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Not a new concept ...

* 2011 Report
* Exponential growth for several decades
B . .. * Exponential growth no longer possible

COMPUTING PERFURMANCE » Switch to multicore and parallelism

* Energy consumption becomes an issue

* Multicore introduces parallelism that we do not
know how to exploit well

e Situation will not change in near future
 Alternative is specialization

* Either somebody comes up with a new great
invention or there is a problem

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich



General purpose computing

Slow improvements lead

to specialization
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Hyperscalers, commanding a growing share of the market, are emerging
as significant customers for many components.
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Hyperscalers'

* The cloud is the big game changer:
* New business model

 Economies of scale
* Ve ry I a rge WO r kI Oa d S Central Dynamic NAND Hard-disk  Input-output

2017 enterprise . ;
segment processing RAM drives connectors

Others

units

* Every hyper scaler is its own “Killer App” i i s

McKinsey&Company

* The scale makes many things feasible
* The gains have a very large multiplier

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-
insights/how-high-tech-suppliers-are-responding-to-the-hyperscaler-opportunity



The size of IT: Does Al pay off?

Amazon to blow $11B on cluster of Indiana bit

barns
Talk about going round the (South) Bend

A Tobias Mann Thu 25 Apr 2024  22:34 UTC

“... Redmond is on track to increase its capex more than 50 per
cent year-on-year to $50 billion, amid talk of spending $100
billion on an Al supercomputer.”

What's up with Alphabet and Microsoft lately?
Profits, sales — and Al costs

If ML proves an expensive habit in future, these money printers won't have much to worry
about ... probably

A Thomas Claburn Fri 26 Apr 2024  00:02 UTC

“But Al is also adding costs as running it requires
technical talent and computing infrastructure.
Alphabet is trying to manage those costs.
"Looking ahead, we remain focused on our
efforts to moderate the pace of expense growth
in order to create capacity for the increases in
depreciation and expenses associated with the
higher levels of investment in our technical
infrastructure," said Porat.

"With respect to capex, our reported capex in
the first quarter was $12 billion, once again
driven overwhelmingly by investment in our
technical infrastructure, with the largest
component for servers, followed by data
centers," she reported. "The significant year-on-
year-growth in capex in recent quarters reflects
our confidence in the opportunities offered by
Al across our business."


https://www.theregister.com/2024/04/01/microsoft_openai_5gw_dc/
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Data Compression (Microsoft Zipline/Corsica)

Corsica: A project zipline ASIC

Compression without compromise:

High compression ratio

Low latency

Inline encryption, authentication
High total throughput

Disk write latency with Corsica

:m?m and Corsica does $SD
Uit the work read/write

Corsica is 15-25 times faster than the CPU

S d
2 i CPU does the work $SD
overhead Compression | Encryption | Authentication | Data integrity read/write

Disk write latency today

https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/



Microsoft Azure Boost

Security architecture components
Designed to enhance Azure workload security, Azure Boost includes the following security components:

« An independent hardware root of trust - Cerberus fulfils NIST 800-193 certification.

« Azure Boost system on chip (SoC) — dedicated, Linux based system conducting management operations for the control plane.

« Configurable field-programable gate array (FPGA) — programable network and storage acceleration capabilities for the data plane.

Azure Boost SoCs pair with each host and work in tandem to create a more secure hosting infrastructure.

Host Server Blade
Host OS VM VM

Host system
services

N

Hypervisor

[erul[Tem || ... |




Accelerators in a data center

E Compute nodes

SELECT * FROM T WHERE id=3

* A database will read the table from

Amazon
Redshift cluster

High speed networking

Filtered & aggregated results

CIO U d StO ra ge SR Guey Parallel execution

] . AQUA layer |, \L \L
* Bring it all the way to the local ’
memory, then to the CPU registers scale-out

architecture

* Just to throw away all tuples but 1

* Creates bottlenecks in storage,
network, memory access, data
buses, pollutes the caches, etc. Amazon S3

Durable storage

https://pages.awscloud.com/AQUA_Preview.html

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 10



Accelerating ML/AI
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Infrastructure — HACC cluster

* The Heterogeneous Accelerated Compute

AMDZ Clusters (HACC) program is a unique initiative
& to support novel research in adaptive

XILINX comﬁute acceleration for data center settings

and high-performance computing (HPC).

