

Underlying Event Tuning for **XINCIA**

Baris Tuncay* Chris Hays Peter Skands

18.07.2024

*suatbaris.tuncay@physics.ox.ac.uk XIV NExT PhD Workshop

Pythia

Bierlich, C., Chakrabort, S., Desai, N. et al., "A comprehensive guide to the physics and usage of PYTHIA 8.3" (2022), DOI: 10.48550/arXiv:2203.11601

MECs, Matching & Merging

O Multiparton Interactions

Colour Reconnections Bose-Einstein & Fermi-Dirac Hadronic Reinteractions

ΡΥΤΗΙΑ

Bierlich, C., Chakrabort, S., Desai, N. et al., "A comprehensive guide to the physics and usage of PYTHIA 8.3" (2022), DOI: 10.48550/arXiv:2203.11601

MECs, Matching & Merging

O Multiparton Interactions

Colour Reconnections Bose-Einstein & Fermi-Dirac

(*: incoming lines are crossed)

Monte Carlo generators start the chain of simulation of SM physics

Physical predictions of QCD at different energy scales

ΡΥΤΗΙΑ

Bierlich, C., Chakrabort, S., Desai, N. et al., "A comprehensive guide to the physics and usage of PYTHIA 8.3" (2022), DOI: 10.48550/arXiv:2203.11601

MECs_Matching & Merging

O Multiparton Interactions

Colour Reconnections Bose-Einstein & Fermi-Dirac Hadronic Reinteractions

(*: incoming lines are crossed)

Parton shower:

 Perturbative emission of additional partons until $\Lambda_{\rm OCD} \approx 1 \ {\rm GeV}$

Output Physics processes are dependent on multiple parameters: Tuning Accurate modelling vital for precision SM measurements: m_W Predicted to high precision LEP, Tevatron, and LHC

CDF (2022): $m_W = 80433.5 \pm 9.4 \,\mathrm{MeV}$

- $2 \rightarrow 3$ branching
- Antenna-based
 - Soft + Collinear Limits in the • antenna function
 - PYTHIA's default shower: DGLAP
- Improved colour coherence
- No ATLAS dedicated tune

Skands, LoopFest V (2006) "Pythia and Vincia"

* VIrtual Numerical Collider with Interleaved Antenna

- $2 \rightarrow 3$ branching
- Antenna-based
 - Soft + Collinear Limits in the antenna function
 - PYTHIA's default shower: DGLAP
- Improved colour coherence
- No ATLAS dedicated tune

Default PYTHIA Shower

VINCIA Shower

Skands, LoopFest V (2006) "Pythia and Vincia"

- measurements
 - •
- Recoil calibration:
 - Correction for UE+pileup: $\sum E_T$

* VIrtual Numerical Collider with Interleaved Antenna

Beam remnants + Multiple Parton Interactions (MPI) Mismodelling \rightarrow high uncertainties for precision

Novel low-pileup m_W measurement by ATLAS

Probe UE with such observables

- $2 \rightarrow 3$ branching
- Antenna-based
 - Soft + Collinear Limits in the antenna function
 - PYTHIA's default shower: DGLAP
- Improved colour coherence
- No ATLAS dedicated tune

Default PYTHIA Shower

VINCIA Shower

Skands, LoopFest V (2006) "Pythia and Vincia"

- Beam remnants + Multiple Parton Interactions (MPI) Mismodelling \rightarrow high uncertainties for precision
- measurements
- Novel low-pileup m_W measurement by ATLAS Recoil calibration:
 - Correction for UE+pileup: $\sum E_T$ Probe UE with such observables

* VIrtual Numerical Collider with Interleaved Antenna

Why? Why Underlying Event (UE)?

Why Drell-Yan?

- Role in recoil calibration for m_W measurement
- Z boson is colour neutral and fully reconstructed

Peskin, M. E. and Schroeder D.V. (1995) "An Introduction To Quantum Field Theory" (p. 595). CRC Press.

- $2 \rightarrow 3$ branching
- Antenna-based
 - Soft + Collinear Limits in the antenna function
 - PYTHIA's default shower: DGLAP
- Improved colour coherence
- No ATLAS dedicated tune

Default PYTHIA Shower

VINCIA Shower

Skands, LoopFest V (2006) "Pythia and Vincia"

- Beam remnants + Multiple Parton Interactions (MPI) Mismodelling \rightarrow high uncertainties for precision
- measurements
- Novel low-pileup m_W measurement by ATLAS Recoil calibration:
 - Correction for UE+pileup: $\sum E_T$ Probe UE with such observables

* VIrtual Numerical Collider with Interleaved Antenna

Why?

