
AdaptivePerf: a profiler for
single- and multi-threaded

applications
Maksymilian Graczyk (CERN, IT-GOV-INN)

What is AdaptivePerf?

• Open-source code profiler for Linux, based on "perf" with
custom patches and developed in the context of the
SYCLOPS project

• Samples both on-CPU and off-CPU activity

• Traces every spawned thread and process

• Minimises risk of broken profiled stacks for programs
compiled with frame pointers by detecting inappropriate
kernel and CPU configurations automatically

• Produces interactive flame graphs and charts viewable in a
web browser

• Main functionality designed with hardware portability in mind
(tested on x86-64, RISC-V in progress, arm64 planned)

• Supports custom sampling-based "perf" events for profiling
interactions with hardware

• Allows TCP streaming of profiling data to a separate
machine for real-time processing

2

NB: AdaptivePerf is not a continuous profiler! It profiles

single commands and is not meant for 24/7 monitoring.

The main target audience is SW and HW developers

optimising their software and/or hardware, also as part of
software-hardware co-design for specific applications.

How does AdaptivePerf work under the hood?

3

AdaptivePerf frontend

perf
PAPI and/or

other profilers*

adaptiveperf-server
(backend)

configures and runs

streams TCP data

through Python API
stream data*

post-processes results

and produces files for
AdaptivePerfHTML

displays

adaptiveperf-analysis
with API*

*Planned.

Can be run on a

different machine
without the profiled
programs and

debug info!

What is SYCLOPS?

• An EU-funded project about hardware acceleration with
open standards using SYCL and RISC-V

• Website: https://www.syclops.org

• CERN project tasks:
1. Implementing SYCL support in ROOT and cling + demonstrating

it on a Lorentz vector calculation example.
2. Benchmarking and profiling + integration testing of all use cases

envisaged in SYCLOPS (ROOT, genomics analysis, and
autonomous systems).

• AdaptivePerf is part of task 2, but its applications extend
beyond SYCLOPS!

4

https://www.syclops.org/

Where outside of SYCLOPS can AdaptivePerf
be potentially used?

• Profiling software used for online and offline computing at
CERN and other physics experiments, e.g. Madgraph5
and Geant4

• Software-hardware co-design, e.g. in heterogeneous
computing and development of triggering and DAQ
systems at the LHC experiments

• And more!

5

How to download AdaptivePerf?

• It's open-source and you can get it for free from our GitHub:
https://github.com/AdaptivePerf.

• AdaptivePerf is available as a dev version. Feedback and
feature requests are welcome.

• There are 3 parts:
• AdaptivePerf: the main program which is the command-line profiling

tool (frontend) and server (backend), licensed under GNU GPL v2 only.
• AdaptivePerfHTML: the web server for displaying profiling results as an

interactive website, licensed under GNU GPL v3.
• Linux: the Linux kernel source tree with patched "perf", stored

temporarily on CERN GitLab and licensed on the same terms as the
vanilla Linux kernel (only installing “perf” is required, no kernel patching
needed).

6

https://github.com/AdaptivePerf
https://gitlab.cern.ch/adaptiveperf/linux

Quick start with AdaptivePerf

• Install AdaptivePerf and AdaptivePerfHTML according to the
instructions on GitHub. Pay close attention there to the kernel
settings and information about NUMA!

• Run adaptiveperf "<command to be profiled>" (quotes are
important!) and wait until it finishes and produces the "results"
directory.

• Set the FLASK_PROFILING_STORAGE environment variable to the
"results" path.

• Run Flask (a Python web framework) and point it to
AdaptivePerfHTML: adaptiveperf.app:app.

• Open the website in your web browser. Done!

7

https://github.com/AdaptivePerf/AdaptivePerf#installation
https://github.com/AdaptivePerf/AdaptivePerfHTML#installation
https://flask.palletsprojects.com/

Live demo / Screenshots

9

10

11

12

13

14

How does AdaptivePerf compare to
other similar and maintained profilers?

Hardware-
vendor-
portable

Profiles software-
hardware

interaction*

Low profiling
overhead

Open-source Off-CPU
profiling

Heterogeneous
architecture support

AdaptivePerf Yes Yes Yes Yes Yes Planned!

Original "perf" Yes Yes Yes Yes Limited No

Intel VTune Profiler No Yes Yes No Yes Intel GPUs/FPGAs only

AMD μProf No Yes Yes No Yes AMD GPUs only

valgrind Yes No No Yes No No

gprof Yes No Needs CI** Yes No No

gperftools Yes No Needs CI** Yes No No

NVIDIA profilers No Yes No No Yes NVIDIA GPUs only

*If supported by a user’s hardware architecture.

**Code instrumentation other than not omitting frame pointers.

15

Future plans

• Profiling heterogeneous architectures and non-CPU devices in a
maximally open-source way
• One idea of doing this is through PAPI: https://github.com/icl-utk-edu/papi.

• Applying AdaptivePerf to cache-aware roofline modelling and
potentially RISC-V core customisation by collaborating with some of
our SYCLOPS partners: INESC-ID, Codasip, EURECOM

• Expanding the analysis functionality by making a separate library
with the API and adding the plugin API to AdaptivePerfHTML

• Setting up automated tests (already in progress)

16

https://github.com/icl-utk-edu/papi

Future plans

• Adding profiling on a lower level and with more debug info, e.g.
showing line numbers, going down to LLVM IR / MLIR / assembly etc.

• Downloading debug info for a given process automatically if not
present, e.g. through debuginfod (a server providing debugging
information, there are public ones available)

• Matching non-sampling-based metrics from “perf” and/or other
programs (e.g. power consumption) to code segments
• An openlab summer student is coming to CERN on 1 July to work on this.

17

https://developers.redhat.com/blog/2019/10/14/introducing-debuginfod-the-elfutils-debuginfo-server
https://sourceware.org/elfutils/Debuginfod.html

Future plans

• Decreasing profiling overhead even more
• For example, by replacing "perf"'s Python API with its C/C++/Rust/... equivalent.

This may require another set of "perf" patches, as "perf" supports only Python
and Perl out-of-the-box.

• Removing or weakening the frame pointer compilation requirement
• For example, by DWARF processing whenever frame pointers cannot be used,

see: https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-
frame-pointers (this is more compact than what “perf” currently does).

• Full removal may be unnecessary, see: https://brendangregg.com/blog/2024-
03-17/the-return-of-the-frame-pointers.html.

• All other suggestions are welcome!

18

https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers
https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers
https://brendangregg.com/blog/2024-03-17/the-return-of-the-frame-pointers.html
https://brendangregg.com/blog/2024-03-17/the-return-of-the-frame-pointers.html

Thank you!
Any questions or comments?

	Slide 1: AdaptivePerf: a profiler for single- and multi-threaded applications
	Slide 2: What is AdaptivePerf?
	Slide 3: How does AdaptivePerf work under the hood?
	Slide 4: What is SYCLOPS?
	Slide 5: Where outside of SYCLOPS can AdaptivePerf be potentially used?
	Slide 6: How to download AdaptivePerf?
	Slide 7: Quick start with AdaptivePerf
	Slide 8: Live demo / Screenshots
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: How does AdaptivePerf compare to other similar and maintained profilers?
	Slide 16: Future plans
	Slide 17: Future plans
	Slide 18: Future plans
	Slide 19: Thank you!

