

Vacuum for thermal insulation of cryogenic equipment

Jose A. Ferreira Somoza (TE-VSC-IVO)

6th of October 2023

What is a cryostat?

- A cryostat (from cryo meaning cold and stat meaning stable) is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat [Wikipedia]
- \Box 1892 James Dewar invents the "Dewar". 1898 allows him to liquify $\rm H_2$
- □ Vacuum for thermal insulation

PUMA

experiment

Cryostat functions (for accelerators)

- > Mechanical housing of cryogenic devices (supporting systems):
 - Supporting of (sometimes heavy) devices (i.e. superconducting magnet)
 - Accurate & reproducible positioning (almost always)
 - > Precise alignment capabilities
 - > Accommodate thermal contraction during cooldown and vacuum forces.
- > Thermal efficiency of the cryostat (heat loads as low as possible):
 - > Cooling capability
 - > Insulation vacuum (pumping system)
 - > Thermal radiation shielding (screens, MLI)
 - > Low heat conduction (low thermal conductivity materials)

Often conflicting \rightarrow Design optimization

Other considerations:

- □ Instrumentation (vacuum, cryogenic, magnet, beam, etc.)
- □ Cryogenic piping
- □ Safety elements (burst disks, safety valves, etc.)
- Transport
- ...

Insulation vacuum requirements

- □ Operational temperature(s) (defined by the magnet, SC cavity, etc.)
- □ Maximum operational pressure (thermal insulation and cooling power)
- □ Components under vacuum (outgassing rate at room temperature, vacuum quality, dust, etc.)
- □ Operation during transient events (i.e. quench creates temperature excursions → Pressure excursions)

These aspects define the type of pumping and pumping capacity

Temperature and operational pressure

Outgassing

□ The main gas sources of any vacuum system are:

- Outgassing of materials
- □ Leaks (air to vacuum and He to vacuum)
- □ Permeation (elastomer seals)

Outgassing: Material and temperature

- \Box Polymers (MLI, instrumentation, cabling, seals, etc.) \rightarrow high outgassing
- □ Metals: Low carbon steel, stainless steel, aluminium
- $\hfill\square$ At cryogenic temperature \rightarrow No outgassing

Main considerations about outgassing:

- Room temperature outgassing defines the first pumpdown (time, water vapor, etc.). Material selection important for insulation vacuum!
- ◆ Pumping big flows of water vapor → Ballast, oil recovery, etc.
- ◆ No cryo-pumping at room temperature → Insulation vacuum should be good enough for first cooldown
- Outgassing of hydrocarbons (contamination) can impact delicate elements sharing insulation vacuum (i.e. superconducting cavities)
- Room temperature surfaces will outgas (even measured pressure is low)

MLI (Multi-Layer insulation)

Outgassing in cryostats is normally dominated by MLI

For an LHC insulation vacuum sector:

Area: 250 m²/m

Length of MLI 214 m \rightarrow 7.5 football fields (53000 m²)

Exposed to ambient air for several weeks $\rightarrow \sim 10^{-3}$ mbar at RT after ~ 200 hrs pumping S ≈ 100 l/s

Equivalent to $\sim 2 \times 10^{-10} \text{ mbar} \times 1/\text{s/cm}^2 \rightarrow \text{SS}$ outgassing at 200h $\sim 1.5 \times 10^{-11} \text{ mbar} \times 1/\text{s/cm}^2$

6/10/2023

1.0E-03	E		Ľ		0005		
	E	\mathbf{N}			-9B05		
	ł	A			2-9B08		
1.0E-04	-	2			9B + KN-20 9B + KN-20	H	
	ŧ			-x- SUS30	4(ECB) J-PA	RC	
	F		P				
1.0E-05			-1/				
	E		14	\			
	ł	×	À	1			
1.0E-06	ł	X	×	\ \			
	E		X	1/			
	ł		×	/ /8	a		
1.0E-07				XX			
	E			X	× No	8	
	ł				200		
1.0E-08						استنب	~
	1.0E-03 1.0E-05 1.0E-06 1.0E-07	1.0E-04 1.0E-05 1.0E-07	1.0E-04 1.0E-05 1.0E-06 1.0E-07	1.0E-04 1.0E-05 1.0E-06 1.0E-07	1.0E-04 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08	1.0E-04 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08	1.0E-04 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08

Fig. 6 Outgassing rates for MLIS. Results for three new materials (KFL-9B05, KFL-9B07, and KFP-9B08), and a conventional MLI (KF-9B+KN-20) are shown. As a reference, the rate for stainless steel processed by electrochemical buffing is also shown.

