AdaptivePerf: a profiler for
single- and multi-threaded
applications

Maksymilian Graczyk (CERN, IT-GOV-INN)

1
(c\lgxw
NS ® A

NB: AdaptivePerfis not a continuous profiler! It profiles
single commands and is not meant for 24/7 monitoring.

® °
W h q i I s A d q tlve P e rf 7 The main target audience is SW and HW dev elopers
() optimising their softw are and/or hardware, also as part of

softw are-hardware co-design for specific applications.

« Open-source code profiler for Linux, based on "perf" with AdaptivePertresuits
custom patches and developed in the context of the S
SYCLOPS project S

- — i e
« Samples both on-CPU and off-CPU activity

* Traces every spawned thread and process

885 ms (sampled: ~83,285 874 ms)

 Minimises risk of broken profiled stacks for programs
compied with frame pointers by detecting inappropriate
kernel and CPU configurations automatically pon s, 37 i 008)

* Produces interactive flame graphs and charts viewable in a
web browser

« Main functionality designed with hardware portability in mind
(tested on x86-64, RISC-V in progress, armé4 planned)

« Supports custom sampling-based "perf" events for profiling
interactions with hardware

« Allows TCP sireaming of profiling data to a separate
machine for real-time processing

How does AdaptivePerf work under the hood?

3 (29980/29980): 184,271. (sampl A

AdaptivePerf frontend

e
o

configures and runs

PAPI and/or
other profilers* |

________ Rt
1

streams TCP data I .
through Python API ! stream data

_—————
4

displays

PR R S U U S ~

\

-(adapftiveperf-server |

| (backend) :

| |

| (CTITITTI T T Ty |

: + adaptiveperf-analysis :

Canberunona i g = Wifﬁ AP[* /] I

different machine *(_ [kol S /)
Wi_I_hOU_I_ The profiled ——— —

programs and
debuginfol

*Planned.

What is SYCLOPS?

* An EU-funded project about hardware accelerafion with
open standards using SYCL and RISC-V

« Website: hitfps://www.syclops.org

« CERN project tasks:

1. Implementing SYCL support in ROOT and cling + demonstrating
It on a Lorentz vector calculation example.

2. Benchmarking and profiling + integration testing of all use cases
envisagedin SYCLOPS (ROOT, genomics analysis, and
autonomous systems).

« AdapftivePertf is part of task 2, but its applications extend
beyond SYCLOPS!

https://www.syclops.org/

Where ouvutside of SYCLOPS can AdaptivePerf
be potentially used?

* Profiling software used for online and offline computing at
CERN and other physics experiments, e.g. Madgraphb
and Geant4

« Software-hardware co-design, e.g. in heterogeneous
computing and development of friggering and DAQ
systems at the LHC experiments

« And morel

How to download AdaptivePerf?

* |[t's open-source and you can get it for free from our GitHub:
https://github.com/AdaptivePerd.

« AdapftivePerf is available as a dev version. Feedback and
feature requests are welcome.

* There are 3 parts:

« AdaptivePerf: the main program which is the command-line profiling
tool (frontend) and server (backend), licensed under GNU GPL v2 only.

« AdaptivePerfHTML: the web server for displaying profiling results as an
interactive website, licensed under GNU GPL v3.

* Linux: the Linux kernel source ftree with patched "perf', stored
temporarily on CERN GifLab and licensed on the same terms as the
vanilla L;nux kernel (only installing “perf” is required, no kernel patching
needed).

https://github.com/AdaptivePerf
https://gitlab.cern.ch/adaptiveperf/linux

Quick start with AdaptivePerf

 Install AdapiivePerf and AdapiivePerfHTML according to the
instructions on GitHub. Pay close attention there to the kernel
settings and information about NUMA!

 Run adaptiveperf "<command to be profiled>" (quo’res are
important!) and wait until it finishes and produces the "resulfs”
directory.

. Se’r the FLASK PROFILING STORAGE environment variable to the
‘results” path.

« Run Flask (fc Python web framework) and point it to
AdaptivePerfHTML: adaptiveperf.app:app.

» Open the website in your web browser. Donel

https://github.com/AdaptivePerf/AdaptivePerf#installation
https://github.com/AdaptivePerf/AdaptivePerfHTML#installation
https://flask.palletsprojects.com/

Live demo / Screenshots

profiling@syclops -gentoo-profilingl adaptiveperf --help
adaptiveperf - comprehensive profiling teool based on Linux perf

Usage:
adaptiveperf COMMAND [OPTIONS]
adaptiveperf --help | -h
adaptiveperf --version | -v

Sampling frequency per second for on-CPU time profiling
Default: 1@

--buffer, -B INT
Buffer up to this number of events before sending data for post-processing
(1 effectively disables buffering)
Default: 1
profiling@syclops-gentoo-profilingl adaptiveperf -p 16 -e "page-faults,1@,Page faults" ./a.
AdaptivePerf: comprehensive profiling tool based on Linux pexf
Copyright (C) CERN.

