e LT S

0 5000 10000 15000 20000 25000 30000

steps /2048 /46

us between 2048 steps

Java 21.0.1 garbage collector

T T ey ra e

10000

15000
steps /2048

object lifespan: 65536 + 0
—— mutable objects (empty arrays)
—— numerical array (no objects)

20000 25000

30000

32/46

Java: actively researching garbage collectors for decades

Java Z garbage collector

object lifespan: 65536 + 0
—— mutable objects (empty arrays)
107 4 —— numerical array (no objects)

us between 2048 steps
=
o

0 5000 10000 15000 20000 25000 30000

steps /2048 /46

Java: actively researching garbage collectors for decades

Java Shenandoah garbage collector

object lifespan: 65536 + 0
—— mutable objects (empty arrays)
107 4 —— numerical array (no objects)

108 -

106 4
105 4

104 .

us between 2048 steps

103 -

102 4
| VTV B e i) 1) PR T e N TNV Y,

0 5000 10000 15000 20000 25000 30000

steps /2048 /46

Java: actively researching garbage collectors for decades

The OpenJDK and other JDK implementations come with many algorithms:

GC Type Heap Size Support Pause Times Throughput | Performance Application CPU Overhead
Serial GC Small to medium Longer Low Lower Singl ions, Dewv environments Low
Parallel GC Medium to large Moderate High Higher Batch processing, Scientific computing, Data analysis Moderate
CMS GC Medium to large Moderate Moderate Web applications, Medium-sized enterprise systems Moderate
G1GC Medium to large Short to medium High Higher Mixed workloads, Large enterprise syslems Moderate to High
ZGC Large Very Short High Very High Latency it ications, Larg le systems Low to moderate
Shenandoah GC Medium to large Very Short High Very High Low-latency applications, Large-scale systems Low to Moderate
Epsilon GC NIA N/A NIA Very High Performance testing, Memory allocation analysis Very Low
Azul C4 GC Large Very Short High Very High Enterprise applications, Cloud environments. Low to moderate
IBM Metronome GC N/A Very Short Very High Very High Real-time appli s, Pr latency r Very Low
SAPGC Large Short to medium High High Enterprise applications, SAP environments Moderate to High

and each has many tuning options (not

throughput-versus-latency tradeoffs.

explored in this talk), to address different

33/46

Examples of throughput-versus-latency tradeoffs

Example I've encountered: in a distributed system, one service was sending messages
to another. During the garbage collector pauses, the recipient’s input

queue would overflow, which created yet more objects to garbage-collect,
in a viscious cycle.

| spent days or weeks testing and tuning alternate garbage collectors.

Obvious cases for HEP: triggers, data acquisition, monitoring. Any real-time system.

34/46

Java 1.8.0 garbage collector (zoom)

—— lifespan: 16 £ 0

—— lifespan: 256 £ 0

—— lifespan: 4096 = 0
—— lifespan: 65536 + 0
106 4 —— no lifespan (numerical)

us between 2048 steps
=
o

T T I | P TR E TR St e W AR /B Yy N I TN TR | AT R LR e mam et i e s alh e e Ay e e

6000 8000 10000 12000 14000 16000 18000 20000

steps /2048 3546

Java: scaling with object lifespan

Java 1.8.0 garbage collector (zoom)

108 4 — lifespan: 16 £ 0
—— lifespan: 256 + 97.8

107 4 —— lifespan: 4096 = 1660
.4 —— lifespan: 65536 + 26700
% 106 4 —— no lifespan (numerical)
<
g 105 4
o
g 104 p
3
" 103 N
3

102 4

6000 8000 10000 12000 14000 16000 18000 20000

steps /2048 3546

Python: only triggered for mutable objects

us between 2048 steps

Python 3.12.1 garbage collector

108 -

107 -

106 -

105 .

104 .

