
RNTuple IO Design and
Object Stores

Vincenzo Eduardo Padulano for the ROOT team

Compute & Accelerator Forum - High Performance IO for HEP
10.04.2024

Topics

▶ RNTuple design
▶ Support for Object Stores

2

Design

4

Motivation for RNTuple

1. HL-LHC challenge: major milestone on the way towards future accelerators and
detectors
○ From 300fb-1 in run 1-3 to 3000fb-1 in run 4-6
○ 10B events/year to 100B events/year
○ Real analysis challenge depends on several factors: number of events, analysis

complexity, number of reruns, etc.
■ As a starting point, preparing for ten times the current demand

2. Full exploitation of modern storage hardware
○ Ultra fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
○ Flash storage is inherently parallel → asynchronous, parallel I/O key
○ Heterogeneous computing hardware → GPU should be able to load data

directly from SSD, e.g. to feed ML pipeline
○ Distributed storage systems move from POSIX to object stores

At 10GB/s, we have ~3μs to process a 32kB block
→ CPU optimizations deep into I/O stack

RNTuple introduction
Redesigned I/O subsystem, based on 25+ years of TTree experience

▶ Less disk and CPU usage
▶ Efficient support of modern hardware
▶ Transparent file-less storage

▶ Covering all of today’s TTree use cases

▶ Binary format defined in a dedicated specification

▶ More info from the recent RNTuple workshop

5
TTree enters legacy support mode

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md
https://indico.cern.ch/event/1303499/#2-rntuple-status-and-plans

RNTuple Workshop

▶ 6-7 November 2023 @ CERN (indico)
▶ ~30 participants

● ROOT team, LHC core computing devs, IT, HEP-CCE

▶ One presentation by each experiment
● ATLAS most advanced, then CMS, LHCb and ALICE

▶ Misc: DUNE, ATLAS metadata, SoA in CMS

6

https://indico.cern.ch/event/1303499/
https://www.anl.gov/hep-cce

Schedule Presented to LHCC, Updated

Proof of
concept Prototype First

exploitation
Pre-

production Production

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24

✅ Architecture
✅ Review on
 state-of-the-art
✅ First prototypes

✅ Adoption in
 ROOT::Experimental
✅ I/O scheduler for
 local and remote
 access
✅ Performance
 validation

⛅ Object store support
 ✅ DAOS (HPC)
 ⛅ S3 (Cloud)
✅ RNTuple version 1 spec
⛅ RNTupleLite
⛅ Schema evolution
✅ Disk-to-disk conversion
🕑 Virtual data sets for
 skims and selections
✅ First exposure to
 frameworks:
 ✅ CMSSW nanoAOD
 output module
 ✅ Prototyping by
 ATLAS, CMS, LHCb
 I/O experts

✅ RDataFrame
 bulk processing
✅ Debugging and
 inspection tools
🕑 Metadata API
✅ Special use case
 support: e.g. backfill,
 in-memory adapters
✅ XRootD support
⛅ Validation of
 feature coverage
✅ Training experiments’
 core developers
⛅ Large-scale
 experiment
 benchmarks

⛅ PB scale tests
🕑 Automatic optimization
 features
✅ Low-precision floats
🕑 ML Training: direct GPU
 transfer
🕑 End-user training
⛅ Training and support for
 code and data migration

✅ = available
⛅ = under development
🕑 = programme of work
— = in collaboration with
 users/experiments

Growing importance of coordination & collaboration with experiment I/O experts 7

Work items defined: Nov 2021
Development state: Apr 2024

RNTuple data layout

8

Read pattern:

1. File open: read anchor, header, footer (once)
2. Read page list (once per cluster group)
3. Background thread: read-ahead page groups for the next k clusters

in vector reads, close-by byte ranges get coalesced

RNTuple Binary Format Walk-Through

9

Benefits of new binary format

● More efficient storage of collections
and boolean values

● Addition of new basic types, e.g. f16
● Little-endian numbers: memory

mappable on most contemporary
platforms

● Type-based encoding: e.g. zig-zag for
signed ints, bit packing for bools, etc.