	Cryomagnet	QRL
Volume (m ³)	80	85
Length (m)	214	428
MLI (m ² /m)	200	140
Sectors per arc	14	7

Table 5.2: Main characteristics of the insulation vacuum sectors.

LHC Features:

- □ 1 blanket (10 reflective layers) on cold masses (1.9K)
- □ 2 blankets (15 reflective layers each) on Thermal Shields (50-65K)
- □ Reflective layer: double aluminized polyester film
- □ Spacer: polyester net
- ❑ Stitched Velcro™ fasteners

Maximum leak rate (LHC)

- Maximum insulation vacuum degradation <10⁻⁴ mbar
- > Assume no pumping, accumulation for 200
 days
- > One vacuum sector capacity ~ 100 mbar×l
 of He (53000 m²)
- > Maximum leak rate < 5×10⁻⁶ mbar×l/s
- > Apply cold/warm correlation for leak rates (x1000 at cold) < 5×10⁻⁹ mbar×l/s (total leak rate)
- For individual components <10⁻¹¹ mbar×l/s
- Fixed turbopumps during thermal cycles and as 'backup' in case the tightness specification cannot be immediately reached

Theoretical leak rates of a tubular leak of 80 nm diameter and 1 mm long

Fig. 11: Helium adsorption isotherm measured on a stainless-steel tube from 1.9 to 4.2 K [47].

Leak detection methods

TEST METHOD

Leak detection with clam-shell

EN 1779:1999

Pumping of reduced volumes

Particularly interesting for helium polluted circuits (i.e. magnets cold tested in helium)

LHC arcs and LSS (Long Straight Section)

6/10/2023 JAFS | Vacuum for thermal insulation of cryogenic equipment

LHC arcs and LSS (Long Straight Section)

Arcs: - 8 x 2.8 km = 22.4 km - SC magnets in a continuous cryostat

LHC arcs and LSS (Long Straight Section)

LSS (Long Straight Sections):

- up- and downstream of the experiments
- $-8 \times 2 \times 250 \text{ m} = 4 \text{ km}$
- room temp and standalone cryo-magnets

6/10/2023 JAFS | Vacuum for thermal insulation of cryogenic equipment

LHC insulation vacuum

Characteristic	Quantity for LHC machine & distribution line (QRL)		
Insulation vacuum system length	22,4 km & 25 km		
Welds	~ 250 000 (90 000 in- situ)		
Weld length	~ 100 000 m		
Elastomer joints	~ 18000		
Elastomer joint length	~ 22 000 m		
Multi-layer insulation	~ 9 000 000 m ² or 200 m ² /m of cryostat		
Vacuum subsectors	234		
Vacuum subsector length	214 m (machine) & 428 m (QRL)		
Vacuum subsector volume	$\sim 80 \text{ m}^3$		
Fixed turbo pumps	178		
Nominal turbo pumping speed	0,25 l/s/m of cryostat		
Fixed vacuum gauges	974		
Mobile turbo pumping groups	36		
Mobile primary pumping groups	36		

CERN AC _HE107A_ V02/02/98

Layout IV vacuum sector

Typ_ins2, P. Cruikshank 22/01/08

Safety valves

Example LHC dipole cryostat procurement

Main features:

- Pipeline standard size: 36-inch OD (1013 mm), 12-mm thick, low carbon steel (DIN GS-21 Mn5) tubes
- St. steel extremity flanges
- Material resilience: > 28 J/cm2 at -70°C
- Forged cradles, welded rings reinforcements
 - Dimensional stability:
 - Stress relieving
 - Final machining to achieve tolerances at interface

Production:

- 1250 units
- 2 firms
- 4 yrs of production

Other cryogenic systems: HIE-ISOLDE

- ➢ Beam vacuum and insulation vacuum common space → UHV requirements! (cleaning, etc.)
- ➤ In contact with RF superconducting cavities → Clean room assembly (ISO 5)
- > Dust movements have to be considered during pumping and venting
- > Thermal screen actively cooled. Helium
 gas at 50K@12 bar.
- > Liquid helium at 4.5 K to common reservoir, distributed to cavities, solenoid and support frame.