103 g

102

object lifespan: 65536 + 0

—— cyclic references (lists containing self)

—— mutable objects (empty lists)
—— immutable objects (tuples)
—— numerical array (no objects)

1000

2000

3000

4000 5000 6000 7000 8000
steps /2048

9000

3646

Python: only triggered for mutable objects

us between 2048 steps

Python 3.12.1 garbage collector (zoom)

103 -

object lifespan: 65536 + 0

mutable objects (empty lists)
immutable objects (tuples)
numerical array (no objects)

cyclic references (lists containing self)

400

600 800
steps /2048

3646

PyPy: triggered for all objects

PyPy 7.3.13 (~Python 3.9.18) garbage collector

108 4 object lifespan: 65536 + 0
—— cyclic references (lists containing self)
107 4 —— mutable objects (empty lists)
a —— immutable objects (tuples)
(] . .
2 106 —— numerical array (no objects)
3
o
o~
S 10° 5
(]
z
8 104 .
(%]
3
103
102 4 |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

steps /2048 3746

PyPy: triggered for all objects

—_— mutable objects (empty lists)
tttttttttttttttttttttttt
rrrrrrrrrrrrrrrrrrrrrrrrr

il ttllnllltllﬂMlﬂ'L'Wﬂ' M"J'&W""l""'""m‘*“

i
mmmm memuur

33333333333333333333333333333333
ssssssssss

us teps
=
o
5
-

Julia: has pauses, but very regular; may be easy to reason about

Julia 1.9.4 garbage collector

10° 4 object lifespan: 65536 + 0

107 4 —— mutable objects (empty vectors)
----- mutable objects with GC OFF

106 4 —— numerical array (no objects)

=== numerical array with GC OFF

=

o
o
1

103 4

102 4

s nmnn

0 5000 10000 15000 20000 25000 30000 35000
steps /2048

us between 2048 steps
=
o
B

38/46

Julia: has pauses, but very regular; may be easy to reason about

Julia 1.9.4 garbage collector (zoom)

object lifespan: 65536 + 0
104 A —— mutable objects (empty vectors)
----- mutable objects with GC OFF

Q —— numerical array (no objects)
g 103 4 —==- numerical array with GC OFF
[ee]

§ o] J_ . "
c 102 4

()

()

=

k9]

S 10 4

%]

3

10° 5 J

12000 12250 12500 12750 13000 13250 13500 13750 14000
steps /2048

38/46

Julia: short object lifespan still has second-long pauses

Julia 1.9.4 garbage collector (zoom)

108 4 —— lifespan: 16 £ 0

107 —— lifespan: 256 = 0
—— lifespan: 4096 = 0

106 4 —— lifespan: 65536 + 0

no lifespan (numerical)

=

o
o
1

103 4

102 4

us between 2048 steps
=
o
B

101 .

100 -

e bt el

0 5000 10000 15000 20000 25000 30000
steps /2048

39/46

Julia: short object lifespan still has second-long pauses

Julia 1.9.4 garbage collector (zoom)

8 |
10 —— lifespan: 16 = 0
107 4 —— lifespan: 256 = 97.8
—— lifespan: 4096 + 1660
9 106 4 — lifespan: 65536 + 26700
g —— no lifespan (numerical)
© 105_
3
o~
C
(]
(]
z
[]
o)
(%]
3
101_
w0 || ||||I|||I|| Lttt M

0 5000 10000 15000 20000 25000 30000

steps /2048 20/46

Alternative garbage collectors in Python and Julia

Python's and Julia’s garbage collectors are not as tunable as Java's, but you can. ..
» Turn them off completely, at least for debugging: gc.disable () (Python) and
GC.enable (false) (Julia).
» Invoke them manually: gc.collect () (Python) and GC.gc () (Julia).

» Python’s garbage collector is triggered by the number of objects since last
collection, which can be tuned: gc.set_threshold (700, 10, 10).

» Both can be logged, and in Python, you can also set callbacks (code) on various
garbage collector phases.

» Python has an alternate implementation, PyPy, which only does tracing garbage
collection (no reference counting) and is tuned differently:
https://doc.pypy.org/en/latest/gc_info.html.

40/ 46

https://doc.pypy.org/en/latest/gc_info.html

Julia community helps its members avoid heap-allocation

Heap-allocation and garbage collection exist for prototyping and early iterations of
development, but the Julia community actively helps users eliminate it from hot loops.

» Same philosophy as with other dynamic features, such as type reflection.