● Split storage for arbitrarily nested
collections

● More scalable meta-data, better
memory control

● New default compression: zstd
● Format independent of TFile

RNTuple Limits

10

Limit Value Reason / Comment

Volume 1-10 PB (theoretically more)
Assuming 10k cluster groups of 10k clusters of
10-100MB each

Number of elements, entries 2^64 Using default (Split)Index64, otherwise 2^32

Cluster & entry size 8TB (depends on pagination) Assuming limit of 4B pages of 4kB each

Page size 2B elements, 256MB-2GB #elements * element size, 2GB limit from locator

Element size 8kB 16bit for number of bits per element

Number of column types 64k 16bit for column type

Envelope size 2^48B (~280TB) Envelope header encoding

Field / type version 4B Field meta-data encoding

Number of fields, columns 4B (foreseen: <10M) 32bit column / field IDs, list frame limit

Number of clusters per group 4B (foreseen: <10k) List frame limits, cluster group summary encoding

Number of pages per cluster per column 4B List frame limits

Note: RNTuple in addition is subject to limits from TFile / object store backend

RNTuple Utilities
Convert your existing TTree to RNTuple:

11

Get detailed storage information for your RNTuple:

#include <ROOT/RNTupleImporter.hxx>
using ROOT::Experimental::RNTupleImporter;

auto importer = RNTupleImporter::Create(
 “Events”,
 “myNanoAOD.ttree.root”,
 “myNanoAOD.rntuple.root”);

// Optional
importer->SetNTupleName(“EventsNTuple”);

auto writeOptions = importer->GetWriteOptions();
// Optional, default is zstd level 5
auto algo = RCompressionSetting::EAlgorithm::kLZMA;
writeOptions.SetCompression(algo, 7);
importer->SetWriteOptions(writeOptions);

importer->Import();

#include <ROOT/RNTupleInspector.hxx>
using ROOT::Experimental::RNTupleInspector;

auto inspector = RNTupleInspector::Create(
 “EventsNTuple”, “myNanoAOD.rntuple.root”);

std::cout << “My NanoAOD is compressed using ”
 << inspector->GetCompressionSettingsAsString()
 << std::endl;

inspector->PrintColumnTypeInfo();

My NanoAOD is compressed using lzma (level 7)
 column type | count | # elems | compr. bytes | uncompr. bytes
-------------|-- ----|------------|--------------|-----------------
SplitIndex64 | 5 | 267230990 | 84109056 | 2137847920
 SplitReal32 | 45 | 3856668029 | 11402474398 | 15426672116
 SplitInt32 | 15 | 1436663181 | 147427186 | 5746652724

RNTupleImporter docs and tutorial RNTupleInspector docs

https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html
https://root.cern/doc/master/ntpl008__import_8C.html
https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleInspector.html

RNTupleMetrics

12

auto anchor = file->Get<RNTuple>("ntpl");
auto reader = RNTupleReader::Open(anchor);
reader->EnableMetrics();
// …
reader->PrintInfo(ENTupleInfo::kMetrics);

auto tree = file->Get<TTree>("tree");
TTreePerfStats *ps = new TTreePerfStats("ioperf", tree);
// …
ps->Print();

Quick performance look

13

ACAT `24, S. Mete

Time to plot: RDataFrame analysis with RNTuple input data

CHEP ‘23, J. Blomer

Performance improvements across
the board

Storage saving and runtime
decrease

https://indico.cern.ch/event/1330797/contributions/5796492/
https://indico.jlab.org/event/459/contributions/11594/

RDataFrame + RNTuple

▶ Bulk, asynchronous I/O and bulk
processing
● Hide network latency
● Enable SIMD on CPU, GPU

offloading

14

RDataFrame + Analysis Grand Challenge
AGC – HEP analysis benchmarks
● In various implementations, including with

RDataFrame
● In particular: tt̅ analysis based on CMS Open Data

Achievements:
● Tagged RDF AGC v1
● Implemented v2 ML inference (via FastForest)
● Local, multi-thread and distributed Dask execution
● Bin-by-bin agreement of output histograms
● Works with TTree inputs and also with RNTuple

15

https://iris-hep.org/projects/agc.html
https://github.com/root-project/analysis-grand-challenge/tree/v1.0.0
https://github.com/guitargeek/XGBoost-FastForest

Distributed AGC with TTree and RNTuple – user side

The only change for the user - the ROOT input file!

