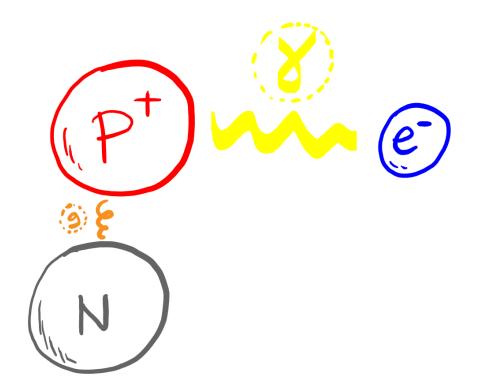


Beyond the Standard Model

Tevong You

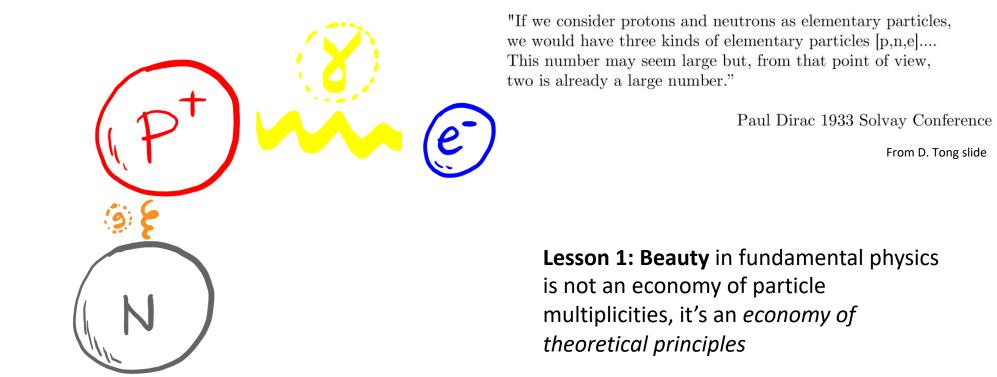
Literature


- -Andrea Wulzer BSM lectures: <u>https://arxiv.org/abs/1901.01017</u>
- -Matthew McCullough BSM lectures: https://inspirehep.net/literature/1684708
- -Hitoshi Murayama supersymmetry phenomenology: https://arxiv.org/abs/hep-ph/0002232
- -Nathaniel Craig review of naturalness: <u>https://arxiv.org/abs/2205.05708</u>
- - Arkani-Hamed, Huang, Huang paper that contains a nice review of the on-shell amplitudes approach to classifying all allowed massless interactions: <u>https://arxiv.org/abs/1709.04891</u>

Contents

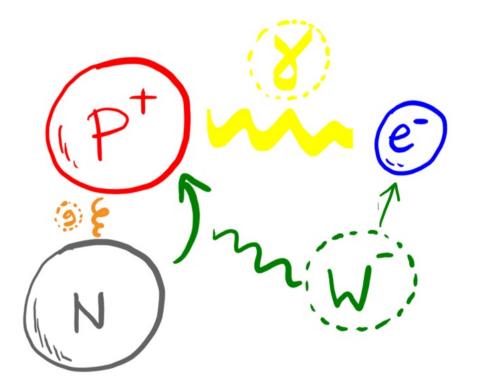
- **Review** of the situation
- EFT as a window to BSM
- Naturalness and the Higgs boson
- **Speculations** on BSM outcomes for naturalness

• **3 lessons** from history

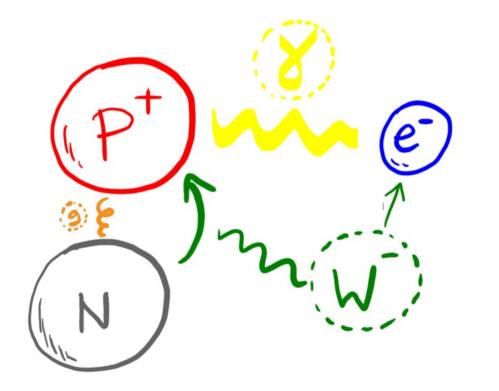

• 1930s: everything is made of protons, neutrons, and electrons

Minimal, economical theory! **However**...

• Held together by electromagnetism and the strong force

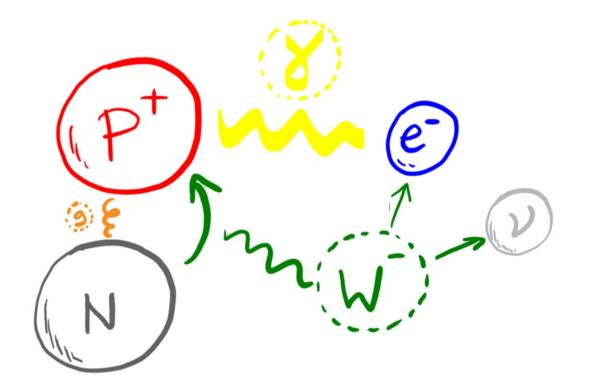

• 1930s: everything is made of protons, neutrons, and electrons

Held together by electromagnetism and the strong force


Tevong You

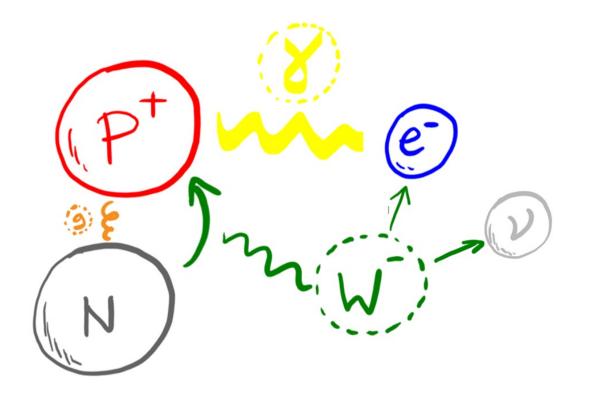
• Weak force explains *radioactivity*

• Neutron can change into proton, emitting electron


• Weak force explains *radioactivity*

Missing energy? Pauli postulates *"a desperate remedy"*

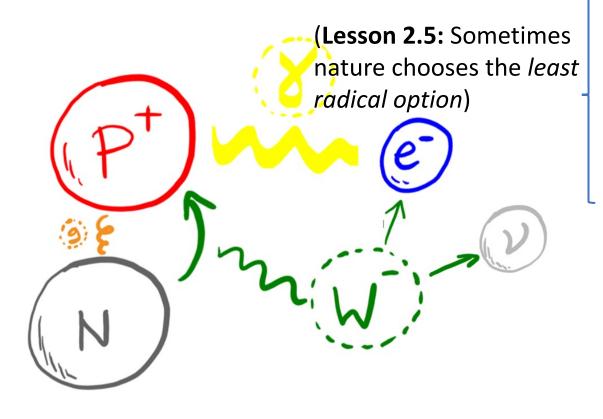
• Neutron can change into proton, emitting electron


• Weak force explains radioactivity

Missing energy? Pauli postulates "a desperate remedy"

• Neutron can change into proton, emitting electron and elusive neutrino

• Weak force explains radioactivity

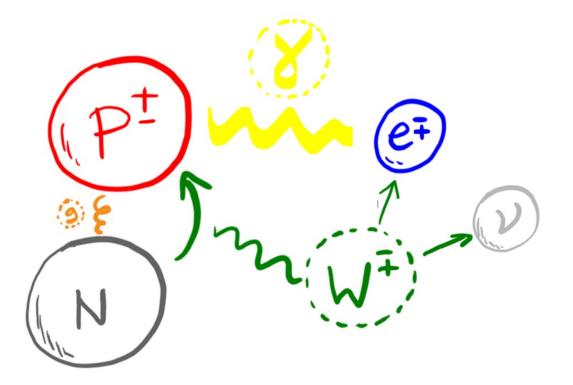


Missing energy? Pauli postulates *"a desperate remedy"*

Lesson 2: perceived prospects of experimental confirmation is not a useful scientific criteria for establishing what nature actually does

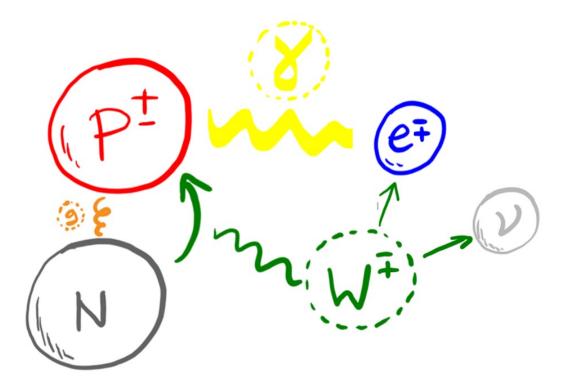
• Neutron can change into proton, emitting electron and elusive neutrino