» https://docs.julialang.org/en/vl/manual/performance-tips/
#Measure-performance-with-[@time] (Qref)
—and-pay-attention-to-memory-allocation

» https://stackoverflow.com/questions/tagged/julia+allocation

» Static allocation-checker: https://github.com/JuliaLang/AllocCheck. j1.

41/46

https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation
https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation
https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation
https://stackoverflow.com/questions/tagged/julia+allocation
https://github.com/JuliaLang/AllocCheck.jl

Experiments on garbage collectors

Part 2: memory footprint

42 /46

. . Y BE
Does garbage collection run more often if there's less memory? &

43 /46

. . Y BE
Does garbage collection run more often if there's less memory? &

Java: YES. That's what the ~xms (min) and ~Xmx (max) arguments are for.

4346

. . Y BE
Does garbage collection run more often if there's less memory? &

Java: YES. That's what the ~xms (min) and ~Xmx (max) arguments are for.

Python and Julia: 7 | had always assumed so, but let's test it.

43 /46

. . Y BE
Does garbage collection run more often if there's less memory? &

Java: YES. That's what the ~xms (min) and ~Xmx (max) arguments are for.
Python and Julia: 7 | had always assumed so, but let's test it.
The following runs command X with at most 1000M of memory:

systemd-run —--user —--scope —-p MemoryMax=1000M -p MemorySwapMax=0M X

43 /46

Julia: YES

https://discourse. julialang.org/t/64592

Julia 1.9.4

10
- cap on memory
a 50 GB
o)
S 4] —— 20GB
_’% — 15 GB
g —— 10GB
o 61 — 9GB
3 —— 8GB
< —— 7GB
£ 4 — 6 GB
@ —— 5GB
e —— 4GB
g 2 —— 3GB
& — 2GB
£

0 T T T T T T T

0 10 20 30 40 50 60 70 80

time (seconds) 44/ 46

https://discourse.julialang.org/t/64592

Python: NO &

Python 3.12.1

10
- cap on memory
a 50 GB
2 —
v 8 - 10 GB
N —— 5GB
5 —— 4GB
v 61
3
O
=
o)
£ 4l
)
&
Py
o 21
£
(0]
£

0 T T T T T T T

0 10 20 30 40 50 60 70 80

time (seconds) 45/46

Python: NO

Python 3.12.1 with gc.threshold x 10

10
& cap on memory
g Z 50 GB
o 8- — 10 GB
-(% — 9GB
§ — 8GB
o 61
>
o
c
>
£ 4
o
1)
>
o 24
€
9]
€

0 T T T T T T T

0 10 20 30 40 50 60 70 80

time (seconds) 45/46

Conclusions

» Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

46 / 46

Conclusions

» Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

» Julia is an up-and-coming language, which could be ideal for HEP.

46 / 46

Conclusions

» Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

» Julia is an up-and-coming language, which could be ideal for HEP.

» Java's garbage collector is generational, compacting, scales with available
memory, and has many, many options.

46 /46

Conclusions

» Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

» Julia is an up-and-coming language, which could be ideal for HEP.

» Java's garbage collector is generational, compacting, scales with available
memory, and has many, many options.

» Python's garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

46 /46

Conclusions

» Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

» Julia is an up-and-coming language, which could be ideal for HEP.

» Java's garbage collector is generational, compacting, scales with available
memory, and has many, many options.

» Python's garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

» Julia's garbage collector is generational (2), not compacting, and scales with
available memory. Also, I'd characterize it as “well-behaved.”

46 /46

Conclusions

» Garbage collection is just one of many dynamic programming language
features, some of which we take for granted.

» Julia is an up-and-coming language, which could be ideal for HEP.

» Java's garbage collector is generational, compacting, scales with available
memory, and has many, many options.

» Python's garbage collector is generational (3), not compacting, does not
scale with available memory, and is only needed to clean up objects with
cyclical references.

» Julia's garbage collector is generational (2), not compacting, and scales with
available memory. Also, I'd characterize it as “well-behaved.”

» The Julia community considers avoiding heap-allocation a priority and helps

users to achieve it.
46 / 46