--off-cpu-freq, -f INT
Sampling frequency per second for off-CPU time profiling
Default: 1@@e

——off-cpu-buffer, -b INT This program is free software; you can redistribute it and/or
Buffer up to this number of off-CPU events before sending data for modify it under the terms of the GNU General Public License
post-processing (@ leaves the default adaptive buffering, 1 effectively as published by the Free Software Foundation; only version 2.
disables buffering)

Default: @ This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

--post-process, -p INT MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Number of threads isolated from profiled command to use for profilers and GNU General Public License for more details.
post-processing (must not be greater than the value of 'nproc' minus 3). Use

? to not isolate profiler and post-processing threads from profiled command . .
threads (NOT RECOMMENDED). You should have received a copy of the GNU General Public License

Default: 1 along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
--server-buffer, -s INT MA ©211@0-1381, USA.
Communication buffer size in bytes for internal adaptiveperf-server. Ignored
when -a is used. ==> Checking system configuration
Default: 1824

--address, -a ADDRESS:PORT
Delegate post-processing to another machine running adaptiveperf-server. all
results will be stored on that machine.

- Checking CPU specification.
- Checking for NUMA

- P ari irec T
--warmup, -w INT reparing results directory

Warmup time in seconds between adaptiveperf-server signalling readiness for > Profiling
receiving data and starting the profiled program. Increase this value if you

see missing information after profiling (note that adaptiveperf-server is

also used internally if no -a option is specified).

Default: 1

--event, -e EVENT,PERIOD,TITLE (repeatable)
Extra perf event to be used for sampling with a given peried (i.e. do a
sample on every PERIOD occurrences of an event and display the results under X 2 o X i
the title TITLE in a website). Run "perf list" for the list of possible - Done in 564086 ms in total! You can check the results directory now.
events. You can specify multiple events by specifying this flag more than profiling@syclops-gentoo-profilingl
once. Use quotes if you need to use spaces

Processing results

--alternative, -1
Use the alternative way of executing "perf". Specify this flag if you see
missing information after profiling or profiling hangs/crashes.

--help, -h
Show this help

--version, -v
Show version number

ATguments:
COMMAND

Command to be profiled

Examples:

profiling@syclops-gentoo-profilingl tree results

L

event_dict.data

201_881.json

243 843.jsaon

844 844 .json
845_845.json

845_846. json
845_847 . json
845_848.json
845_849.json

845_850. json
845_851.json
964_964.json
965_965.json

metadata. json
page-faults_callchains. json
syscall_callchains. json
walltime_callchains.json

4 directories,
profiling

AdaptivePerf results

‘ [syclops-gentoo-profiling1] tutorial.sh (2024-04-11 11:12:09)

The time axis is in milliseconds (ms). Red parts are on-CPU and blue parts are off-CPU. Right-click any thread/process (except the root one) to check its runtime and spawning stack trace. Double-click any thread/process to open flame graphs.

Do not display flame graph blocks taking less than this % of total samples:

Warn if the difference between exact and sampled runtime exceeds this %: _

¥ tutorial.sh (29979/29979)
» sh (29981/29981)
»sh (29983/29983)
» Idd (29985/29985)
¥ python3 (29980/30017)
¥ python3 (29980/30019)
v python3 (29980/30022)
python3 (29980/30027)
python3 (29980/30025)
¥ python3 (29980/30021)
python3 (29980/30026)
python3 (29980/30029)

» python3 (29980/30018)
10000 20000 Runtime: 159,375.066 ms (sampled: ~69,080.498 ms) £0000 160000 170000 180000

Spawned by:

cloned
__GI__ clone_internal
create_thread
pthread_create@GLIBC 2.2.5
thb: il::ril::rml::private_server::wake_some(int)
arket::adjust_demand(tbb::detail::ri::arena&, int, bool)
ri::arena::advertise new work<(tbb::detail::ri::arena::new_work_type)0>()
::start_for<tbb::detail::d1::blocked range<unsigned int>, tbb::detail :parallel_for_body wrapper<std::function<veoid (unsigned int)>, .
: :task_dispatcher::execute_and_wait(tbb::detail::d1::task*, tbb::detail::d1::wait_context&, tbb::detail::d1::task_group_context&)
::task_arena_function<R0OOT::TThreadExecutor::ParallelFor (unsigned int, unsigned int, unsigned int, std::function<void (unsigned int)> con:
::isolate within_arena(tbb::detail::d1::delegate base&, long)
::task_arena_function<ROOT::TThreadExecutor::ParallelFor (unsigned int, unsigned int, unsigned int, std::function<veid (unsigned int)> con:
::task_arena_impl::execute(thb: :detail::d1::task_arena_base&, tbb::detail::d1::delegate_base&)
TThreadExecutor : :ParallelFor(unsigned int, unsigned int, unsigned int, std::function<void (unsigned int)> const&)
1 :RDF::RunGraphs(std::vector<ROOT: :RDF: :RResultHandle, std::allocator<ROOT::RDF::RResultHandle> =)
cf 26
WrapperCall(long, unsigned long, void*, void*, veoid*)
Cppyy: :CallLL(long, void*, unsigned long, void*)
namespace) : :ULongExecutor : :Execute(long, veid*, CPyCppyy::CallContext*)
::ExecuteFast(void*, long, CPyCppyy::CallContext®) [clone .isra.®]
:Execute(void*, long, CPyCppyy::CallContext*)
CPyCppyy: : (anonymous namespace)::mp_call(CPyCppyy: :CPPOver load*, _object®, _object*)
_Pyobject_MakeTpCall
_PyEval EvalFrameDefault
_PyEval Vector
PyEval_EvalCode

