

The vacuum system of the LHC experiments Achievement and challenges for the future

Josef Sestak, on behalf of TE-VSC

6th of October 2023

Content of the presentation

- The complexity of the vacuum system of LHC's experiments.
- Material, mechanical stability and manufacturing constraints.
- Production steps, installation and performance of experimental beampipes.
- Interface between the machine and LHC experiments.
- Present issue with Be pipes manufacturing.

LHC Experimental beam vacuum

Beam vacuum sectors located in the LHC experimental caverns

The CERN accelerator complex Complexe des accélérateurs du CERN

 \downarrow H⁻ (hydrogen anions) \downarrow p (protons) \downarrow ions \downarrow RIBs (Radioactive Ion Beams) \downarrow n (neutrons) \downarrow p (antiprotons) \downarrow e⁻ (electrons) \downarrow μ (muons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator //

n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

4

ATLAS forward region chamber within carbon cone support

CMS with End-Cap and HC-CT2 chambers installed

CERN

ALICE central chamber with ½ tracker installed

(CERN)

The complexity of the beam vacuum system of LHC's experiments

For physics performance, the best vacuum chamber is no vacuum chamber.

Unknown physicist

Main challenges & Design approach

The best solutions come from the cooperative effort of many stakeholders.

A delicate balancing act several seemingly conflicting objectives!

Vacuum Design Approach

Material, mechanical stability and manufacturing constraints

Straight tube is sometimes more than straight tube.

Detector performance and material selection for vacuum chambers

716.4 ·A

Transparency

Distance that colliding particle travels without interacting with surrounding material nuclei.

Radiation length
$$X_0 = \frac{716.4 \cdot A}{Z \cdot (Z+1) \cdot \ln(\frac{287}{\sqrt{Z}})}$$

Applies for light particles

$$\Box \text{ Interaction length } \lambda = \frac{A}{N_A \cdot \sigma \cdot \rho}$$

Applies for particles with strong interaction

	X _o [mm]	λ [mm]
Beryllium	353	418
Aluminum based alloys	≈ 89	≈ 287
Ferrous based alloys	≈ 18	≈ 130

where Z is atomic number; A atomic mass; N_A Avogadro's number; σ inelastic nuclear cross-section and ρ density of the material.

Detector performance and material selection for vacuum chambers

- Beryllium S-200-F (98.5% pure Be)
 - Powder metallurgy
 - Processed by vacuum or hot isostatic pressing

Aluminum EN-AW-2219

- Copper based aluminum alloy
- Mechanical properties at elevated temperatures
- Main segments of the chambers & flanges

Aluminum EN-AW-5083

- Magnesium based aluminum alloy
- Mechanical properties at elevated temperatures
- Corrosion resistance and weldability
- Cold-worked sheets 0.3 mm for aluminum bellows

40 5 20 10 20 10 0 200 400 600 800 1000 1200 1400 1600 1 CMS FLUKA Study v.3.7.8.1 Z [cm] ent made of aluminum reduces dose

Current Beampipe in LS4 - 1 Week Cooling

400 600 800 1000 1200 1400 1600

Z [cm]

Phase2 (v.5.4.1) Beampipe in LS4 - 1 Week Cooling

60

50

40

30

20

10

50

200

CMS FLUKA Study v.3.15.21.0

R [cm]

Detector performance and material selection for vacuum chambers

- Aluminum EN-AW-2219
 - Challenging microstructural requirements grain size

CERN specification 10 grains per wall-thickness For wall-thickness 1mm

Average grain size 100µm

Image 1 specimen A04: Transversal section

Ring rolling of AW2219 for CERN vacuum chambers

Fig. 2: microsection B366/4

Mechanical stability (structural analysis) ALICE upgrade for LHC Run4

Two projects with a significant impact on the vacuum layout are expected:

- New Vertex detector (ITS3) the innermost layer positioned at only 18 mm (radially) from the interaction point.
- New Forward Calorimeter (FoCal), requires a low material budget within pseudorapidity angle $3 < \eta < 6$.

A. Collaboration, "Letter of Intent for an ALICE ITS Upgrade in LS3," ALICE-PUBLIC-2018-013, 2018. A. Collaboration, "Letter of Intent : A Forward Calorimeter (FoCal) in the ALICE experiment," CERN-LHCC-2020-009, 2020.