Other cryogenic systems: HIE-ISOLDE

- ➢ Beam vacuum and insulation vacuum common space → UHV requirements! (cleaning, etc.)
- ➤ In contact with RF superconducting cavities → Clean room assembly (ISO 5)
- > Dust movements have to be considered during pumping and venting
- > Thermal screen actively cooled. Helium
 gas at 50K@12 bar.
- Liquid helium at 4.5 K to common reservoir, distributed to cavities, solenoid and support frame.

Cryo-module slow pumpdown

- ➤ To prevent dust transport → slow pumpdown required
- > Big volume of the vessel $(3, 5 m^3)$
- > 3D laminar flow simulation using COMSOL
- > One dry pump S<30 m³/h → flow speed <
 10⁻² m/s around cavities (Re<200)</pre>
- ➤ Each cryomodule equipped with 2×700 l/s turbopumps to cope with possible He leaks → Operation with leaks <10⁻⁶ mbar×l/s

Operation: Warm-up analysis

6/10/2023

Other cryogenic systems: PUMA

- □ Open cryotrap \rightarrow Objective pressure 10⁻¹⁷ mbar inside the trap to store antiprotons
- □ Dry cryostat (cryocoolers) at 50K/4K
- Portable trap for transport to a different facility

 \Box No risk of He leaks ostat (50 K □ Common beam and insulation vacuum support structure cryostat (4 K) (300 K - 50 K) support structure einzel lens (50 K) 50 K - 4 K conductance reducer collision trap storage trap cryogenic ball valve gate valve support structure (300 K - 50 K) rotatory motion feedthrough turbomolecular pump

6/10/2023 JAFS | Vacuum for thermal insulation of cryogenic equipment

PUMA: Modelling pressure evolution (cryosorption)

Fig. 11: Helium adsorption isotherm measured on a stainless-steel tube from 1.9 to 4.2 K [47].

□ Insulation vacuum is required primarily for thermal insulation

□ Two main design aspects:

- Maximum admissible leak rate
- □ Required pumping type and speed for pumpdown at room temperature, operation and transients ←→ Outgassing rate. From continuous mechanical pumping to cryo-condensation and cryo-sorption
- The main driver for the definition of those aspects is the required operational temperature and pressure
- □ Other aspects: vacuum quality (beam vacuum?), dust presence, etc.
- Government Strong interconnection with all other systems (cryogenics, magntes, RF, alignment, etc.)

Thank you for your attention!

References

- P. Cruikshank, Overview of the LHC Insulation Vacuum: Performance, Troubles and Possible Improvements, TE-VSC Seminar May 2010, https://indico.cern.ch/event/83074/
- V. Parma, Cryostat Design, CERN Accelerator School Superconductivity for Accelerators, Erice, Italy, 24 April - 4 May 2013 https://indico.cern.ch/event/194284/contributions/1472773/
- P. Chiggiato, Vacuum Technology for Superconducting Devices, CERN Accelerator School Superconductivity for Accelerators, Erice, Italy, 24 April – 4 May 2013 https://indico.cern.ch/event/194284/contributions/1472802/
- □ S. Takada, Y. Sato, et al, *Measurement of Outgassing Rate from the Aluminized Polyester* Film of Multilayer Insulation, Journal of the Vacuum Society of Japan. 57 (2014) 233–238
- □ W. Maan, Typical test methods to leak test cryogenic circuits, EDMS 1281913, https://edms.cern.ch/document/1281913
- □ P.D. Bentley, The modern cryopump, Vacuum. 30 (1980) 145–158

