

Heavy Flavour & Heavy Ions Nuno Leonardo (nuno@cern.ch), LIP & IST

EPFL LPHE seminar, Lausanne, December 11th, 2023

Collecting large, rich data sets

Data included from 2015-06-03 08:41 to 2023-07-16 23:02 UTC

precision measurements probe new rare processes

8 8

Exploring different collision systems and \sqrt{s}

CMS Experiment at the LHC, CERN Data recorded: 2023-Apr-21 17:00:40.210176 GMT Run / Event / LS: 366403 / 74174956 / 78

CMS Experiment at the LHC, CERN Data recorded: 2023-Sep-26 17:49:16.755456 GMT Run / Event / LS: 374288 / 5946329 / 55

Beyond luminosity

Dedicated trigger algorithms

Novel datataking paradigms

Special data streams: Scouting and Parking

Flavour @ LHC

Direct search for new particles Indirect search for new particles

Beauty and charm production New hadrons and spectroscopy New and rare decays Flavour mixing and CKM

Proton and Ion collisions

Lepton flavour universality: e vs μ vs τ **Lepton flavour violation:** $\tau \rightarrow \mu \mu \mu$

First neutrino measurements at LHC Heavy flavour production @high rapidity

Flavour @ CHS

Direct search for new particles

Indirect search for new particles

Beauty and charm production New hadrons and spectroscopy New and rare decays Flavour mixing and CKM

Proton and Ion collisions

Lepton flavour universality: e vs μ vs τ **Lepton flavour violation:** $\tau \rightarrow \mu \mu \mu$

First neutrino measurements at LHC Heavy flavour production @high rapidity

Heavy Flavour

b-quark hadrons

≈1.28 GeV/c² mass ≈2.2 MeV/c2 ≈173.1 GeV/c² charge ^{1/2} C U t spin ½ charm top up ≈4.18 GeV/c² S ≈4.7 MeV/c² ≈96 MeV/c² ARK d S b bottom down strange

Note: CMS while not designed primarily for either heavy flavour or heavy ions, has been consistently making leading contributions to both areas

Non-prompt J/ψ Secondary vertex Primary B⁺ meson vertex Track Dxy B⁺ decay SV - PV distance

in vacuum

in hot medium

proton-proton collisions

created in UR nuclear collisions

Flavour = SM precision + BSM search

Cosmic Evolution

of New Phenomena

Reveal the Secrets of the Higgs Boson

Direct evidence for NP

 searching for the decay products of NP particles produced in collision

Quantum Imprints of NP

 searching for effects of NP particles running in quantum loops (virtual)

PARTICLE MIXING

PRL 97 (2006) 242003, NL thesis

Flavour Oscillations CDF (2006)

Nature 522 (2015) 68

Flavour-Changing Neutral Current CMS & LHCb (2015)

F \bigcirc G E M E \$ \bigcirc

$B \rightarrow \mu \mu$ rare decays ₂₀₁₅

Open Access | Published: 13 May 2015

Observation of the rare $B_s^0 \rightarrow \mu^+ \mu^-$ **decay from the** combined analysis of CMS and LHCb data

CMS Collaboration & LHCb Collaboration

Nature 522, 68–72 (2015)

CMS-BPH-21-006

$B \rightarrow \mu \mu$ branching fractions $\rightarrow \mu \mu$ hadronization fractions

• Branching fractions measured wrt $B^+ \rightarrow J/\psi K^+$ or $B_s \rightarrow J/\psi \varphi$ normalisation channels

$$\mathcal{B}(\mathbf{B}_{\mathbf{s}}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+})\frac{N_{\mathbf{B}_{\mathbf{s}}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}\frac{\varepsilon_{\mathbf{I}}}{\varepsilon}$$

$$or \left\{ = \mathcal{B}(B_{s}^{0} \to J/\psi\phi) \frac{N_{B_{s}^{0} \to \mu^{+}\mu^{-}}}{N_{B_{s}^{0} \to J/\psi\phi}} \frac{\varepsilon_{B_{s}^{0}}}{\varepsilon_{B_{s}^{0}}} \right\}$$

$$\mathcal{B}(\mathbf{B}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+})\frac{N_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}\frac{\varepsilon_{\mathbf{H}^{+}}}{\varepsilon_{\mathbf{H}^{+}}}$$

