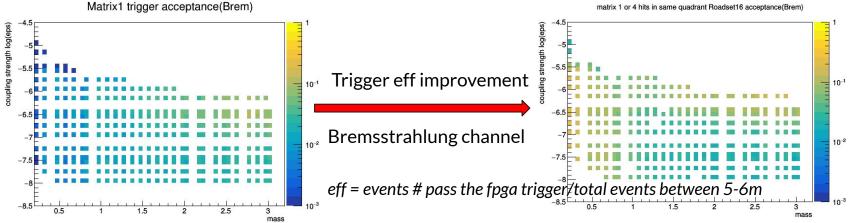
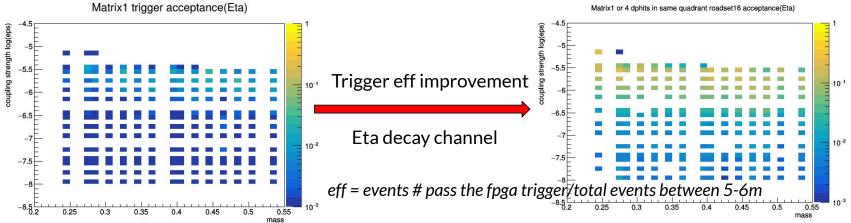

Displaced dimuon trigger and hodoscopes status

DarkQuest Collaboration meeting Oct-20th-2023 Zijie Wan

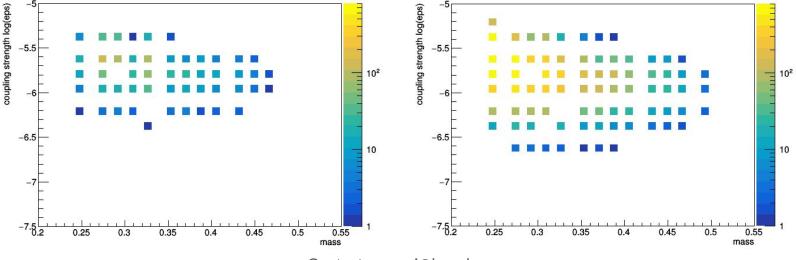

Displaced dimuon trigger algorithm


- Applying two dark photon fiber hodoscopes to improve the trigger efficiency on displaced signals.
- Trigger fires if hits are in the same quadrant for DP1, DP2, and H4Y detector.
- Z-vertex reconstruction can be made based on the hit positions on DP1 & DP2.

Specific road & background rejection

- Specific trigger road is defined by 4 coincidence fiber hodoscope hits in the same quadrant: (dp1_hit_elmID1, dp1_hit_elmID2, dp2_hit_elmID1, dp2_hit_elmID2)
- Rule out all of the road hitted by ~140k NIM3 triggered events in 2017 experimental data.
- Choose 4096 most frequent hitted roads for each quadrant by signal files.

Specific road & background rejection

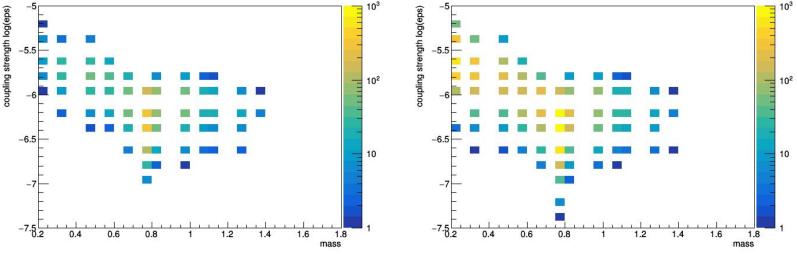

- Specific trigger road is defined by 4 coincidence fiber hodoscope hits in the same quadrant: (dp1_hit_elmID1, dp1_hit_elmID2, dp2_hit_elmID1, dp2_hit_elmID2)
- Rule out all of the road hitted by ~140k NIM3 triggered events in 2017 experimental data.
- Choose 4096 most frequent hitted road by signal files.

