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Surface analysis and properties for 

CERN’s accelerators 
Mauro Taborelli, TE-VSC

OUTLINE:

Why surface analysis for accelerators?

Surface cleanliness and its assessment

Measurement of surface properties; the case of the Secondary Electorn Yield (SEY).

Laser surface treatment for low SEY
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Surface analysis is used to measure the chemical composition and physico-chemical 
properties in a shallow depth of material

Why surface analysis?

surface

Vacuum:

Thermal 

outgassing

Vacuum: beam

induced

outgassing

Therefore, we need to characterise the surfaces facing vacuum

Particle beam: 

electron cloud
Particle beam

induced surface 

modifications

Vacuum: active 

pumping surfaces
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Surface analysis by X-ray Photoemission Spectroscopy (XPS)
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Source
X-rays

Energy 
analyser
(CMA)

UHV chamber

Surface analysis by X-ray Photoemission Spectroscopy (XPS)

Principle

sample

e-

e-

e-

At CERN we have at present 3 instruments, one of them able to 

measure down to cryogenic temperature (10K), another up to 400C 
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XPS performance

5

➢ Measures chemical composition (elements) in a surface layer, the topmost 2-5 nm of material

➢ Detection limit for elements 0.1 at.% or better

➢ Lateral resolution  200 µm

➢ Depth profiling (destructive by Ar+ ion etching) up to  2 µm

➢ In many cases sensitive to chemical bonds (metal atom bound to oxygen=oxide vs metallic 

surface etc…)

➢ Regularly used in industrial process control (semiconductor industry, thin film coatings etc…) 

➢ Analysis generally performed in UHV, but systems exists up to 100 mbar

10/6/2023
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XPS for cleanliness analysis for UHV applications

Define criteria for 
cleanliness: 
for instance threshold
for carbon at%

Sensitivity depends on 
the substrate, but is
well below 1mg/cm2

316LN

10/6/2023
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How fast do we get contamination after cleaning?

This tells also which cleanliness level we can require/achieve for surfaces exposed to air

Example of copper

10/6/2023
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Examples: XPS for cleanliness analysis for UHV applications

Comparison of detergent cleaning with and 
without ultrasonic agitation

Without US With US
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Quality control of thin getter films by XPS:

❑ Heating in-situ, in UHV, stepwise for 
1h at each T

❑ Decrease of O on the surface
❑ Reduction of the oxides of all the 

metals: the surface is metallic and 
reactive

Ti

Zr

V

Surface O decrease
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At CERN we use a TiZrV alloy getter
By XPS we verify:
- the proper ratio of the 3 metals
- the activation kinetics by dissolution in the film 

of the surface oxygen of the airborne oxide

Oxidised

Metalllic
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The secondary electron yield: SEY

number of emitted electrons  (secondary) 

number of impinging electrons (primary)
SEY=

SEYmax = maximum value as a function of primary energy
Emax = primary energy of the maximum

It is the main material parameter influencing electron cloud 

secondaries

Primary e-
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++++

Proton bunch (charge +)

Electron (charge -)

• The particle beam is perturbed by the electron multiplication
• Cryogenic parts of the accelerator vacuum vessel are submitted to heat load
• The vacuum is deteriorated due to electron stimulated desorption (noise in the experiments, 

radiation…..)

e-cloud is suppressed by a sufficiently low secondary electron yield of the walls, close to 1.