Why Drell-Yan?

- Role in recoil calibration for m_W measurement
- Z boson is colour neutral and fully reconstructed

Peskin, M. E. and Schroeder D.V. (1995) "An Introduction To Quantum Field Theory' (p. 595). CRC Press.

PowhegBox matched to: 1. Default PYTHIA 8 Shower

- Monash tune
- 2. VINCIA
 - Own hadronisation parameters
 - Sensitivity: Monash

ATLAS Measurement of UE-Sensitive Observables for Drell-Yan Events

In Plane transverse to the beam:

ATLAS Collaboration, Eur. Phys. J. C 79 (2019) 666, DOI: 10.1140/epjc/s10052-019-7162-0

• Events with a muon-antimuon pair with an invariant mass near that of the Z boson, in pp collisions at $\sqrt{s} = 13$ TeV

♦ ATLAS Measurement of UE-Sensitive Observables for Drell-Yan Events

• Another divide based on transverse thrust T_1 :

Solution Low-thrust: $T_{\perp} < 0.75$

High-thrust: $T_{\perp} > 0.75$

Events with low thrust: largest relative contribution from UE MPI: most spherical energy distributions

Sensitivity I-MultipartonInteractions:pTOref • pTOref MPI • High sensitivity observed: in terms of total energy, little differential dependence

Baris Tuncay, 18.07.2024

Ξ

Sensitivity II-MultipartonInteractions:expPow

• Default: convolution of the form $exp(-b^{expPow})$

Baris Tuncay, 18.07.2024

500

Sensitivity III-ColourReconnection:range

- Probability of an MPI system to be merged with a harder one: pTOref and range • range : more colour reconnections
- A slope change needed for modelled profiles to match data

• Sensitivity IV: Shower α_s , Hard and Soft Intrinsic k_T • Considerable sensitivity to shower $\alpha_s \rightarrow \text{similar to pTOref}$ • Little sensitivity to hard and soft intrinsic k_T

The binnings of the differential distributions in N_{ch} , mean p_T , and $\sum p_T$ that are being fit during tuning Remains the same for all the p_T^Z bins

Baris Tuncay, 18.07.2024

8

• Sensitivity IV: Shower α_s , Hard and Soft Intrinsic k_T • Considerable sensitivity to shower $\alpha_s \rightarrow \text{similar to pTOref}$ • Little sensitivity to hard and soft intrinsic k_T

The binnings of the differential distributions in N_{ch} , mean p_T , and $\sum p_T$ that are being fit during tuning Remains the same for all the p_T^Z bins

Toward region, $0 < p_T^Z < 10$ [GeV], low thrust $/N_{ev}dN_{ev}/d\sum p_T/d\eta d\phi$ [GeV]⁻ ATLAS Work in Progress-0.6 $\sqrt{s} = 13$ TeV 0.5 — Data Monash: okay for profile PowhegVinciaDefault PowhegPythiaMonash distributions but fails for differential distributions. 0.2 0.1 1.4 1.3 MC/Data 1.2 0.0 0.8 0.7 0.6 2 3 0

Initial Tuning Results with Professor

Double Gaussian bProfile

Parameters: pTOref, coreRadius, coreFraction, and range

Pythia 8 Parameter	Value
MPI:pT0ref	2.07
MPI:coreRadius	0.60
MPI:coreFraction	0.63
ColourReconnection:Range	2.12

 $\chi^2 \approx 3597, N_{dof} = 1083$

High χ^2 : systematic variations for uncertainty estimation Will be done for the closest tune

Inputs: Differential distributions in $\sum p_T$, N_{ch} , mean p_T for low-thrust events in trasmin and toward + χ^2 goodness-of-fit function used

1. 5% theory uncertainty included

High correlation between:

- coreFraction and range
- pTOref and range

Initial Tuning Results with Professor

Models overestimate the fraction of events with low $\sum p_T$

Improvement in the modelling obtained compared to the starting point POWHEG+VINCIA with default parameters

