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What is Dark Matter?

ΩCDMh2 ∼ 0.120 ± 0.001
[Planck, 2018]

[T Lin, arXiv 1904.07915]
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What (generic) DM properties do we need for DD?

ρχ ∼ 0.3 GeV/cm3 vχ ∼ 220 km/s

Local DM Density Local DM Velocity

In truth, follows a (boosted) 
Maxwell Boltzmann 

distribution with peak  vχ
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Ultra-heavy Dark Matter
• Ultra-heavy dark matter is necessarily composite (if 

thermally produced) due to s-wave unitarity 


• Many different models for UHDM


• PBH, Nuggets, Blobs, WIMPonium, Q-Balls etc…


• Is there a nice model-independent way to treat 
them?


• Answer: Yes (for some parts of parameter space)
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Macros
• Consider parameters of models where:


• The DM is Planck-mass or larger


• DM Radius  much larger than interaction length 
scale


• Geometric cross section dominates i.e. 


• Parameterise the interaction in terms of , -> set 
by the theory -> make experimental statements 
about multiple models!


Rχ

σχ ≈ πR2
χ

Rχ Interaction range

Macroscopic DM 
Candidate
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Macro Direct Detection
• Macro’s often parameterised in grams (g)


• DM Flux:  


• Need a very large detector (or very long integration time) to have 
significant number of events.


• No hope for conventional detectors (LUX-ZEPLIN, XENONnT etc.)


ϕχ ≈ 6 ( 1 g
mχ ) km−2 yr−1
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Macro Kinematics
The energy of the macro after after traversing a path length  is given by:L

With the DM final velocity after  collisions: N

Many collisions 
needed to slow 
down for mA ≪ mχ
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Macro Kinematics
Using the relation for the mean free path  and the number of 
scatters as  yields:

λ = mA/(ρmedσχN)
N = L/λ

This is only for a constant density medium, for the atmospheric overburden, use 
mass column density yields sea level velocity :vχ,SL
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Macro Kinematics
Total energy after traversing path length  in detector given by:L

Differentiating, can find the energy deposition rate into the medium:
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Current Constraints
• Annoying “gap” in 

constraints


• Mica underground - too 
much overburden


• Radar not sensitive 
enough - not enough 
ionisation


• What phenomena could 
we use to constrain this 
region?
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Acoustic Detection
• Idea: DM is weakly interacting enough 

to make it through the atmosphere


• Reaches much more dense medium: 
the ocean 

• DM deposits energy into the ocean 
creating pressure waves


• Detect pressure waves using a large 
hydrophone array


𝒪(10 km)

Hydrophones
Acoustic

Waves
DM Energy Depositio

n

𝒪(
1

km
)
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Neutrino Experiments
• Propositions for acoustic neutrino experiments with  hydrophone 

arrays [Lahmann, 2016]


• Detect UHE neutrinos. Similar number density issues, but similarly high cross 
section


• Acoustic propagation distance in water much greater than light -> less dense 
instrumentation


• Energy deposition comes from hadronic showers 

𝒪(100 km3)
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1.5m

1.5m

LUX-ZEPLIN (LZ)

Proposed Acoustic Neutrino 
Experiment ~4km wide

LZ



What is the signal?

∇2P(r, t) −
1
c2

s

∂2P(r, t)
∂t2

= −
α
Cp

∂2q(r, t)
∂t2

Acoustic pressure

Energy Deposition Density

Pressure waves created from thermo-acoustic heating. 
[Learned, 1979] 

General solution to this equation given by:
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Model the energy deposition as instantaneous, while heat dissipation as slow

What is the signal?

Decompose surfaces into constant propagation time surfaces 
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What is the signal?
Model energy deposition rate as:

Z

X

Y

Substituting macro result for dE/dz

16



What is the signal?

Z

X
Y

In far field, spherical surfaces approximated as y-z planes

Align detector element along x-
axis at position x0
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What is the Signal?
Solving in this case we find the following time-domain signal:

Which has frequency content (Fourier transform)
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Noise and Transmission Loss
The pressure wave will have some frequency dependent absorption due to the 
chemical content of the sea water

Convenient to use a decibel formalism, as this is most often used in acoustics. 
Sound pressure level:

Time Domain

Pref = 1μPa Pref = 1μPa/Hz
Frequency Domain
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Transmission Loss
The Transmission loss over a propagation distance r, is given by a frequency 
dependent parameter α

Dependent on the temperature T, salinity S, depth D and pH. Frequency here in 
kHz. After transmission losses, DM signal peaks at ~15kHz

[Ainslie, McColm 1998]
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Sea State Noise
The dominant background noise source 10-100 kHz band is sea state noise 
(surface agitation due to wind etc). Parameterised by Knudsen curves:

There will also be transient noise sources from ocean wildlife e.g. dolphins and 
sperm wales. Assume differentiable from DM signal using algorithms being 
developed for neutrino detection.
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Signal and Noise Characteristics
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• The signal is broadband 

• After transmission losses, signal 
power greatest in 10-30kHz band


• Dominant ambient noise in this band 
is sea-state noise (surface agitation 
from wind) 



Discerning Neutrinos from DM
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• DM is galactic in origin. Neutrinos are 
extragalactic. 

• Direction of dark matter in the 
direction of the Cygnus constellation.  

• So UHDM flux modulates


• Varies throughout the year due to 
following the sidereal day over solar 
day




Constraint Recipe
• Assume DM cross section and mass


• Impose SNR requirement, hydrophone sensitivity and flux 
requirement


• Assume array of particular geometry (volume, cross sectional 
area, hydrophone density)


• Enhance signal by  (Poisson statistics)


• If DM signal amplitude fulfils criteria, CONSTRAIN!

Nhydro
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Preliminary Sensitivities

• Assuming proposed acoustic 
neutrino experiment parameters, 
could constrain the gap! 

• Complementary to Humans, Mica, 
Ohya and Cosmological Bounds

25

Prelim
inary



Punchline:
Future acoustic neutrino experiments could have the power to constrain 

macro DM candidates
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Thank you for listening! 
Any Questions?
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