• Weak force explains radioactivity


Missing energy? Pauli postulates *"a desperate remedy"*

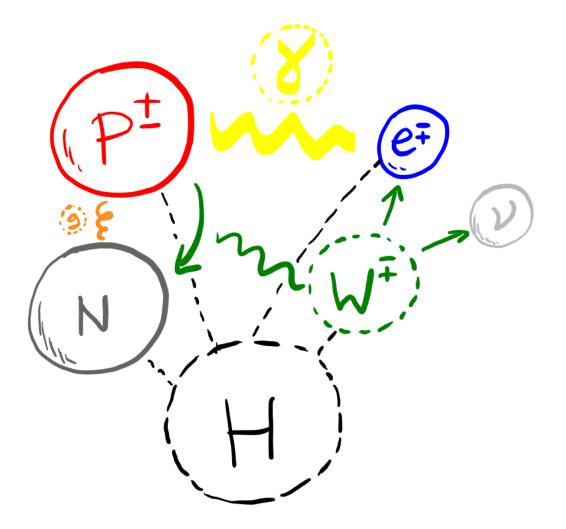
(Bohr suggests fundamental violation of energy conservation principle)

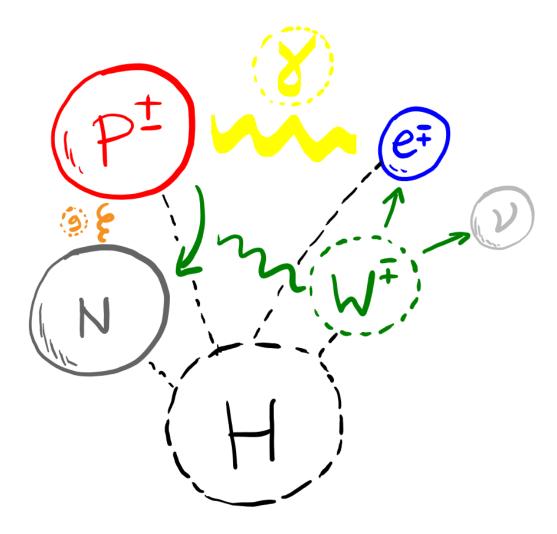
Lesson 2: perceived prospects of experimental confirmation is not a useful scientific criteria for establishing what nature actually does


• Neutron can change into proton, emitting electron and elusive neutrino

• Dirac: Einstein's relativity + quantum mechanics = antiparticles

• Every particle has an oppositely charged antiparticle partner

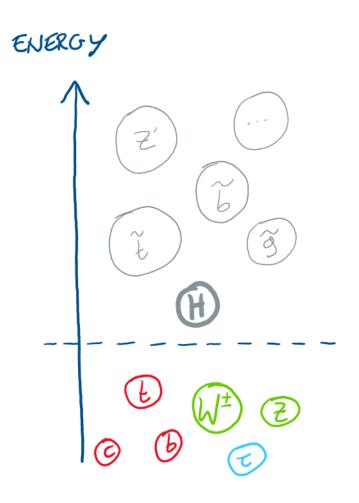

• Dirac: Einstein's relativity + quantum mechanics = antiparticles


see Lesson 1: antiparticles double the particle spectrum. Nevertheless, the theory is much tighter, less arbitrary, and more elegant

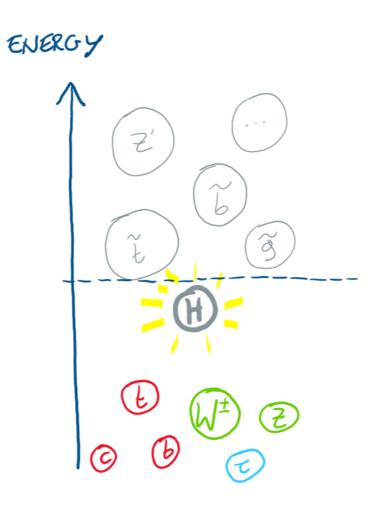
• Every particle has an oppositely charged antiparticle partner

• *Higgs(+Brout+Englert):* particle masses require a new scalar boson H

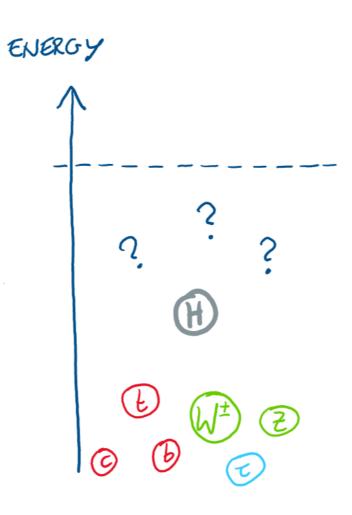
• *Higgs(+Brout+Englert):* particle masses require a new scalar boson H



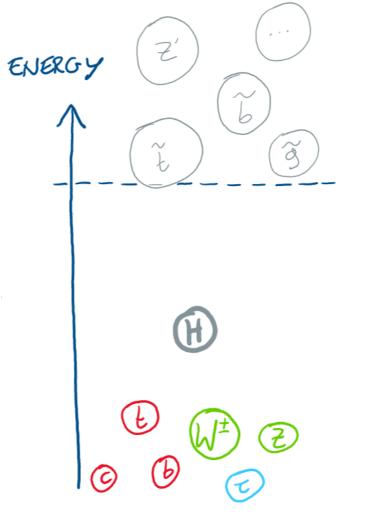
Lesson 3: Keep an open mind.


Ideas initially dismissed as unrealistic (*e.g.* non-abelian gauge theories because they predicted unobserved massless bosons) can later make sense upon further investigation

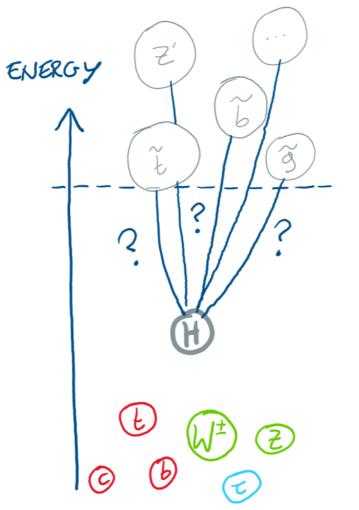
- 1930-40s: Success of QED. QFT emerges as the new fundamental description of Nature.
- 1960s: QFT is unfashionable, non-Abelian theory dismissed as an unrealistic generalisation of local symmetry-based forces. Widely believed a radically new framework will be required e.g. to understand the strong force.
- 1970s: QFT triumphs following Yang-Mills+Higgs+asymptotic freedom+renormalisation. Nature is radically conservative, but more unified than ever.
- 1980s: Success of SM. QFT understood as **most general EFT consistent with symmetry**. *Higgs* (and cosmological constant) *violates symmetry expectation*.
- Tremendous progress since, despite lack of BSM


• Until now, there had been a clear roadmap

• Until now, there had been a clear roadmap



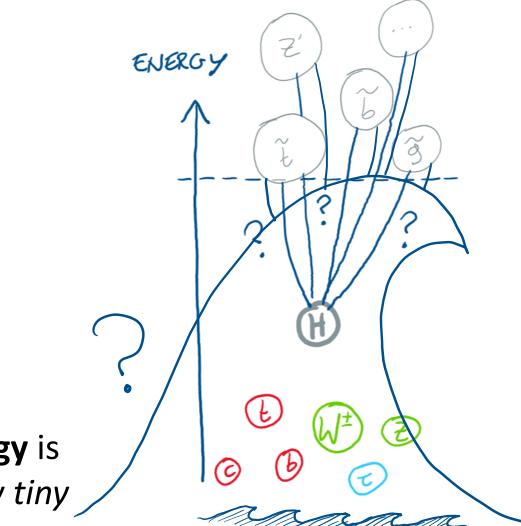
• Until now, there had been a clear roadmap


Conventional symmetry-based solutions have not shown up!

• Until now, there had been a clear roadmap

Maybe just around the corner...

• Until now, there had been a clear roadmap



...but the larger the separation of scales, the more **fine-tuned** the *underlying* theory is!