Initial Tuning Results with Professor

Models overestimate the fraction of events with low $\sum p_T$

Improvement in the modelling obtained compared to the starting point POWHEG+VINCIA with default parameters

Low Thrust in Transmin+Toward

Pythia 8 Parameter	Value
MPI:pT0ref	2.025
MPI:coreRadius	0.638
MPI:coreFraction	0.419
ColourReconnection:Range	2.134
MPI:alphaS	0.119

 $\chi^2/N_{\rm dof} \approx 2.97$

Low Thrust in Transmin+Toward and Low ZpT (0-60 GeV)

Pythia 8 Parameter	Value
MPI:pT0ref	2.003
MPI:coreRadius	0.677
MPI:coreFraction	0.400
ColourReconnection:Range	2.164
MPI:alphaS	0.119

 $\chi^2/N_{\rm dof} \approx 4.23$

Low Thrust in Transmin+Toward

Low Thrust in Transmin+Toward and Low ZpT (0-60 GeV)

Pythia 8 Parameter	Value
MPI:pT0ref	2.164
MPI:coreRadius	0.336
MPI:coreFraction	0.301
ColourReconnection:Range	2.297
MPI:alphaS	0.120

 $\chi^2/N_{\rm dof} \approx 2.79$

Low Thrust in Transmin+Toward and Low ZpT (0-60 GeV)

Pythia 8 Parameter	Valu
MPI:pT0ref	2.04
MPI:coreRadius	0.69
MPI:coreFraction	0.43
ColourReconnection:Range	2.22
MPI:alphaS	0.11

 $\chi^2/N_{\rm dof} \approx 3.84$

Low Thrust in Transmin+Toward

 $\sum p_T/d\eta d\phi \, [{\rm GeV}]$

Conclusion and Plans

- The first ATLAS dedicated tune for VINCIA
- Best: Order 2, low T in transmin+toward, $\chi^2/N_{dof} \approx 2.79$ $\sum p_T$ and $N_{ch} \longrightarrow$ will be investigated.
- Next Steps:
- Solution Obtain a tune with better $\chi^2 \rightarrow$ for NLO samples, focus on a smaller p_T^Z range with correct parameters Extend to include more distributions \rightarrow higher order calculations:
 - •MINNLO+VINCIA and MINNLO+PYTHIA samples will be studied

An initial tune with MPI and colour reconnection parameters, to low-thrust distributions: $\chi^2/N_{\rm dof} \approx 3.3$

Tuned, untuned VINCIA; and PYTHIA samples overpredict the number of events with low

BACKUP

Investigation: Standalone PYTHIA and VINCIA ME from Pythia 8

Employed PYTHIA Parameters

- \odot MultipartonInteractions:pTORef \rightarrow transition between hard and soft interactions, pTOref [MPI]
- \bigcirc MultipartonInteractions:bProfile \rightarrow impact parameter profile of the incoming protons
 - \bigcirc <u>Default</u>: Convolution of the form $exp(-b^{expPow}) \rightarrow$ MultipartonInteractions:expPow
 - Alternative: Double Gaussian impact parameter profiles

MultipartonInteractions:coreFraction Fraction of proton content in the inner core

 \odot ColourReconnection:range \rightarrow enters the probability of an MPI system to be merged with a harder one range more colour reconnections

 \bigcirc BeamRemnants:primordialKTsoft and BeamRemnants:primordialKThard \rightarrow intrinsic k_T in the soft and high interaction limits \bigcirc Vincia: alphaSvalue \rightarrow shower α_s for initial and final state

MultipartonInteractions:coreRadius Inner core radius

Trial Tune with Professor

- Parameters: pTOref, expPow, range Inputs: Differential distributions in $\sum p_T$, N_{ch} , mean p_T for low-thrust events
- χ^2 goodness-of-fit function used

expPow ≈ 1.96

expPow = 2 corresponds to Gaussian impact parameter profiles for the incoming protons

• Modelling of p_T^Z

• Matrix element at NLO accuracy \rightarrow reweighting p_T^Z distribution to that used in m_W analysis

• Test of robustness of the tune \rightarrow shower α_s + hard and soft intrinsic k_T — Control the radiation spectrum

ATLAS Collaboration, Eur. Phys. J. C 79 (2019) 666, DOI: 10.1140/epjc/s10052-019-7162-0