Total Expected events

Knowing the trigger efficiency, we can calculate the total number of Aprime Events that can be detected. *N* = *cross section(eps^2) * L(POT) * decay_prob(5-6m) * acc(trigger)*

Total detected events(E_beam=120GeV,1.44*10^18POT,Eta,Matrix1)

Total detected events(E_beam=120GeV,1.44*10^18POT,roadset16/Eta,Matrix1)

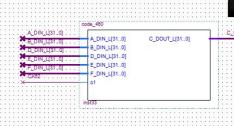


Total Expected events

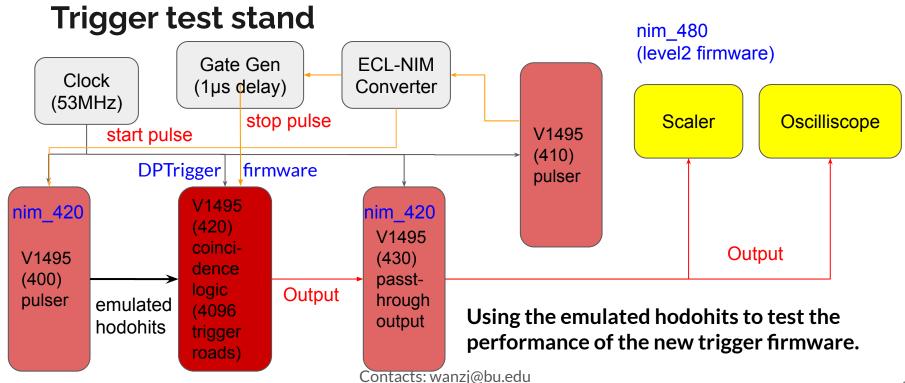
Knowing the trigger efficiency, we can calculate the total number of Aprime Events that can be detected. *N* = *cross section(eps^2) * L(POT) * decay_prob(5-6m) * acc(trigger)*

Total detected events(E=120GeV,1.44*10^18POT,Brem,oldTrigger)

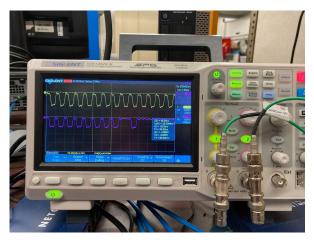
Total detected events(E=120GeV,1.44*10^18POT,Brem,road16/oldTrigger)


Contacts: wanzj@bu.edu

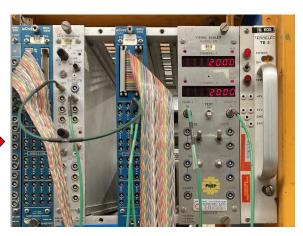
FPGA firmware realization


- Edit the FPGA firmware using Interl Quatus.
- Start from the level 1 trigger firmware (nim_460) from SpinQuest FPGA trigger group.
- Customize the "trigger-road" in coincidence logic block— code_460.vhd.

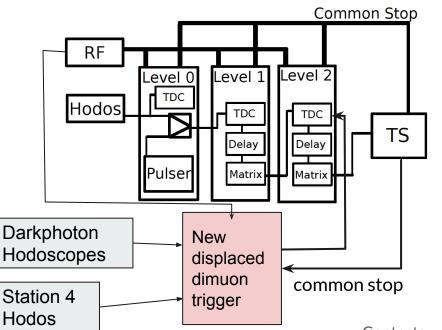
Fitter Summary		
Fitter Status	Successful - Mon Jun 12 18:42:34 2023	
Quartus II Version	11.0 Build 208 07/03/2011 SP 1 SJ Web Edition	
Revision Name	SeaQuestTrig1	
Top-level Entity Name	SeaQuestTrig1	
Family	Cydone	
Device	EP1C20F400C6	
Timing Models	Final	
Total logic elements	18,962 / 20,060 (95 %)	
Total pins	275/301(91%)	
Total virtual pins	0	
Total memory bits	192,512 / 294,912 (65 %)	
Total PLLs	1/2(50%)	



📄 road_3881.txt ~

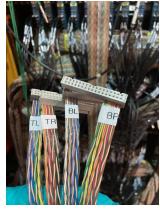

Trigger test stand output

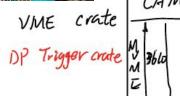
- Preset pulse patterns can emulated the trigger roads from signal or background events.
- Check the trigger file both on the scope (single pattern test) and the visual scaler (full road test).