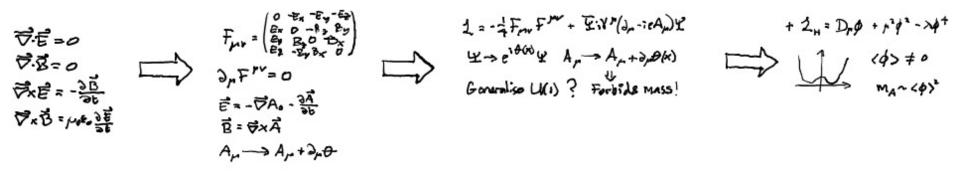
The Higgs boson's hierarchy problem is a **profound mystery**, that is **even more perplexing** in the absence of new physics at the LHC.

Our Michelson-Morley moment?

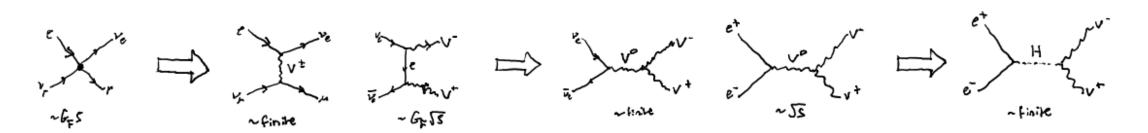
• Until now, there had been a clear roadmap

...but the larger the separation of scales, the more **fine-tuned** the underlying theory is

The Higgs boson's hierarchy problem is a **profound mystery**, that is **even more perplexing** in the absence of new physics at the LHC.

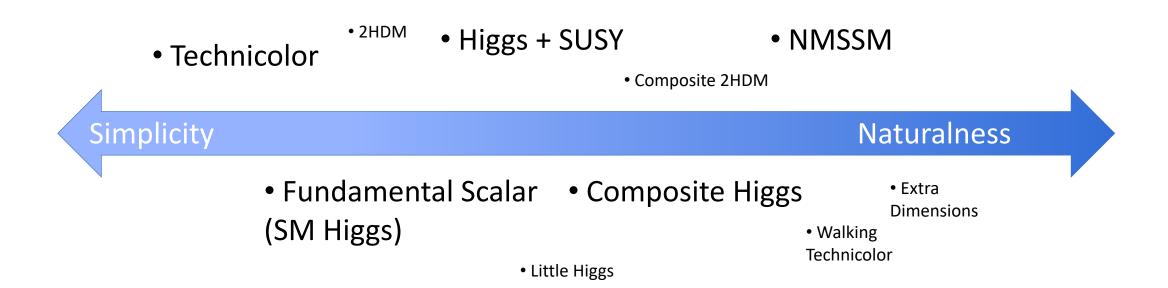

Our Michelson-Morley moment?

Vacuum energy is

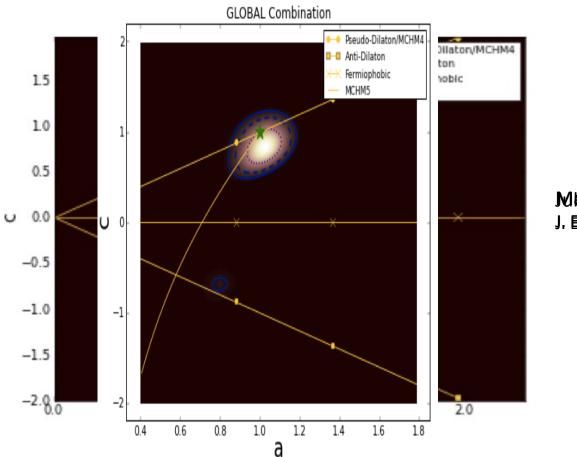

also peculiarly tiny

From Maxwell to Higgs

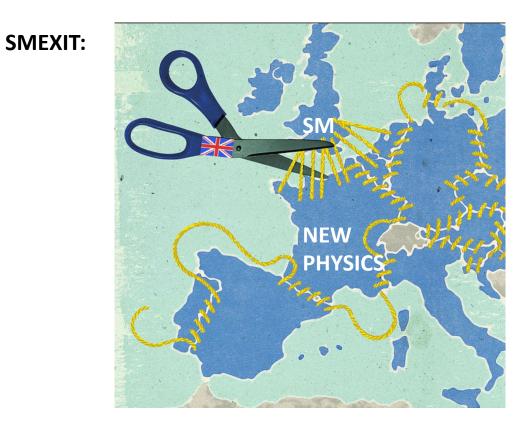
• Historically:


• Inevitably:

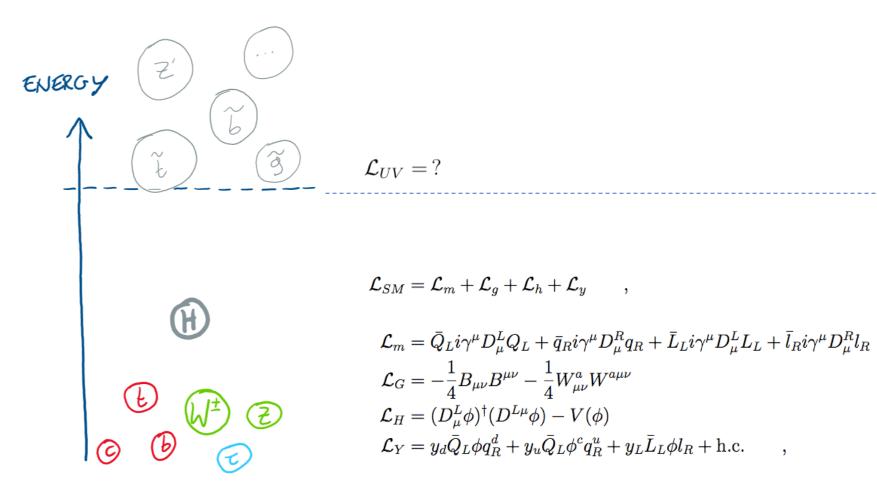
Beyond the Standard Model Higgs?


A priori many ways to break electroweak symmetry!

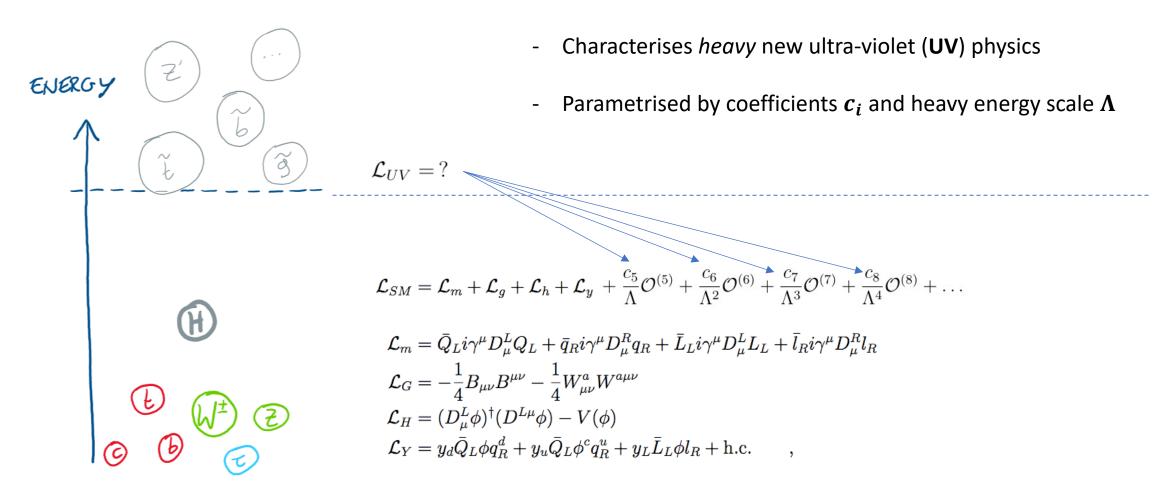
But tension between simplicity and naturalness

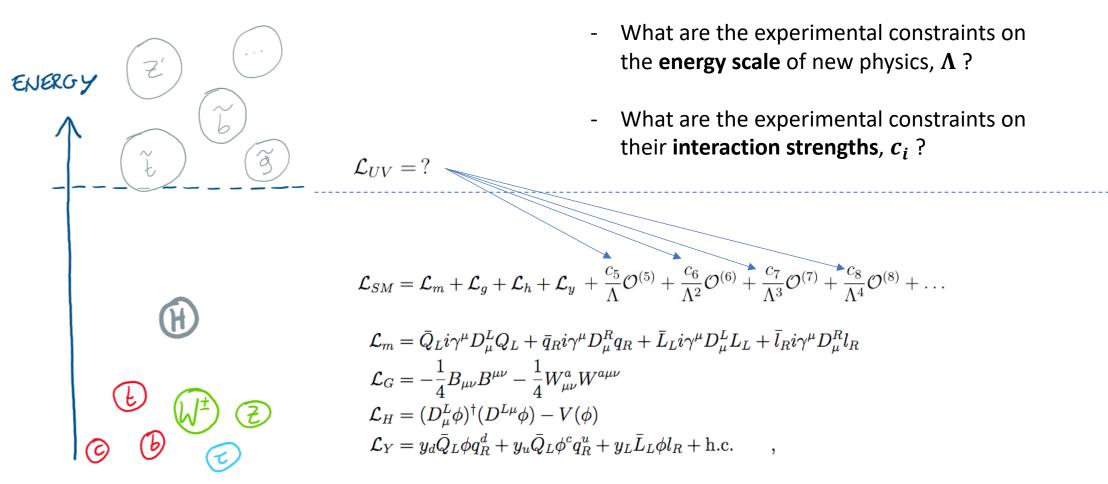

Beyond the Standard Model Higgs?