Gas molecule

What is electron cloud ?
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electron source

Ip = Is + Ic

d = Ic / (Is + Ic) 

Sample

Ip

Ic

AIs

A

Ic

Measurement of Secondary Electron Yield on materials in the lab

• Measurements done at low dose (below 10-6 C/mm2) to avoid conditioning of the surface

• 3 systems at CERN, coupled with XPS in the same UHV chamber
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After air exposure and thermal activation in vacuum TiZrV NEG thin films can provide a 
surface with sufficiently low SEYmax :

activate 
at 200C 2h
measure at 
RT

-Thermal activation is necessary: 2h at 200C or 24h at 180C
-Applied in all Long Straight Sections (RT) of LHC and in the experimental chambers, 7 Km 
of coating

Henrist et al.
Appl.Surf.Sci,
2001
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SEY of Non Evaporable Getter (NEG) coatings
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XPS C1s

Amorphous carbon coatings for low SEY

*
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Y
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• carbon coatings were developed at CERN to obtain low SEY surfaces
• some issues of reproductibility of the SEY lead us to study the effect of H contant
• we could correlate the presence of H2, as contaminant, in the process gas with a change in 

SEY and C1s XPS spectral shape 
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e-
e-

Reduction of the Secondary Electron Yield by roughness

A structure with high aspect ratio hinders the emission of electrons
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Laser Surface Structuring to reduce the Secondary Electron Yield

• focussed high power ultra-short-pulsed laser modifies the surface properties of the material
• pulsed laser source (1030 nm, 20W, 1 ps, 500 kHz), (532 nm, 25W, 10 ps , 100KHz) 
• 30 mm/s line treatment, 50 mm pitch  
• Effective treatment speed of the order of  100 s/cm2

15-18 m

Scanning modes on the surface
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50 mm

Treat tubes and beamscreens: crawling robot
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Laser Surface Structuring to reduce Secondary Electron Yield

10/6/2023



Vacuum, Surfaces & Coatings Group

Technology Department 10/6/2023 19

Thank you for 
your attention
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Special case: silicones contamination detection by Fourier 
Transformed Infrared Spectroscopy

❖ Dissolve the contamination in a fixed
quantity of solvent (hexane) per 
surface unit

❖Analyse a drop of solvent on an IR 
transparent window (ZnS) and 
calculate back the surface coverage of 
silicones

Problem: XPS does not manage to distinguish silicones and silicates (present in detergents to 
cope with water hardness)

Solution: use FTIR

 C:\OPUS_NT\MEAS\OILS AND GREASES\RHODORSIL OIL; SILICONE OIL.0                    solid 2003/07/16
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SEY(Ep) of LHC beamscreen copper at RT 

air exposed, as-
received
beamscreen, copper
surface

Conditioning in the 
lab at Eirrad= 250eV

yield
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What happens to the surface? 

• Vanishing of Cu(OH)2 (surface cleaning): confirmed even in samples extracted from LHC 

• Decrease of carboxyl/carbonate contributions (surface cleaning)

• Shift of C1s peak to lower binding energy (graphitization): confirmed partially in LHC samples

Stepwise monitoring by XPS during irradiation 

Cu 2p

Cu2O

O 1s C 1s
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Surface analysis of LHC components: extracted beam screens 1

10/6/2023 24

In high heat load beam screens
• Presence of CuO (not native copper oxide) with a field-related azimuthal distribution
• Very low amount of carbon at all azimuths

CuO signature

Investigation to understand differences of heat load on cryogenics arcs of LHC related to e-cloud
May-August 2019: extraction of beam screens hosted in one high and one low heat load dipole magnet  
and characterisation of their surface in the laboratory
→ Surface chemistry (X-ray photoelectron spectroscopy)
→ Secondary Electron Yield 
→ Electron conditioning behaviour

Beam 1 Beam 2Low 
heat load

High 
heat load

Dipole field region Field-free region

Cu2O CuOCu2O + Cu(OH)2

G
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Electron 
density 

distribution

V. Petit et al., Commun. Phys. 4, 192 (2021)
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Differences in surface composition of beam screens extracted in LS2 from high and low 
heat-load dipoles and SEY conditioning behariour in the lab

CuO signature

Cu2p
different 
decrease if 
Secondary 
Electron Yield 
with dose 
(=operation) 

More electron cloud
More heat load 

Surface analysis of LHC components: extracted beam screens 2
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