Heterogeneous Accelerated Compute Clusters

University Research Partners

+ ETH Zurich HACC
EmHziricn Tiunots TNUS - flymeemen  ycia

https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html|



https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
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Overview (HACC heterogeneous boxes

-
200 GbE spine
Data network 100 GbE 100 GbE leaf
HACC BOX 2% (100 GbE Tx + 100 GbE Rx) 2x 2x 2x 2x
PCle direct
ACAP ACAP
VCK5000 VCK5000
#3 #4
USB - JTAG

CPU - CPU

Copyright ETH Zirich - 2023




FasyNet & ACCL (100 GbE TCP/IP)

B CMAC: Ethernet subsystem, board specific

B Network: TCP/IP stack with streaming control and data interfaces

B User: Customized unit for application

Static Region

Dynamic Region

Network KRNL

User KRNL ' 100 G TCP/IP
250MHz

He, Korolija, Alonso,
“EasyNet: 100 Gbps
Network for HLS”,

etwork for Rx Tx

FPL'21
- Mem Bank 0 Mem Bank 1




Sidler et al. Strom, EuroSys 2020
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Coyote: a better FPGA shell

* Multiple user regions (6 to 10)
RDMA/TCP network stack

* Unified memory space host-FPGA
* Virtual memory

Multi-user memory management on
FPGA

Do OS abstractions make sense on
FPGAs?, Dario Korolija, Timothy Roscoe,
and Gustavo Alonso, OSDI 2020
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New Focus: SLASH (jointly with AMD Dublin)

Memory

Storage

Smart Hub

CPU Acc
FPGA

NETWORK 19



FPGA GPU-FPGA

(User code, GPU driver, FPGA driver)

ost O

PCle Switch

FpgaNIC: An FPGA-based Versatile 100Gb SmartNIC for GPUs
Wang et al. USENIX ATC 2022

Data plane: PCle |16 Gen3

PCle Endpoint o

Haster»l\ Slave ! =

*-.,, Control plane: ... Interface Interface g

GPUs GPUSFPEA DMA 2| | 2

Server 0 Server 1 . Server 7 ::F'A.Ien:s'}" E g
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Example

Throughput [GB/s]
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(a) Compression + AES-CBC (b) Compression + AES-CTR (c) Compression + AES-ECB

Figure 12: Full pipeline - with 1 and 2 threads on CPU vs. FPGA design. Note the logarithmic scale of the y axis.

Hardware Acceleration of Compression and Encryption in | FPGA External DDR4 Memory

SAP HANA [Read data| | Load Huffman tree| — Buffer }—-‘—r| AES-256 |J
Monica Chiosa’ Fabio Maschi* Ingo Miiller ' !
ETH Zurich ETH Zurich ETH Zurich comﬁz:sion ‘){ i':-lnlgmirg: *_4 Buffer }__)1 AES I—:
monica.chiosa@inf.ethz.ch fabio.maschi@inf.ethz.ch ingo.mueller@inf.ethz.ch X
- Buffer |——{ AES-256 |———
Gustavo Alonso Norman May !
ETH Zurich SAP SE 3 Buffer —— AES-256 |————
alonso@inf.ethz.ch norman.may(@sap.com Load Balancer !
VLDB 2022 Only for CBC mode |
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Deep recommendation models involve

intensive embedding table lookups
CIick-Thr}ugh Rate «_

--------------------------

Feature Interaction «_
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Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B. PreuRer, Kai Zeng, Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li,
Jingren Zhou, Ce Zhang, Gustavo Alonso: MicroRec: Efficient Recommendation Inference by Hardware and Data St2r3ucture
Solutions. MLSys 2021



Workload profiling on Alibaba’s real models

Embedding Vector Lookup and Gather XN FC Computation
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* Embedding lookup comprises more than half of
the inference



FleetRec: bridging CPUs, GPUs and FPGAs by
network in the cloud

* Using existing server Flexible combination

2o | o BB o | O o B &) 2o ERE = |EHHE =~ | =]
it I(;:::JIHOStsle:Je:_I [ | : [N ] II:‘I_I(I__I _____ :I_:I:I:I_I__I_:::_: L m i
E EE EE EE E | [N : :Non-necom.: Ililill ii [ Frrni [
N eeAtostsener | Model || | Tasks. eg, {|Model} Modely Model D

Interconnect through network

Wenqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng, Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou,
Ce Zhang, Gustavo Alonso: FleetRec: Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clusters. KDD
2021
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Using distributed clusters

* We have used the HACC cluster L R ]
to implement such a distributed e o=
system over 10 FPGAs, enabling :> s

h 4
Output

us to explore the options for BT STV [— e

accelerating every step of the 4-Embed | =5 8-slave == 9-Root | =

p rocess Figure 16: Conceptual design of partitioned DLRM, with FC1
decomposed and FC2, FC3 pipelined across nodes.

ACCL+: an FPGA-Based Collective Engine
for Distributed Applications

Zhenhao He, Dario Korolija, Yu Zhu, and Benjamin Ramhorst, Systems Group,
ETH Zurich; Tristan Laan, University of Amsterdam; Lucian Petrica and
Michaela Blott, AMD Research; Gustavo Alonso, Systems Group, ETH Zurich

https://www.usenix.org/conference/osdi24/presentation/he



Conclusions

* Hardware acceleration and specialization is here to stay

* The bottleneck and inefficiencies caused by data movement will only
become worse over time because eof the workloads and the growing

use of the cloud

e Use one to solve the other

* In-network data processing
* Reconfigurable implementations (FPGA) for flexibility
* Enabling new architectures

* This is not just about hardware:
* The software needs to evolve to match the new systems
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