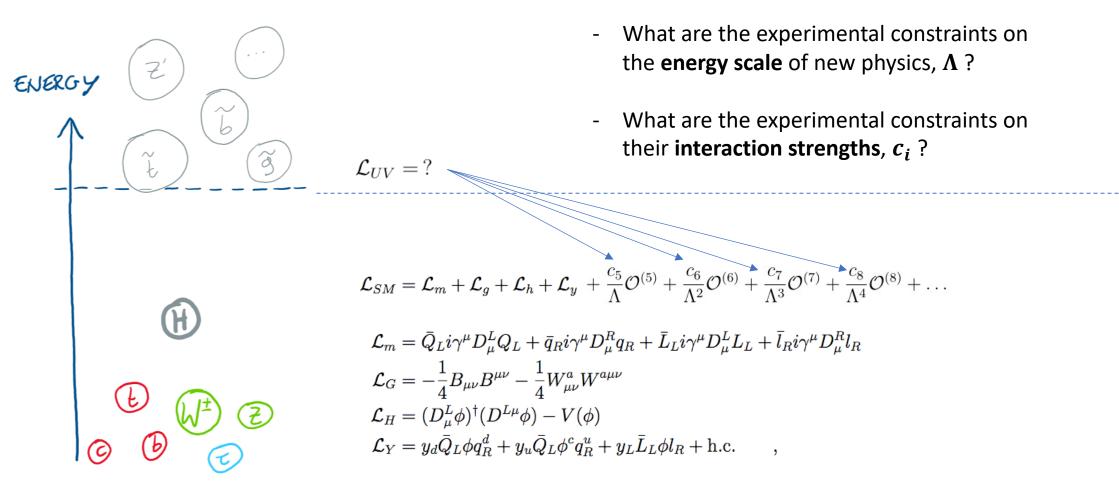
• Could have had very different coupling



March 22 201 Stretistics covery J. Ellis and T.Y. [arXiv:1203.0899]

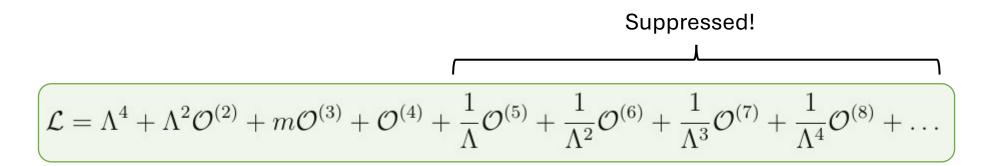

EFT is the framework for a separation of scales between heavy new physics and the SM


EFT is the framework for a **separation of scales** between heavy new physics and the SM

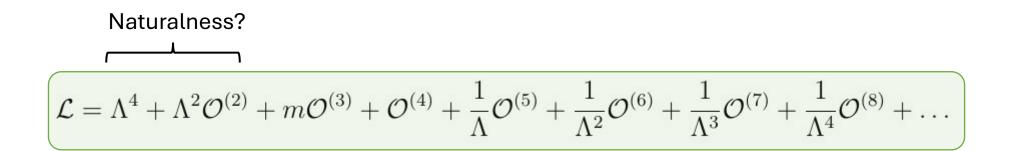

EFT is the framework for a separation of scales between heavy new physics and the SM

EFT is the framework for a **separation of scales** between heavy new physics and the SM

EFT is the framework for a **separation of scales** between heavy new physics and the SM



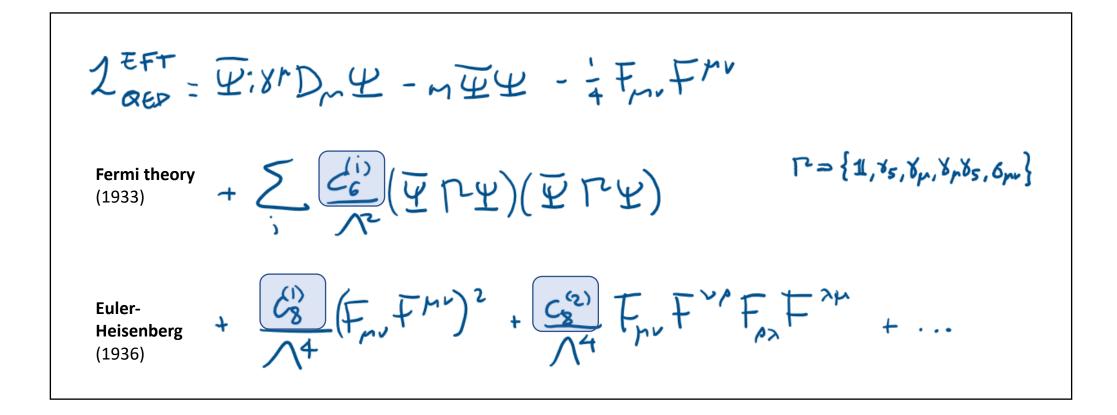
$$\mathcal{L} = \Lambda^4 + \Lambda^2 \mathcal{O}^{(2)} + m \mathcal{O}^{(3)} + \mathcal{O}^{(4)} + \frac{1}{\Lambda} \mathcal{O}^{(5)} + \frac{1}{\Lambda^2} \mathcal{O}^{(6)} + \frac{1}{\Lambda^3} \mathcal{O}^{(7)} + \frac{1}{\Lambda^4} \mathcal{O}^{(8)} + \dots$$


1960s point of view: renormalisability of a *finite* number of parameters is essential

$$\left(\mathcal{L} = \Lambda^4 + \Lambda^2 \mathcal{O}^{(2)} + m\mathcal{O}^{(3)} + \mathcal{O}^{(4)} + \frac{1}{\Lambda}\mathcal{O}^{(5)} + \frac{1}{\Lambda^2}\mathcal{O}^{(6)} + \frac{1}{\Lambda^3}\mathcal{O}^{(7)} + \frac{1}{\Lambda^4}\mathcal{O}^{(8)} + \dots\right)$$

1960s point of view: renormalisability of a *finite* number of parameters is essential

1960s point of view: renormalisability of a *finite* number of parameters is essential



1960s point of view: renormalisability of a *finite* number of parameters is essential

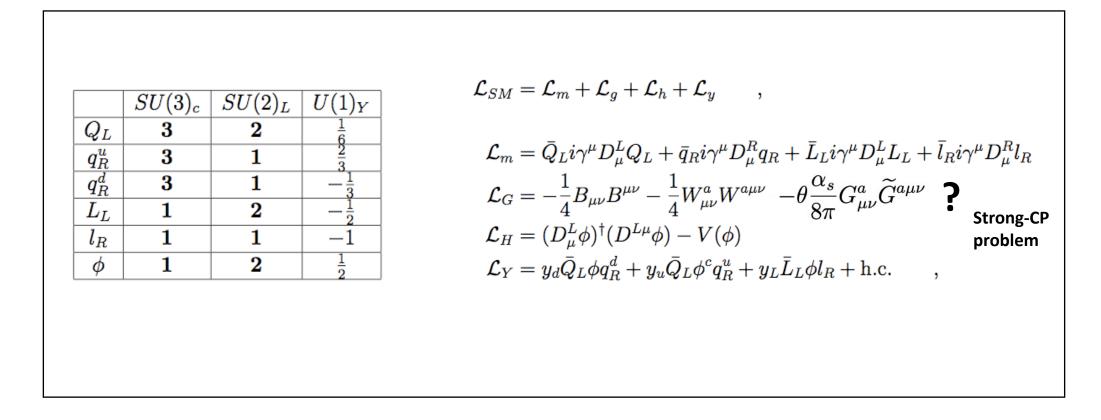
e.g. QED as an EFT includes Fermi theory and Euler-Heisenberg dimension-8 operators

$$\begin{aligned} \mathcal{L}_{\mathcal{R}\mathcal{GP}}^{\mathcal{E}\mathcal{FT}} &= \overline{\Psi}; \& \mathcal{L}_{\mathcal{D}} \mathcal{L}_{\mathcal{D}} \mathcal{L}_{\mathcal{T}} - m \overline{\Psi} \mathcal{L}_{\mathcal{T}} - \frac{1}{4} F_{\mathcal{D}} \mathcal{F}^{\mathcal{D}} \mathcal{L}_{\mathcal{T}} \\ \\ Fermi theory \\ (1933) &+ \sum_{i} \frac{\mathcal{L}_{G}^{(i)}}{\mathcal{R}} (\overline{\Psi} \mathcal{P} \mathcal{\Psi}) (\overline{\Psi} \mathcal{P} \mathcal{\Psi}) \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu}, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu} \aleph_{s}, \delta_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu\nu}\}$$

$$\{\mathbf{1}, \aleph_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu\nu}\}$$

$$\{\mathbf{1}, \aleph_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \forall s, \aleph_{\mu\nu}\} \\ \\ F = \{\mathbf{1}, \aleph_{\mu$$

e.g. QED as an EFT includes Fermi theory and Euler-Heisenberg dimension-8 operators