Mechanical stability (structural analysis) ALICE upgrade for LHC Run4

Mechanical stability (structural analysis) ALICE upgrade for LHC Run4

5643 mm (Free Length)

Inner surface of the chamber coated by NEG (at CERN).

Temperature range for experimental chambers -40°C (during operations) to 250 °C (during commissioning). Chamber operates at magnetic fields \approx 2T.

Mechanical stability (structural analysis)

ALICE central chamber use-case

. Static Structural

Equivalent (von-Mises) Stress - Central Beam Pipe Without Bellows - End Time Type: Equivalent (von-Mises) Stress

Natural Frequencies in Operation [Hz]: 52.3, 79, 183, 229.3

Buckling Analysis in Acceptance Test Configuration

(Bake-Out Expansion : 20 mm [@250°C])

Linear Local Buckling Analysis

P _{crit} [bar]	
24.5	
43.8	
35	
35	
	24.5 43.8 35

Non-Linear Analysis of most critical segment:

Manufacturing constraints

Max. workpiece size ≈ 1.5m Resolution ≈ 50 µm

• Precise machining of long tubular & conical segments

- OD/L ratio \approx 1/20; segments with length up to 1000mm;
- Stability during the machining (tolerances of straightness, circularity and concentricity during the welding);
- Wall-thickness variation for thin segments 0.8mm 1mm shall not exceed 0/+0.1mm;

Manufacturing constraints

Vacuum requirements

- Surface cleanliness according to the CERN standards for UHV and NEG coating.
- Leak tightness (not exceeding 10⁻¹⁰ mbar·l·s⁻¹).
- Outgassing rate (not exceeding 10⁻⁷ mbar·l·s⁻¹ measured after bake-out cycle).
- Acceptable ratios for RGA mass peaks (residual gas composition).

• Welding requirements

- Fusion welding TIG or electron beam welding (No filler material allowed).
- Number of welds to be minimized; No longitudinal welds are allowed; Weld envelope control.
- Quality requirements ISO 13919-2 Level B (for EWB) ISO 10042 Level B (for TIG).

Production steps, installation and performance of experimental beampipes Process covering full equipment lifecycle

After the chambers left the workshop, TE-VSC was responsible for a lengthy post-production process:

Chemical Cleaning

Permanent Insulation Installation

HF-CT2 Beam Pipe Endoscopic Inspection

Contactless Endoscopy:

- General imperfections.
- Conformity of functional features.
- Sealing surfaces.
- Internal surface integrity.

Surface treatments (etching & degreasing

Surface treatments:

- Removal of potential surface contaminants.
- Removal of machining history (surface texture) to improve coating adhesion.

NEG coating:

- Major production milestone.
- In some cases, considered as irreversible step.

Final NEG Acceptance Test:

All beam pipes are free of contaminants. Ultimate pressures measured at 10⁻¹² mbar range.

CMS central chamber installation during Long Shutdown 2

Front-end interface between IP sector and beam vacuum system of the machine

- Green zone (for ATLAS & CMS +/-19m from IP1 & IP5)
 - Experimental requirements are driving element for the design of beam vacuum system.
- "Machine to Experiment" (for ATLAS & CMS +/- 22.18 +/-19m from IP1 & IP5)
 - Experiment has limited requirements on the equipment within the zone.

Forward "VAX" equipment is by its function indispensable for the experiment – Venting using ultra-pure neon every year

Interface between the machine and LHC experiments ATLAS Experiment upgrade for Run4 (2029)

Interface between the machine and LHC experiments CMS Experiment upgrade for Run4 (2029)

Present issues with beryllium beam-pipes manufacturing

Manufacturing of transparent chambers and its challenges

Present issues with beryllium beam-pipes manufacturing

CERN qualification criteria for production of beryllium chambers (chamber supply)		
	In-house / Outsourcing as requested by CERN	
Project management	In-house	
Detailed Design	In-house	
Raw material	Can be outsourced	
Machining	Can be outsourced	
Cleaning	CERN insourced	
Welding	In-house	
Testing	In-house	

No member state nor non-member state company with proven (or applicable) experience was qualified for the upcoming production campaign.

- CERN is looking for machining vendors capable of:
 - Machining of tubular and/or conical segments made of S-200-F beryllium metal (99.5% beryllium).
 - Assuming length of segments (750 mm 1000mm) and precision as shown on slide 24.

Thank you for your attention

home.cern