11

python3 (29980/30018): 159,375.066 ms (sampled: ~69,080.498 ms)

WARNING: The difference between the exact and sampled runtime is 56.66%, which exceeds 50%! Far accurate results, you may need to increase the an-CPU and/or off-CPU sampling frequency
(depending on whether the process/thread runs mostly on- or off-CPU).

Biocks taking less than 2.5% of total samples are not shown to speed up rendering. Click anywhere outside of the window to exit.

Metric: | wall time (ns) [J Time-ordered

Python3-29980/30018

a.out (845/845): 54,012.304 ms (sampled: ~54,001.283 ms)

Blocks taking less than 2.50% of total samples are not shown to speed up rendering. Click anywhere outside of the window to exit.

Metric: | Page faults ~ | [] Time-ordered

*R
g
g

libc_start_call main
__libe_start main@@G!

a.out-B45/845 bash-845/845
all

How does AdaptivePerf compare to
other similar and maintained profilers?

Hardware- Profiles software- Low profiling Open-source Off-CPU Heterogeneous
vendor- hardware overhead profiling architecture support
portable interaction*

AdaptivePerf Yes Yes Yes Yes Yes Planned!
Original "perf" Yes Yes Yes Yes Limited No

Intel VTune Profiler No Yes Yes No Yes Intel GPUs/FPGASs only
AMD pProf No Yes Yes No Yes AMD GPUs only
valgrind Yes No No Yes No No

gprof Yes No Needs C|** Yes No No
gperftools Yes No Needs CI** Yes No No

NVIDIA profilers No Yes No No Yes NVIDIA GPUs only

*If supported by a user's hardware architecture.
**Codeinstrumentation other than not omitting frame pointers.

Future plans

 Profiling heterogeneous architectures and non-CPU devices in @
maximally open-source way

« One idea of doing thisis through PAPI: https://github.com/icl-utk-edu/papi.
« Applying AdaptivePerf to cache-aware roofline modeling and

potentially RISC-V core customisation by collaborating with some of
our SYCLOPS partners: INESC-ID, Codasip, EURECOM

« Expanding the analysis functionality by making a separate library
with the APl and adding the plugin APl to AdapfivePerfHTML

« Setting up automated tests (already in progress)

https://github.com/icl-utk-edu/papi

Future plans

- Adding profiing on a lower level and with more debug info, e.g.
showing line numbers, going down to LLVM IR / MLIR / assembly etc.

« Downloading debug info for a given process automatically if not
present, e.g. through debuginfod (a server providing debugging
InNformation, there are public ones available)

 Matching non-sampling-based metrics from “perf” and/or other
programs (e.g. power consumption) to code segments

« An openlab summer studentis coming to CERN on 1 July to work on this.

https://developers.redhat.com/blog/2019/10/14/introducing-debuginfod-the-elfutils-debuginfo-server
https://sourceware.org/elfutils/Debuginfod.html

Future plans

« Decreasing profiing overhead even more

« For example, by replacing "perf"s Python APl with its C/C++/Rust/... equivalent.
This may require another set of "perf' patches, as "perf" supports only Python
and Perl out-of-the-box.

« Removing or weakening the frame pointer compilation requirement

« For example, by DWARF processing whenever frame pointers cannot be used,
see. hitps://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-
frame-pointers (thisis more compact than what “perf” currently does).

« Full removal may be unnecessary, see: https://brendangregg.com/blog/2024-
03-17/the-return-of-the-frame-pointers.html.

« All other suggestions are welcome!

https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers
https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers
https://brendangregg.com/blog/2024-03-17/the-return-of-the-frame-pointers.html
https://brendangregg.com/blog/2024-03-17/the-return-of-the-frame-pointers.html

Thank you!

Any questions or commentse

	Slide 1: AdaptivePerf: a profiler for single- and multi-threaded applications
	Slide 2: What is AdaptivePerf?
	Slide 3: How does AdaptivePerf work under the hood?
	Slide 4: What is SYCLOPS?
	Slide 5: Where outside of SYCLOPS can AdaptivePerf be potentially used?
	Slide 6: How to download AdaptivePerf?
	Slide 7: Quick start with AdaptivePerf
	Slide 8: Live demo / Screenshots
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: How does AdaptivePerf compare to other similar and maintained profilers?
	Slide 16: Future plans
	Slide 17: Future plans
	Slide 18: Future plans
	Slide 19: Thank you!

