

Search for boosted light Higgs bosons in NMSSM cascades

Mehrnoosh Moallemi (RAL & University of Southampton) Joel Goldstein, Mei-Li Holmberg, Jacob Linacre, Stefano Moretti, Giovanna Salvi, Claire Shepherd-Themistocleous, Ian Tomalin

July 2024

$\hfill\square$ Introduction to NMSSM

- □ Signal Model
 - Event Selection

□ Squark Mass reconstruction

- ➤ Methods and Approaches
- Squark Mass Binning
- > Performance comparison

□ Summary and conclusion

Outline

Introduction

- ✓ Next-to-Minimal Supersymmetric Standard Model (NMSSM)
- ✓ Additional singlet super field
 - $\circ~$ along with the typical MSSM contents
- ✓ Richer Higgs Sector:
 - $\circ~$ By including the additional singlet
- $\checkmark\,$ It predicts a spectrum of

NMSSM

three CP-even Higgs bosons two CP-odd Higgs bosons two charged Higgs MSSM

two CP-even Higgs bosons one CP-odd Higgs bosons a charged Higgs pair

- ✓ There are 7 Higgses in total
 - $\circ~$ the lightest Higgs can be lighter than the SM Higgs!

Signal Model

Signal Model

LSP is light and mass splitting between Higgs and NLSP small

Light Higgs is highly boosted and there is little MET

Signal Model

Light Higgs mainly decays to a pair of b-quarks, $b\overline{b}$, and is reconstructed as an AK8 Jet

Our previous published(HIG-20-018) analysis can be found here:

Search for light Higgs bosons from supersymmetric cascade decays in pp collisions at $\sqrt{s} = 13$ TeV, <u>arXiv:2204.13532</u>

Ellwanger, U., Teixeira, A.M. NMSSM with a singlino LSP: possible challenges for searches for supersymmetry at the LHC. J. High Energ. Phys. 2014, 113 (2014). https://doi.org/10.1007/JHEP10(2014)113

- All the light-flavour Squarks are considered mass-degenerate at the mass called m_{SUSY} .
- Gluino-Squark mass splitting is set to 1%
 - All $\tilde{q}\tilde{q}, \tilde{q}\tilde{g}$ and $\tilde{g}\tilde{g}$ events have similar final states

The cross-sections for the SUSY mass $m_{SUSY} > 1200 \text{ GeV}$

$m_{ m SUSY}[m GeV]$	$\sigma(pp \to \tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g})$ [fb]	Uncertainty
1200	582.3	8%
1400	194.1	9%
1600	69.71	9%
1800	26.29	10%
2000	10.29	11%
2200	4.114	13%
2400	1.668	14%
2600	0.6792	16%
2800	0.2765	18%
3000	0.1117	21%
3200	0.04512	24%

Event Selection

In the published analysis:

Requesting 3 Jets:

≻ Two AK8 Jets

- $p_T > 300 \, GeV$
- |η| < 2.4
- ➢ At least one AK4 Jet (Jet radius 0.4)
 - $p_T > 300 \, GeV$
 - |η| < 2.4
 - $\Delta R_{Ak4,Ak8} > 1.4$
- $> H_T$ (scalar sum of jet p_T) binning
- ➢ Further binning using AK8 Jet properties
 - Simple mass reconstruction based on Softdrop
 - Double b-tagging using BDT

n=0.88

_{θ=10}⊶η=2.44

θ=0°→η=∞

η=0

θ=90°

 $\theta = 45$

Event Selection

For Run₃:

Using ParticleNet for double-b-tagging and FatJet mass regression

➢ Introducing Squark mass reconstruction

Requesting 4 Jets:

2 Jets for Higgs & 2 Jet for Quarks

BUT we use Run2 Monte-Carlo simulation for now

- In the published analysis: QCD >> $t\bar{t}$
- After using ParticleNet double-b-tag on QCD: QCD ~ $t\bar{t}$
- After applying new selections on $t\bar{t}$: QCD >> $t\bar{t}$

XIV NExT PhD Workshop

Squark Mass

+

0

Squark Mass

Since LSP is soft, the Squark can be reconstructed as *Quark* + *Higgs*

Mass Reconstruction: Method

- Sort Jets based on the b-tag score and take the first two as Higgs
- Sort the remaining Jets based on p_T and take the first two as Quark

Mass Reconstruction: Method

- Reconstruct SquarkA with AK8 with the highest b-tag score (JetA)
- Reconstruct SquarkB with AK8 with the second-highest b-tag score (JetB)

Always choose the pair with Squark mass more similar to each other i.e: Choose the pair with the minimum | mass_{SquarkA}-mass_{SquarkB}|

Mass Reconstruction: binning

• Sum of masses: $mass_{SquarkA} + mass_{SquarkB}$

Mass Reconstruction: binning

- Each mSUSY has its own narrow peak
- Use binning on the total mass

Mass Reconstruction: binning

- Each mSUSY has its own narrow peak
- Use binning on the total mass
- Difference of masses: | mass_{SquarkA}-mass_{SquarkB}|

Mass Grid

- > Define a mass grid for different mSUSY mass
- Based on mass resolution we propose 7 different mass bins

H_T Binning VS Mass Binning

Squark mass is a more powerful variable for binning compared to H_T binning

H_T Binning VS Mass Binning

Squark mass is a more powerful variable for binning compared to H_T binning

Summary and Conclusion

- ✓ Introduce Squark mass reconstruction
- ✓ Add mass grid for Squark
- ✓ Retain H_T binning in parallel for general interpretation (less model-dependent)
- \checkmark Using Mass binning for model-dependent interpretation
 - \circ Expect improvement in mass reach

17/7/24

+ 0

Backups

+ 0

CERN Plan

Mass Reconstruction: 4Fatjets VS 2AK4+2AK8

- Comparing the first and second approach for Squark mass reconstruction
- Calculated significance for Squark mass after only applying kinematic selections

4 Fatjets method gives better Squark mass resolution!

Still using Run2: using AK4chs VS AK8Puppi

17/7/24

mSUSY3200