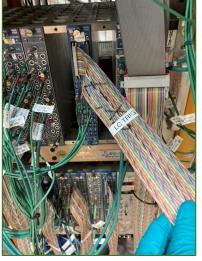
9 signal roads + 1 background road in one pattern file

Ch1:Start signal (number of pattern files loaded) Ch2: FPGA Coincidence output

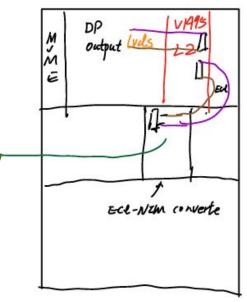


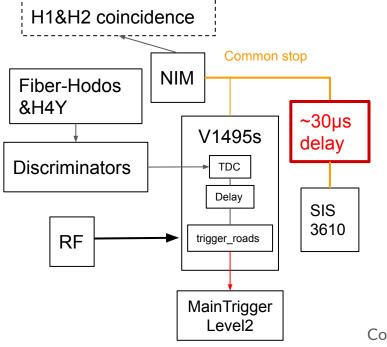

New DP trigger integration




- The new displaced dimuon trigger will run parallel with the current trigger system.
- The output for this new trigger will go to level 2 trigger, combine with main trigger and then go to the trigger supervisor.
- We won't use much trigger band width as the new trigger algorithm has already made the trigger rate to be very low.

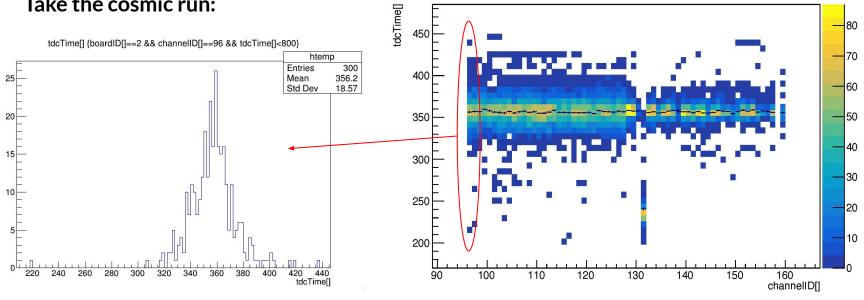
New DP trigger integration





NIM output send out to counting room for monitor Contacts: wanzj@bu.edu

Main FPGA trigger rack

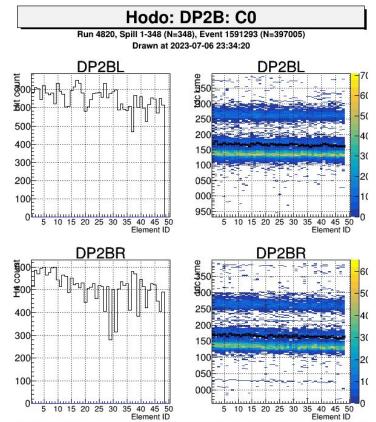

New DP DAQ for time alignment of trigger input

- In order to process the coincidence logic inside the V1495 FPGA firmware. Need to align the time for each input channels.
- Main DAQ did not record the TDC time for V1495 trigger board for darkphoton triggers. Have to build a seperate DP DAQ.
- This new DAQ record the TDC time of input hits to the V1495 FPGA boards for each channel and adjust the TDC time delay for each channels.

New DP DAQ for time alignment of trigger input

Take the cosmic run:

tdcTime distribution for board 420 ch96-160 run7527


Fiber hodoscope status

- Most channel works fine based on the online monitor.
- Several bad channels can be identified:

Noisy:

DP1BL_CH31, DP1BR_CH16, DP1BR_CH41 Dead: DP1TL_CH56,DP1BL_CH52, DP1BR_CH5, DP1BR_CH77,78,79,80

• Some low-eff channels can be optimized through the bias voltage scan.

Commisioning w/ the beam

- Use the DP DAQ to align the FPGA input time for darkphoton trigger.
- Take the bias voltage scan to optimize the hodoscope efficiency for each channel.
- Adjust the trigger roadset to avoid the "hot" road, restrict the trigger rate to under its limit. (5kHz for the whole experiment, ~100 Hz for dark photon trigger)

On shift during the SpinQuest Run

- Monitor the behavior for the darkphoton trigger system:
 - trigger rate
 - hodoscope efficiency
- Input channel time alignment once a week. ~1 hour every time.
- Update the trigger firmware based on the data taken.
 - Come up w/ the new trigger road set based on the data reconstruction and simulation.
 - Update the v1495 FPGA firmware and compile w/ Intel Quatuas.
 - Test the new firmware in the test stand.
 - Flash the firmware to the DP trigger boards, monitor its rate.