16

ADL Benchmarks

17

● Analysis Description
Language Benchmarks

● Originally implemented
for CMS NanoAOD,
adapted to PHYSLITE

● zstd compressed
● Single-core throughput

with RDataFrame
1 branch/top-level field read,
no cuts/calculations applied

12 branches/top-level fields read,
some (basic) cuts/calculations applied

PHYSLITE ADL repository

https://github.com/enirolf/opendata-benchmarks/tree/atlas_benchmarks

RNTuple API Review

▶ A new effort in collaboration with HEP-CCE

▶ Expose RNTuple API for external experts’ validation
● Should help us assess functionality, consistency, safety, and usability in the context of

HEP experiment software frameworks

● The results of this review will guide further developments

18

https://www.anl.gov/hep-cce

RNTuple Class Design

19

● General design guidelines
○ Following C++ core guidelines
○ Use of exceptions (RException)
○ Conditionally thread-safe
○ Compile-time type-safe interfaces,

runtime type-safe interfaces and
void * interfaces

○ Shared pointers for values to be
(de-)serialized
■ With option to pass raw pointers

○ Separation of read and write path

● For reading from files, RNTuple uses RRawFile,
i.e. no dependency on TFile or TBuffer. RRawFile
has plugins for HTTP and XRootD

API Walk-Through

20

● RNTuple
○ Anchor, references RNTuple data
○ Can be used as in input to other classes,

e.g. RNTupleReader

● RPageSource / RPageSink
○ Reads and writes pages from the storage

backend (file, object store, etc)
○ No concept of entries, only columns
○ Not user-facing

● RNTupleDescriptor
○ Gives access to the on-disk meta-data

auto anchor = file->Get<RNTuple>("ntpl");
auto reader = RNTupleReader::Open(anchor); // unique_ptr
const auto &entry = reader->GetModel().GetDefaultEntry();
auto pt = entry.GetPtr<std::vector<double>>("pt");
reader->LoadEntry(0);
// See writer example for the void * API using entries

const auto &descriptor = reader->GetDescriptor();
for (const auto &fieldDesc : desc->GetTopLevelFields()) {
 std::cout << fieldDesc.GetFieldName() << ": "
 << fieldDesc.GetTypeName() << std::endl;
}

API Walk-Through

21

● RField<T>
○ Central class: connects the in-memory

representation of data to its on-disk
representation

○ Can connect to a page source or sink

● RField::RValue
○ Connects a value in memory to a

corresponding field
○ Used to safely read/write data (prevents

mistakenly reading/writing from wrong field)

● RNTupleModel
○ Schema representation as a tree of fields
○ Can create entries

● REntry
○ Represents a row: values for the top-level

fields of a model

● RNTupleReader, RNTupleWriter
○ Event iteration for reading/writing

auto fieldEta =
 std::make_unique<RField<std::vector<double>>>("eta");
auto fieldPt =
 RFieldBase::Create("pt", "std::vector<double>").Unwrap();

auto value = fieldPtr->CreateValue();
auto ptSharedPtr = value.GetPtr<std::vector<double>>();
auto *pt = fieldPt->CreateObject<std::vector<double>>().release();

auto model = RNTupleModel::Create();
model->AddField(std::move(fieldEta));
model->AddField(std::move(fieldPt));
{
 auto writer = RNTupleWriter::Append(std::move(model), "ntpl", *f);
 auto entry = writer->CreateEntry()
 entry->BindRawPtr("eta", myEta);
 entry->BindRawPtr("pt", myPt);
 writer->Fill(*entry);
}

Support for Object Stores

Why object stores?

In a highly-parallel setting, object stores align well with our requirements:

▶ Extremely scalable
▶ Widely deployed in cloud service providers

Where?

▶ HPC: Intel DAOS
▶ Cloud: Amazon S3, Microsoft Azure Blob, Google Cloud

Why?

▶ Better scalability in parallel access
▶ But only store data, no support for arbitrary serializable objects (e.g. histograms)

23

Mapping data to objects

Some deciding factors:
▶ Granularity: cluster, page…
▶ Throughput latency
▶ Cost per request

24

DAOS

▶ Foundation for Intel exascale software
stack

▶ Low-latency, high-bandwidth, high IOPS
▶ Used in top-ranking IO500 systems (e.g.

ANL Aurora)
▶ Native support in RNTuple,

demonstrated scaling across multiple
DAOS clients

25

Amazon S3

▶ De-facto standard object store in Cloud
applications

▶ Different use case w.r.t. DAOS
● world-wide distributed storage (regions,

edges)
● Network latency becomes noticeable

▶ First implementation maps columns to S3
buckets
● Larger objects may mitigate latency

26
G. Miotto CHEP’23

https://indico.jlab.org/event/459/contributions/11329/

Conclusions and outlook

▶ RNTuple towards first production version
● Clear deliverables set together with experiments
● Exposure to outside reviewers

▶ Enable next-generation storage requirements
● Object stores widely available in cloud environments and some HPC
● Analysis will benefit from this tight integration too

▶ Outlook
● PB scale testing writing and reading RNTuple data
● Finalizing support for v1 experiment requirements
● Highly parallel writing

27