CMS-BPH-21-006

b-quark hadronization fractions

- production fractions assessed using
 - $B_s \rightarrow J/\psi \varphi$, $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$

CMS-BPH-21-001

$B_s \rightarrow \mu \mu$ effective lifetime

• $\tau(B_s \rightarrow \mu \mu)$ has **added sensitivity** to BSM

In SM with absence of CP violation only the heavy eigenstate B_H decays into dimuon

$$au = 1.83 \, {}^{+0.23}_{-0.20} \, ({
m stat}) \, {}^{+0.04}_{-0.04} \, ({
m syst}) \, {
m ps}$$
 $au_{
m H} = 1.624 \, {}^{-1.624}_{-0.04}$

 $\pm 0.009 \,\mathrm{ps}$ $au_{
m L} = 1.429 \pm 0.007\,{
m ps}$

OSCILLATION

B_s mixing phase and CP violation

 probe CPV in interference of decay with and without flavour mixing

- using high statistics modes, $B_s \rightarrow J/\psi KK$
- developments in flavour tagging
 - optimization of opposite-side flavour algorithms: soft lepton, muon, jet
 - development of same side tagging CERN-THESIS-2023-279

Searching for flavour violations

CLFV | charged lepton flavour violation

- clean final state, searched for at various colliders
- normalisation $D_s \rightarrow \phi \pi$; source: $B, D \rightarrow \tau$

observed (expected) upper limit @ 90% CL **B(τ→3µ) < 2.9 (2.4) x 10**-⁸

comparable to world best UL (90%CL) set by Belle at 2.1 x 10⁻⁸

LFUV | lepton flavour universality violation

The dimuon spectrum

- Standard dimuon triggers
 - Provide access to bulk of HF final states
- Parking data
 - facilitate access to non-muonic channels
- Scouting dimuon triggers
 - high-rate triggers (5x) with HLT-only information
 - p⊤(µ)>3GeV, no mass cut (low mass resonances)

 $B_{4\mu}$ $N_{4\mu}$ $= (0.9 \pm 0.1 \text{ (stat)} \pm 0.1 \text{ (syst)}) \times 10^{-3}$ $B_{2\mu}$ $\sum_{i,j} N_{2u}^{i,j} \frac{A_{4\mu}}{A_{4\mu}}$ ${\cal B}(\eta
ightarrow 2\mu) = (5.8 \pm 0.8) imes 10^{-6}$

CMS-BPH-22-003

Di-quarkonium mass spectrum

- final states with multiple quarkonia provide clean and robust canvas for searches
 - at both low- and high p_T
- first new structure reported by LHCb in 2020 in $J/\psi J/\psi$ mass spectrum
 - narrow structure near the kinematic threshold, denoted X(6900)
- all-heavy tetra-quark candidate
 - after several doubly-heavy exotic candidates, this all-heavy possibility raises particular interest

• the X(6900) peak is compelling, but proper understanding of $J/\psi J/\psi$ mass spectrum remains uncertain

Probing the J/ ψ J/ ψ (\rightarrow µµµµ) mass spectrum

Candidates

500

400

300

200

100

- 2016+2017+2018 data (135 fb⁻¹)
- trigger: 3µ, one pair around m(J/ ψ)
- blind region: 6.2-7.8 GeV
- require 4μ vertex prob. > 0.5%
- obtain ~1500 J/ ψ pairs after selection

Observation of new structures in $m(J/\psi J/\psi)$

• X(6900) confirmed, compatible with LHCb

plus two new structures detected

Observation of triple J/ψ production

$$\sigma(\mathrm{pp} \rightarrow \mathrm{J}/\psi \,\mathrm{J}/\psi \,\mathrm{J}/\psi \,\mathrm{X}) = N_{\mathrm{sig}}^{3\mathrm{J}/\psi} / (\epsilon \,\mathcal{L}_{\mathrm{int}} \,\mathcal{B}_{\mathrm{J}/\psi \rightarrow \mu^{+}\mu^{-}}^{3}) \implies 272$$

