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What is a PBH? And motivations
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> A hypothetical type of Black holes that
“Possibly” formed during radiation
domination.

> By several mechanism:
 Including the collapse of large density
fluctuations (more on this to come)
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» There are a few types of black holes, but why PBHs?
(motivations)

They need no new particles neither a new
physics to be the DM.

Their potential formation time makes them
an excellent DM candidate.

They could be a significant fraction of
dark matter.

They also offer insights into the early
universe.
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e The potential formation time of PBHs allows their initial masses to
range from about (1 g < MPBH < many solar masses )

5
MPBH ~10 q
heavy PBHs light PBHs

° 15
Quick muss (Migy>109) | evaporating (Mg <109)

e The evaporation time is a function of MPBH.
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Hawking
radiation

Spacetime

Hawking
radiation

e Ultra-light PBH could in principle experience Hawking evaporation
perhaps into Planck mass relic.
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The fraction of DM as PBHs: frsH
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The abundance of PBHs :

Describes the total energy
— density at formation that
Geq a would have fallen into PBHs.

8 = PPBH _ PiPBH B P%%H ( aj

= =
Prot |, Pr Ptot
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The abundance of PBHs : {3
8= PPBH _ PiPBH _ PPBH

= =
Prot |, Pr Ptot

density at formation that

( : _ Describes the total energy
Ueq a would have fallen into PBHs.

e No PBH yet has been detected.
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The abundance of PBHs : {3

Describes the total energy
density at formation that
would have fallen into PBHs.

No PBH yet has been detected.

light PBHs is constrained by the
effects of their Hawking
radiation on today's

. ¢ in=15 |
observations. 10715 |

heavy PBHs can be typically 10-20 :
seen through their lensing,
dynamic and gravitational s |
effects on other astrophysical '
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Carr, Bernard, et al. "Constraints on primordial black holes."
Reports on Progress in Physics .116902 :(2021)84.11
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The abundance of PBHs : {3

Describes the total energy
density at formation that
would have fallen into PBHs.

No PBH yet has been detected.

light PBHs is constrained by the
effects of their Hawking
radiation on today's
observations. 19T Planck

heavy PBHs can be typically
seen through their lensing,
dynamic and gravitational
effects on other astrophysical
objects and processes

Inflation
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Carr, Bernard, et al. "Constraints on primordial black holes."
Reports on Progress in Physics .116902 :(2021)84.11
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PBH domination era.

One can assume that universe formerly E

Papanikolaou, T., Vennin, V., & Langlois, D. (2021).

experienced an early matter-dominated epoch in  Srtaionawaes o o universe fledwin
which PBHs predominated after the standard RD.

This is not a constraint on {8 but rather a limit.

Why such an era is interesting?

-
end of inflation
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The fraction of DM as PBHs: frsH
PrW

A

MicroLensing
ePBH.d era vaporation Accretion
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This window of a great interest
as normally the power spectrum
is small on large scales
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Planck relics
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Early PBH Dominance
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We talked abeul..

DM might not be a new particle. Moreover, if it is BHs, it has to be
primordial.

PBH evaporating into Planck mass relics:
Opens a unique window that explains all DM.

Tightens the observational constraints on 3 for light masses,

which applies into freH.
most importantly: it provides a meaningful interpretation of
fPBH at small scales.

Having an early PBH domination era set an additional constraint on
fren from accounting for all the DM today.

Further discussion: Stochastic gravitational waves are the key probe
when explaining how the PBH relics have formed.

UNIVERSITY :







Diffuse emission from black hole remnants

Sina Kazemian,'» * Mateo Pascual,’> T Carlo Rovelli,> %% and Francesca Vidotto!s 2+ %

I Dept. of Physics & Astronomy, Western University, N6A 3K7, London ON, Canada
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Y Aix Marseille University, Université de Toulon, CNRS, CPT, 13288 Marseille, France
4 Perimeter Institute, 31 Caroline Street North, N2L 2Y5 Waterloo ON, Canada
(Dated: May 5, 2023)

At the end of its evaporation, a black hole may leave a remnant where a large amount of information
is stored. We argue that the existence of an area gap as predicted by Loop Quantum Gravity removes
a main objection to this scenario. Remnants should radiate in the low-frequency spectrum. We
model this emission and derive properties of the diffuse radiation emitted by a population of such
objects. We show that the frequency and energy density of this radiation, which are measurable in
principle, suffice to estimate the mass of the parent holes and the remnant density, if the age of the
population is known.

Kazemian, S., Pascual, M., Rovelli, C., & Vidotto, F. (2023).
Diffuse emission from black hole remnants. Classical and
Quantum Gravity, 40(8), 087001.
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Breakdown of Hawking Evaporation opens new Mass Window for
Primordial Black Holes as Dark Matter Candidate
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ABSTRACT
The energy injection through Hawking evaporation has been used to put strong constraints on primordial black holes as a
dark matter candidate at masses below 10'7 g. However, Hawking’s semiclassical approximation breaks down at latest after
half-decay. Beyond this point, the evaporation could be significantly suppressed as was shown in recent work. In this study, we
review existing cosmological and astrophysical bounds on primordial black holes taking this effect into account. We show that
the constraints disappear completely for a reasonable range of parameters, which opens a new window below 10'? g for light
primordial black holes as a dark matter candidate.
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Extreme scenarios: the tightest possible constraints
on the power spectrum due to primordial black holes

(2018), B. Chris...
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e The difference in densities
from the background.

e Note: generating a PBH can
not be achieved without
intersecting the line

Extreme scenarios: the tightest possible constraints
on the power spectrum due to primordial black holes
(2018), B. Chris...
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The abundance of PBHs as function of time for different B, and same initial mass

4Mpl
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The Universe The Universe

Expansion.

The number of particles =@® The number of particles = @®

Figure 2.2: The distribution of non-relativistic particles (matter) as the universe expands.
We can see that as the universe expands, the number of particles remains the same and

the volume becomes larger; therefore, the number density should scale as 12 o< a™ 3.

The Universe \ The Universe

Expansion,

The number of particles =@® The number of particles = {@®

Figure 2.3: The distribution of relativistic particles (radiation) as the universe expands.

We can see that as the universe expands, the number of particles remains the same and the

volume becomes larger; therefore, the number density should scale as nn o< a— 3. However,

the energy of every individual photon (any massless particle) depends on the wavelength

and scales as £, o AT oca T,
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