Summary

- New displaced dimuon trigger system is fully prepared for the beam.
 - Displaced the dimuon trigger algorithm improve the trigger efficiency for the long lived dark photon.
 - Customized FPGA firmware is tested in the trigger test stand.
 - Newly set DP DAQ do input channels time alignment for new trigger system.
 - Integrate the new trigger output to current trigger system.
- Clear the tasks and workflow for final beam comissioning and shift work during data taking period.
 - Optimize the trigger roadset under the beam condition.
 - Conduct the bias voltage scan and adjust the discriminator threshold to maximize the hodoscope efficiency.

Trigger road for 4 dp hits in same quadrant

Road Format: (a,b,c,d) where

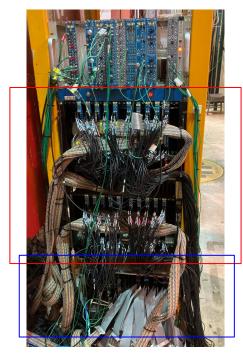
a: the first dp1 hits element id in a certain quadrant b: the second dp1 hits element id in a certain quadrant c: the first dp2 hits element id in a certain quadrant d: the second dp2 hits element id in a certain quadrant all these 4 hits are required to be in the same quadrant **Road selection:**

Based on several signal files:

- choose 12 signal simulation files, mass=[0.25,0.45,0.75,1.05] eps=[-6,-6.4,-7] 115,762 events in total
- choose all of the trigger roads has at least 3 hits. Approximately 150-200 road in each quadrant.

• Road examples:

Quadrant	Trigger-Road	nhits
TL	(1,1,3,3)	15
TL	(1,2,3,5)	25
TL	(1,3,3,7)	28
TR	(1,1,3,4)	34
TR	(1,1,4,4)	57


Trigger teststand output

CH1: RF clock CH2: start pulse (t=0) CH3: Trigger output (500ns later) CH4: stop pulse (600ns later)

dump the TDC memory for board 420: ~500ns time before stop signal it receives pattern inputs

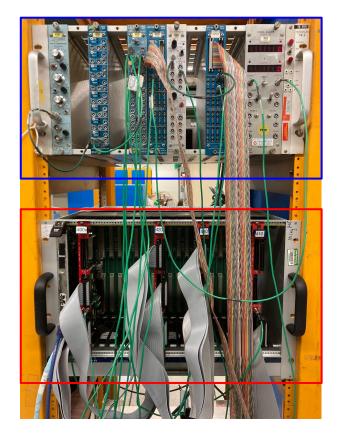
DP Trigger ROC inside NM4

Discriminators for dp1

darkphoton trigger VME crate

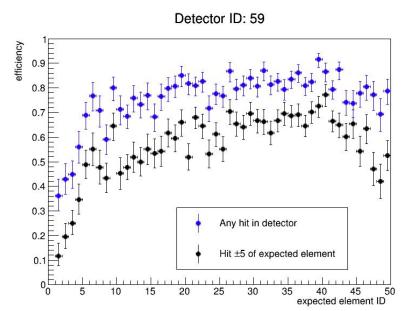
Trigger Teststand in Counting room

Support modules:


a) Function generator —> set RF clock

b) Conversions

c) Scaler —> Read output


d) Oscilloscope(not shown in the graph)

Trigger VME: a)2xV1495 —> pulser generator (emulate hodo hits) b)1xV1495 —> coincidence logic (trigger roads) c)1xV1495 —> Trigger supervior (common stop, output)

Hodo eff measurement

- Run the tracking using the hits from other hodoscopes and drift chambers. <u>https://github.com/E1039-Collaboration/e1039-an</u> alvsis/blob/master/RecoDev/RecoE1039Data.C
- Check whether there is the fiber hodoscopes hits in the expected position.
- Large angle of cosmic muon and low rate making this measurement hard without proton beam delivery