And now, into a hot, deconfined medium

➡ at large energy densities, QCD predicts the existence of a deconfined state of quarks and gluons -- the quark gluon plasma (QGP)

reproduced in heavy ion collisions

CREDITS: J. WANG

Hadronization

Hard probes

"X-ray" QGP

- Hard (large Q) \rightarrow high p_T particles
- Produced at early stage
 Jet
 τ ~ 1/Q ~ 1/m_Q • access to short lifetime processes

 - Initial production calculable with pQCD • $m_Q \gg \Lambda_{QCD}$
 - Rarely produced in medium
 - $m_Q \gg T_{QGP}$
 - clean probe, e.g. study hadronization
 - $M_Q \gg M_q$

Hard Probes of QGP ----- Heavy Flavour HPs

Interactions w/ QGP heavy ≠ light quarks

Heavy quark diffusion in QGP

Upsilon suppression

Screening in i deconfined medium: effective charge of **Q** and $ar{Q}$ reduced

- out of the three Y(nS) states
 - the excited states Y(2S), Y(3S) are suppressed wrt ground state Y(IS)
- when comparing PbPb vs pp collisions

 $Y(2S)/Y(1S)|_{PbPb}$ $0.21 \pm 0.07 \,(\text{stat.}) \pm 0.02 \,(\text{syst.})$ _ $Y(2S)/Y(1S)|_{pp}$

- \hookrightarrow quarkonium states melt, ie are dissociated in the QGP
- the melting occurs sequentially
 - Ieast bound stated are more melted than tightly bound states

Nuclear modification factor RAA

 $R_{AA} = 1$: superposition of nucleon-nucleon collisions

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}}{T_{AA}\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\mathrm{T}}} \qquad \leftarrow \text{Heavy-ion}$$

(schematics)

before collision

after collision

Centrality of the collision \leftrightarrow N_{part} (# of participants)

Particles melt in the QGP, sequentially

Particles loose energy in QGP, sequentially

RAA VS. Flavors

- Dead cone effect
 - Radiation is suppressed inside $\theta < m/E$
 - Energy loss $\Delta E_l > \Delta E_c > \Delta E_b$

Exclusive reconstruction, for 1st time in ion collisions

- with CMS we have observed for the first time B mesons in nuclear collisions
- through full reconstruction of their decays: eg $B_s \rightarrow J/\psi \phi$, $B^+ \rightarrow J/\psi K^+$

<u>HIN-19-011</u>

higher precision (ordinates and abcissae) + allows to probe flavour dependencies

and in small systems, too, pp and pPb (references)

 $HIN-21-014 \qquad B^+ \rightarrow J/\psi K^+$

φψ/[+

Ω

B mesons' nuclear modification factors

HIN-21-014

Hadronization

Fragmentation (high p_T)

Coalescence (low p_T)

B_s/B_u hadronization fractions, in medium **B**_s/**B**⁺ **R**_{AA} (**PbPb**/**pp**) ratio

$B_s/B^+ \sigma$ ratio in PbPb

CERN-THESIS-2023-064

B_s/B_u hadronization fractions, in vacuum

vs p_t

 non-universality of hadronization fractions

vs multiplicity

- environment plays a role in quark hadronization
- compatible with coalescence effects at high N_{trk} and low p_T

- evidence (4σ) for the production of
- facilitates a novel way to improve understanding of
 - Properties of the medium
 - nature of exotic hadrons

A new window into the X(3872) structure

Small system

High multiplicity Large system

- Dissociated by interactions with comovers
- Enhanced production via coalescence
- Its response in color dense environment indicates its inner structure

20-year debate of X(3872) nature

Summary

- CMS continues to accumulate increasingly sensitive datasets
 - — exploring standard & novel trigger & data-taking paradigms
- rare (and forbidden) decays are highly sensitive processes
- production studies further probing eg MPI and hadronization
- investigation of exotic hadron structures being furthered
- both open- and hidden- (and exotic) flavour employed as novel probes of the QCD hot medium
- ongoing Run3 shall facilitate more **precise** measurements, clarification of ongoing puzzles, plus new observations

Stay tuned.

Thank you for listening!