Wilson coefficients generated by UV physics

Given particle content, write down all terms allowed by symmetries

Up to mass dimension 4, this is "The Standard Model"

Given particle content, write down all terms allowed by symmetries

Up to mass dimension 4, this is "The Standard Model".

The SM *is* an Effective Field Theory - SMEFT is the Fermi theory of the 21st century

$$\begin{split} \mathcal{L}_{SM}^{\textit{EFT}} &= \mathcal{L}_{m} + \mathcal{L}_{g} + \mathcal{L}_{h} + \mathcal{L}_{y} \underbrace{+ \frac{c_{5}}{\Lambda} \mathcal{O}^{(5)} + \frac{c_{6}}{\Lambda^{2}} \mathcal{O}^{(6)} + \frac{c_{7}}{\Lambda^{3}} \mathcal{O}^{(7)} + \frac{c_{8}}{\Lambda^{4}} \mathcal{O}^{(8)} + \dots} \\ \mathcal{L}_{m} &= \bar{Q}_{L} i \gamma^{\mu} D_{\mu}^{L} Q_{L} + \bar{q}_{R} i \gamma^{\mu} D_{\mu}^{R} q_{R} + \bar{L}_{L} i \gamma^{\mu} D_{\mu}^{L} L_{L} + \bar{l}_{R} i \gamma^{\mu} D_{\mu}^{R} l_{R} \\ \mathcal{L}_{G} &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W_{\mu\nu}^{a} W^{a\mu\nu} - \theta \frac{\alpha_{s}}{8\pi} G_{\mu\nu}^{a} \widetilde{G}^{a\mu\nu} \\ \mathcal{L}_{H} &= (D_{\mu}^{L} \phi)^{\dagger} (D^{L\mu} \phi) - V(\phi) \\ \mathcal{L}_{Y} &= y_{d} \bar{Q}_{L} \phi q_{R}^{d} + y_{u} \bar{Q}_{L} \phi^{c} q_{R}^{u} + y_{L} \bar{L}_{L} \phi l_{R} + \text{h.c.} \end{split}$$

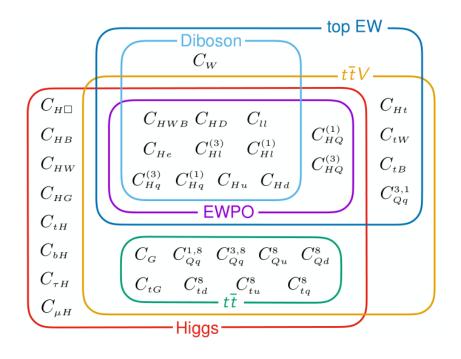
Explore heavy BSM physics in this framework

This does not exclude the possibility of light new physics; just add those fields in as part of the EFT if desired or discovered.

Non-linear chiral electroweak lagrangian + singlet scalar is a more general EFT framework (known as HEFT).

• Lagrangian dim-6 operator coefficient normalization: $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$

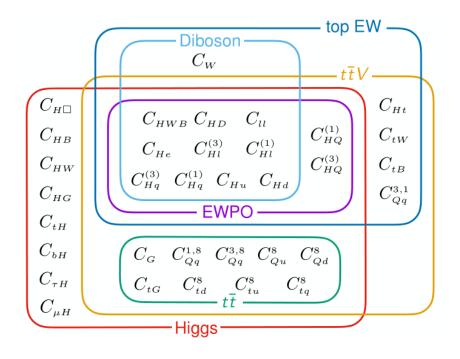
• Warsaw basis


[1008.4884 Grzadkowski et al]

	X^3		H^6 and H^4D^2		$\psi^2 H^3$
\mathcal{O}_{G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$\mathcal{O}_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
\mathcal{O}_{W}	$\varepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	\mathcal{O}_{HD}	$\left \left(H^{\dagger}D^{\mu}H ight) ^{\star}\left(H^{\dagger}D_{\mu}H ight) ight $	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}i D_{\!$
\mathcal{O}_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{_{He}}$	$(H^{\dagger}i D_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$
\mathcal{O}_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{H} B_{\mu u}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i D^{I}_{\underline{\mu}} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$\mathcal{O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	\mathcal{O}_{Hu}	$(H^{\dagger}i \overset{\frown}{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$
\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu u} B^{\mu u}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{_{Hd}}$	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	${\cal O}_{_{dB}}$	$(\bar{q}_p \sigma^{\mu u} d_r) H B_{\mu u}$	${\cal O}_{{}_{Hud}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$
11115					
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
\mathcal{O}_{ll}		\mathcal{O}_{ee}	•	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$\mathcal{O}_{ll} \ \mathcal{O}_{qq}^{(1)}$	$\begin{array}{c c} (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \end{array}$	$\mathcal{O}_{ee} \ \mathcal{O}_{uu}$	$ \begin{array}{c c} (\bar{R}R)(\bar{R}R) \\ \hline (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \end{array} $	$\mathcal{O}_{le} \ \mathcal{O}_{lu}$	$\frac{(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)}{(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)}$
$egin{array}{c c} \mathcal{O}_{ll} & & \\ \mathcal{O}_{qq}^{(1)} & & \\ \mathcal{O}_{qq}^{(3)} & & \\ \mathcal{O}_{qq}^{(3)} & & \end{array}$	$\begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \end{array}$	$egin{array}{c} \mathcal{O}_{ee} \ \mathcal{O}_{uu} \ \mathcal{O}_{dd} \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \end{array} $	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \end{array}$	$\begin{array}{c} (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \end{array}$
$egin{array}{c c} \mathcal{O}_{ll} & & \\ \mathcal{O}_{qq}^{(1)} & & \\ \mathcal{O}_{qq}^{(3)} & & \\ \mathcal{O}_{lq}^{(1)} & & \\ \end{array}$	$\begin{array}{c c} (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{array}$	$egin{array}{c} \mathcal{O}_{ee} & & \\ \mathcal{O}_{uu} & & \\ \mathcal{O}_{dd} & & \\ \mathcal{O}_{eu} & & \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \end{array} $	$egin{array}{c} \mathcal{O}_{le} & & \\ \mathcal{O}_{lu} & & \\ \mathcal{O}_{ld} & & \\ \mathcal{O}_{qe} & & \end{array}$	$ \begin{array}{c} (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \end{array} $
$egin{array}{c c} \mathcal{O}_{ll} & & \\ \mathcal{O}_{qq}^{(1)} & & \\ \mathcal{O}_{qq}^{(3)} & & \\ \mathcal{O}_{qq}^{(3)} & & \end{array}$	$\begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \end{array}$	$\begin{array}{c} \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \end{array} $	$egin{array}{c c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qe} & & \ \mathcal{O}_{qu}^{(1)} & & \ \end{array}$	$\begin{array}{c} (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \end{array}$
$\begin{matrix} & \mathcal{O}_{ll} \\ & \mathcal{O}_{qq}^{(1)} \\ & \mathcal{O}_{qq}^{(3)} \\ & \mathcal{O}_{lq}^{(1)} \\ \end{matrix}$	$\begin{array}{c c} (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{array}$	$\begin{array}{c c} & \mathcal{O}_{ee} \\ & \mathcal{O}_{uu} \\ & \mathcal{O}_{dd} \\ & \mathcal{O}_{eu} \\ & \mathcal{O}_{ed} \\ & \mathcal{O}_{ud}^{(1)} \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ \hline (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array} $	$egin{array}{c c} \mathcal{O}_{le} & & \\ \mathcal{O}_{lu} & \mathcal{O}_{ld} & \\ \mathcal{O}_{qe} & & \\ \mathcal{O}_{qu}^{(1)} & & \\ \mathcal{O}_{qu}^{(8)} & & \\ \mathcal{O}_{qu}^{(8)} & & \\ \end{array}$	$\begin{array}{c} (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \end{array}$
$\begin{matrix} & \mathcal{O}_{ll} \\ & \mathcal{O}_{qq}^{(1)} \\ & \mathcal{O}_{qq}^{(3)} \\ & \mathcal{O}_{lq}^{(1)} \\ \end{matrix}$	$\begin{array}{c c} (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{array}$	$\begin{array}{c} \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \end{array} $	$egin{aligned} & \mathcal{O}_{le} & & \ & \mathcal{O}_{lu} & & \ & \mathcal{O}_{ld} & & \ & \mathcal{O}_{qe} & & \ & \mathcal{O}_{qu}^{(1)} & & \ & \mathcal{O}_{qd}^{(8)} & & \ & \mathcal{O}_{qd}^{(1)} & & \ & \mathcal{O}_{qd}^{(1)} & & \ & \ & \ & \ & \ & \ & \ & \ & \ $	$\begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array}$
$\begin{matrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{matrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \end{array} $	$\begin{array}{c c} & \mathcal{O}_{ee} \\ & \mathcal{O}_{uu} \\ & \mathcal{O}_{dd} \\ & \mathcal{O}_{eu} \\ & \mathcal{O}_{ed} \\ & \mathcal{O}_{ud}^{(1)} \end{array}$	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	$egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qd} & & \ \mathcal{O}_{qu} & & \ \mathcal{O}_{qu}^{(1)} & & \ \mathcal{O}_{qd}^{(8)} & & \ \mathcal{O}_{qd}^{($	$\begin{array}{c} (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \end{array}$
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \end{array} \\ (\bar{l}_{p}\bar{l}_{r})(\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R) $	$\begin{array}{ c c }\hline & \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	$egin{array}{c c} & \mathcal{O}_{le} & \mathcal{O}_{lu} & \mathcal{O}_{ld} & \mathcal{O}_{qd} & \mathcal{O}_{qu} & \mathcal{O}_{qu}^{(8)} & \mathcal{O}_{qd}^{(8)} & $	$\begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$
$ \begin{array}{ c c c } \hline & \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \hline \\ $	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t) \\ (\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t) \\ \end{array} $	$\begin{array}{c c} & \mathcal{O}_{ee} \\ & \mathcal{O}_{uu} \\ & \mathcal{O}_{dd} \\ & \mathcal{O}_{eu} \\ & \mathcal{O}_{ed} \\ & \mathcal{O}_{ud}^{(1)} \\ & \mathcal{O}_{ud}^{(8)} \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $ $ \begin{array}{c} B\text{-vio} \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\prime}) \\ (d_{p}^{\prime}) \\ (d_{p}^{\prime}) \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \right] \\ \end{array} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(9)} \end{matrix}$	$ \begin{array}{c} (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \end{array} $
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} \\ \begin{bmatrix} (\bar{L}R \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \end{bmatrix} $	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ \end{array} $	$\begin{array}{c c} & \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $ $ \begin{array}{c} B\text{-vio} \\ \hline \\ \mathcal{E}^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}\varepsilon_{\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}\varepsilon_{\beta\gamma}\varepsilon_{\beta$	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)$	$ \begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $
$\begin{matrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq} \\ \end{matrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ \end{array} $	$\begin{array}{c c} & \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $ $ \begin{array}{c} B\text{-vio} \\ \hline \\ & \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}\\ & \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \right] \\ (\bar{u}_{p}^{\alpha}\varepsilon_{p}\varepsilon_{p}) \\ \end{array} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(s)} \\ \mathcal{O}_{qd}^{(s)$	$ \begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} \\ \begin{bmatrix} (\bar{L}R \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \end{bmatrix} $	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ \end{array} $	$\begin{array}{c c} & \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \end{array}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $ $ \begin{array}{c} B\text{-vio} \\ \hline \\ \mathcal{E}^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}\varepsilon_{\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}\varepsilon_{\beta\gamma}\varepsilon_{\beta$	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(s)} \\ \mathcal{O}_{qd}^{(s)$	$ \begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $

Input scheme:

Tevong You


$$\begin{split} \alpha_{\scriptscriptstyle EW}^{-1} &= 127.95, \quad G_{\scriptscriptstyle F} = 1.16638 \times 10^{-5}\,{\rm GeV}^{-2}\,, \\ m_{\scriptscriptstyle Z} &= 91.1876\,{\rm GeV}, \quad m_{\scriptscriptstyle H} = 125.09\,{\rm GeV}, \quad m_t = 173.2\,{\rm GeV} \end{split}$$

• 20 operators relevant for Higgs, diboson, and EWPO:

	X^3		H^6 and H^4D^2		$\psi^2 H^3$	
\mathcal{O}_{G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$\mathcal{O}_{ ilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
\mathcal{O}_{W}	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H ight)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} \widehat{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$	
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$	
${\cal O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{_{Hl}}^{_{(3)}}$	$(H^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} H)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$	
\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{{}_{He}}$	$(H^{\dagger}i \overset{\smile}{D}_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$	
${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$	
\mathcal{O}_{HB}	$H^{\dagger}H B_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i \stackrel{\leftrightarrow}{D^{I}_{\mu}} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$\mathcal{O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overset{\sim}{D_{\mu}} H)(\bar{u}_p \gamma^{\mu} u_r)$	
\mathcal{O}_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I H W^I_{\mu u}$	${\cal O}_{Hd}$	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	${\cal O}_{_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l_p}\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$	
$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	${\cal O}_{qe}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$\mathcal{O}_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
		$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$\mathcal{O}_{qd}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	
$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vic		blating	
\mathcal{O}_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	\mathcal{O}_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_{\mu}^{lpha})^{lpha}(d_$	$\gamma \varepsilon_{jk} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(q_s^{\gamma j})^T C l_t^k \right]$		
$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha}) ight]$	$ \sum_{p=1}^{\alpha j} {}^T C q_r^{\beta k} \left[(u_s^{\gamma})^T C e_t \right] $		
$\mathcal{O}_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	\mathcal{O}_{qqq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[\left(q\right)\right]$	$(q_p^{\alpha j})^T C q_r^{\beta k} \left[(q_s^{\gamma m})^T C l_t^n \right]$		
- quqa			0 5 .	TOLOT	$(\dots M = 1$	
$egin{array}{c} \mathcal{O}^{(1)}_{lequ} \ \mathcal{O}^{(3)}_{lequ} \end{array}$	$ \begin{array}{c} (\bar{l}^{j}_{p}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}u_{t}) \\ (\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t}) \end{array} $	${\cal O}_{duu}$	$\varepsilon^{lphaeta\gamma}\left[\left(d_{p}^{lpha} ight) ight.$	$ ^{I} Cu_{r}^{\rho}] [$	$(u_s^{\gamma})^T Ce_t \rfloor$	

EWPO:
$$\mathcal{O}_{HWB}, \mathcal{O}_{HD}, \mathcal{O}_{ll}, \mathcal{O}_{Hl}^{(3)}, \mathcal{O}_{Hl}^{(1)}, \mathcal{O}_{He}, \mathcal{O}_{Hq}^{(3)}, \mathcal{O}_{Hq}^{(1)}, \mathcal{O}_{Hd}, \mathcal{O}_{Hu},$$

Bosonic: $\mathcal{O}_{H\Box}, \mathcal{O}_{HG}, \mathcal{O}_{HW}, \mathcal{O}_{HB}, \mathcal{O}_{W}, \mathcal{O}_{G},$
Yukawa: $\mathcal{O}_{\tau H}, \mathcal{O}_{\mu H}, \mathcal{O}_{bH}, \mathcal{O}_{tH}.$

• 20 operators relevant for Higgs, diboson, and EWPO:

X^3 H^6 and H^4D^2 ψ^2H^3					
$\left[\mathcal{O}_{G} f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} \right]$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$\mathcal{O}_{\tilde{G}}$ $f^{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\mu}G^{C\mu}_{\mu}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
O $_{IJKW}I\nu W J\rho W K\mu$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\star}(H^{\dagger}D_{\mu}H)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$	
$\begin{array}{ c c c c c }\hline & & & & & \\ \hline & & & & \\ \hline \\ \hline$					
X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$	
\mathcal{O}_{HG} $H^{\dagger}H G^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{l}_p \gamma^{\mu} l_r)$	
$\mathcal{O}_{H \tilde{G}} = H^{\dagger} H \widetilde{G}^A_{\mu \nu} G^{A \mu \nu}$	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{Hl}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} H)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$	
$\mathcal{O}_{HW} \qquad H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{_{He}}$	$(H^{\dagger}i D_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$	
$\mathcal{O}_{H\widetilde{W}}$ $H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$	
$O_{HB} \qquad H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	${\cal O}_{{}_{Hq}}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D_{\mu}^{I}}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$\mathcal{O}_{H\widetilde{B}}$ $H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overset{\rightarrowtail}{\underset{\leftrightarrow}{D}} H)(\bar{u}_p \gamma^{\mu} u_r)$	
$\mathcal{O}_{HWB} \qquad H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$\mathcal{O}_{H\widetilde{W}B} \qquad H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	${\cal O}_{_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$	
$\mathcal{O}_{ll} = (ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$\mathcal{O}_{qq}^{(1)} \qquad (\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$ \left \begin{array}{c} \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \end{array} \right (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) $	\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$ \begin{bmatrix} \mathcal{O}_{lq}^{(1)} \\ \vdots \\ $	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	${\cal O}_{qe}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$ \qquad \qquad$	\mathcal{O}_{ed}	$(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
	$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $	
	$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
			$\mathcal{O}_{qd}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$			blating		
$\mathcal{O}_{\scriptscriptstyle ledq} = (ar{l}_p^j e_r) (ar{d}_s q_t^j)$	\mathcal{O}_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lpha})^TCu_r^{eta} ight]\left[(q_s^{\gamma j})^TCl_t^k ight]$			
$\mathcal{O}_{quqd}^{(1)} = (\bar{q}_p^j u_r) \varepsilon_{jk}(\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha}) ight]$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(u_{s}^{\gamma})^{T}Ce_{t}\right]$		
$\mathcal{O}_{quqd}^{(8)} = (\bar{q}_p^j T^{\dot{A}} u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	\mathcal{O}_{qqq}	$\varepsilon^{lphaeta\gamma} arepsilon_{jn} arepsilon_{km} \left[(q_p^{lpha j})^T C q_r^{etak} ight] \left[(q_s^{\gamma m})^T C l_t^n ight]$			
$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	\mathcal{O}_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$			
$\mathcal{O}_{lequ}^{(3)} \mid (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

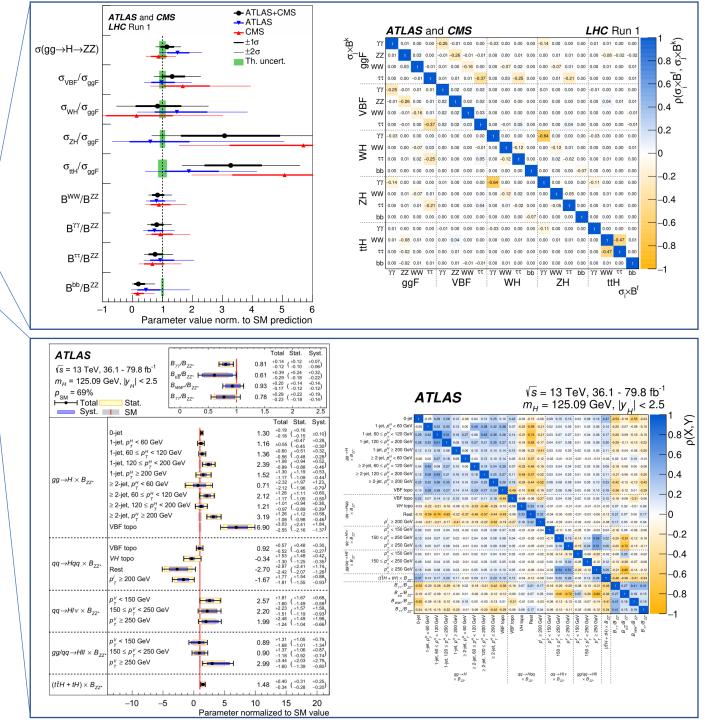
EWPO: $\mathcal{O}_{HWB}, \mathcal{O}_{HD}, \mathcal{O}_{ll}, \mathcal{O}_{Hl}^{(3)}, \mathcal{O}_{Hl}^{(1)}, \mathcal{O}_{He}, \mathcal{O}_{Hq}^{(3)}, \mathcal{O}_{Hq}^{(1)}, \mathcal{O}_{Hd}, \mathcal{O}_{Hu}$, Can be constrained setting $|H|^2 \rightarrow v^2$ Bosonic: Yukawa: $\mathcal{O}_{H\Box}, \mathcal{O}_{HG}, \mathcal{O}_{HW}, \mathcal{O}_{HB}, \mathcal{O}_{W}, \mathcal{O}_{G}$, Triple-gauge field strength operators Can only be constrained by Higgs physics

• Top-specific flavour symmetry:

 $SU(3)^5 \to SU(2)^2 \times SU(3)^3$ = $SU(2)_q \times SU(2)_u \times SU(3)_d \times SU(3)_l \times SU(3)_e$

• + 14 Top operators See 1802.07237 Top 2F: $\mathcal{O}_{HQ}^{(3)}, \mathcal{O}_{HQ}^{(1)}, \mathcal{O}_{Ht}, \mathcal{O}_{tG}, \mathcal{O}_{tW}, \mathcal{O}_{tB}$ Top 4F: $\mathcal{O}_{Qq}^{3,1}, \mathcal{O}_{Qq}^{3,8}, \mathcal{O}_{Qq}^{1,8}, \mathcal{O}_{Qu}^{8}, \mathcal{O}_{Qd}^{8}, \mathcal{O}_{tQ}^{8}, \mathcal{O}_{tu}^{8}, \mathcal{O}_{td}^{8}$

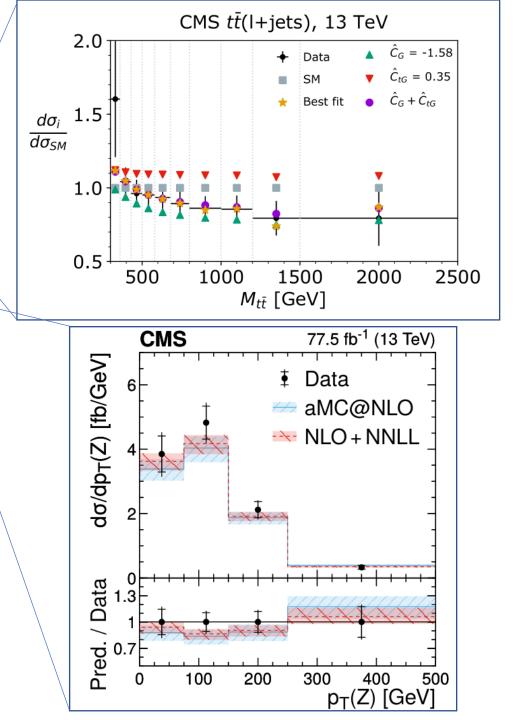
• 20 operators relevant for Higgs, diboson, and EWPO:


X^3 H^6 and H^4D^2 ψ^2H^3						
$\mathcal{O}_{G} \qquad f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	\mathcal{O}_{H}	$\frac{H}{(H^{\dagger}H)^3}$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\mathcal{O}_{H}	$(H^{\dagger}H) \square (H^{\dagger}H)$	$\mathcal{O}_{eH} = \mathcal{O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$ $(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$		
Ο ΙΙΚΗ/ΙνΗ/ΙρΗ/Κμ	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\star}(H^{\dagger}D_{\mu}H)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$ $(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O_{HD}	$(\Pi^{+}D^{+}\Pi)$ $(\Pi^{+}D_{\mu}\Pi)$	U_{dH}	$(\Pi^{+}\Pi)(q_pa_r\Pi)$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\psi^2 X H$		$\psi^2 H^2 D$		
				↔		
$\mathcal{O}_{HG} \qquad H^{\dagger}H G^A_{\mu\nu} G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\frown}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$		
$\mathcal{O}_{H\widetilde{G}}$ $H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}i D^{I}_{\underline{\mu}} H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
$\mathcal{O}_{HW} \qquad H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{He}$	$(H^{\dagger}i D_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$		
$\mathcal{O}_{H\widetilde{W}}$ $H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$		
$\mathcal{O}_{HB} \qquad H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D}_{\underline{\mu}}^{I} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$\mathcal{O}_{H\widetilde{B}}$ $H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	${\cal O}_{{}_{Hu}}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$		
$\mathcal{O}_{HWB} \qquad H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I H W^I_{\mu u}$	\mathcal{O}_{Hd}	$(H^{\dagger}i \overrightarrow{D}_{\mu} H)(\overline{d}_{p} \gamma^{\mu} d_{r})$		
$\mathcal{O}_{H\widetilde{W}B} \qquad H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) H B_{\mu u}$	${\cal O}_{_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		
$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
\mathcal{O}_{ll} $(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		
$\mathcal{O}_{qq}^{(1)} \qquad (\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$ \begin{bmatrix} \mathcal{O}_{qq}^{(3)} & (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ \mathcal{O}_{lq}^{(1)} & (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t) \end{bmatrix} $	\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$\mathcal{O}_{lq}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$		
$ \left \begin{array}{c} \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq} \end{array} \right (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) $	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		
	$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
	$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
			$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$ B-violating					
$\mathcal{O}_{_{ledq}} = (\bar{l}_p^j e_r) (\bar{d}_s q_t^j)$	\mathcal{O}_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{j}^{lpha} ight)^{lpha} ight]$	${}_{p}^{\alpha})^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$		
$\mathcal{O}_{quqd}^{(1)} = (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha}) ight]$	$(j)^T C q_r^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$		
$\mathcal{O}_{quqd}^{(8)} \mid (\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	\mathcal{O}_{qqq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jn}\varepsilon_{km}\left (q_p^{lpha j})^TCq_r^{eta k}\right \left (q_s^{\gamma m})^TCl_t^n\right $				
$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_p^j e_r) \varepsilon_{jk}(\bar{q}_s^k u_t)$	\mathcal{O}_{duu}	$\varepsilon^{lphaeta\gamma}\left[\left(d_{p}^{lpha} ight) ight]$	$T^{T}Cu_{r}^{\beta}$	$(u_s^{\gamma})^T Ce_t$]		
$\mathcal{O}_{lequ}^{(3)} \mid (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t) \mid$						

EWPO: $\mathcal{O}_{HWB}, \mathcal{O}_{HD}, \mathcal{O}_{ll}, \mathcal{O}_{Hl}^{(3)}, \mathcal{O}_{Hl}^{(1)}, \mathcal{O}_{He}, \mathcal{O}_{Hq}^{(3)}, \mathcal{O}_{Hq}^{(1)}, \mathcal{O}_{Hd}, \mathcal{O}_{Hu}$, Can be constrained setting $|H|^2 \rightarrow v^2$ Bosonic: Yukawa: $\mathcal{O}_{H\Box}, \mathcal{O}_{HG}, \mathcal{O}_{HW}, \mathcal{O}_{HB}, \mathcal{O}_{W}, \mathcal{O}_{G}$, Triple-gauge field strength operators Can only be constrained by Higgs physics

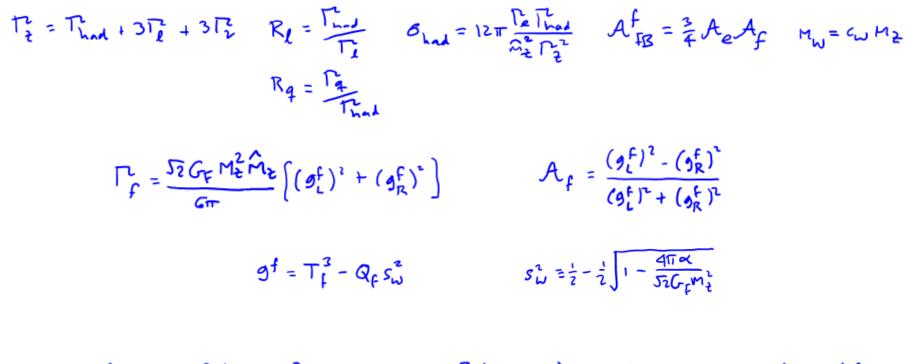
Measurements

• Higgs:

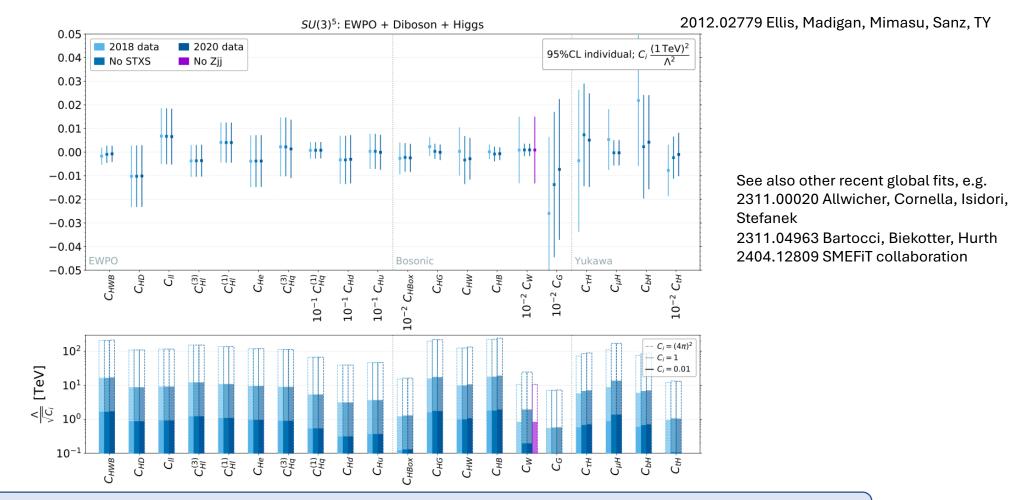

LUC Days 1 History		Def
LHC Run 1 Higgs	$n_{\mathbf{obs}}$	Ref.
ATLAS and CMS LHC Run 1 combination of Higgs signal strengths.	21	[8]
Production: ggF , VBF , ZH , WH & ttH		
Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$ & $b\bar{b}$		
ATLAS inclusive $Z\gamma$ signal strength measurement	1	[9]
LHC Run 2 Higgs (new)	<i>2</i> 2 -	Ref.
	$n_{\mathbf{obs}}$	<u> </u>
ATLAS combination of signal strengths and stage 1.0 STXS in $H \to 4\ell$	16 19 25	[10]
including ratios of branching fractions to $\gamma\gamma$, WW^* , $\tau^+\tau^-$ & $b\bar{b}$		
Signal strengths coarse STXS bins fine STXS bins		
CMS LHC combination of Higgs signal strengths.	23	[11]
Production: ggF , VBF , ZH , WH & ttH		
Decay: $\gamma\gamma$, ZZ, W ⁺ W ⁻ , $\tau^+\tau^-$, $b\bar{b}$ & $\mu^+\mu^-$		
CMS stage 1.0 STXS measurements for $H \to \gamma \gamma$.	13 7	[12]
13 parameter fit 7 parameter fit		
CMS stage 1.0 STXS measurements for $H \to \tau^+ \tau^-$	9	[13]
CMS stage 1.1 STXS measurements for $H \to 4\ell$	19	[14]
CMS differential cross section measurements of inclusive Higgs produc-	5 6	[15]
tion in the $WW^* \to \ell \nu \ell \nu$ final state.		
$\left \frac{d\sigma}{dn_{ m jet}} \right \left \frac{d\sigma}{dp_H^T} \right $		
ATLAS $H \to Z\gamma$ signal strength.	1	[16]
ATLAS $H \to \mu^+ \mu^-$ signal strength.	1	[17]

Measurements

• Top:


Run 2 top	$n_{\mathbf{obs}}$	Ref.	/
CMS $t\bar{t}$ differential distributions in the dilepton channel.	6	[36,	
$\frac{d\sigma}{dm_{i\bar{i}}}$		230]	
CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.	10	[37]	
$\frac{d\sigma}{dm_{t\bar{t}}}$			
ATLAS measurement of differential $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$.	5	[38]	
ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[39]	
CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	1 1	[40]	
CMS $t\bar{t}Z$ differential distributions.	4 4	[41]	
$\frac{d\sigma}{dp_Z^T} = \frac{d\sigma}{d\cos\theta^*}$			
$\frac{G_{PZ}}{CMS}$ measurement of differential cross sections and charge ratios for t-	5 5	[42]	
channel single-top quark production.			\setminus
$\frac{d\sigma}{dp_{t+\bar{t}}^T} \mid R_t \left(p_{t+\bar{t}}^T \right)$			
CMS measurement of <i>t</i> -channel single-top and anti-top cross sections.	4	[43]	
$\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$			
CMS measurement of the <i>t</i> -channel single-top and anti-top cross sections.	1 1 1 1	[44]	
$\sigma_t \sigma_{\bar{t}} \sigma_{t+\bar{t}} R_t.$			
CMS <i>t</i> -channel single-top differential distributions.	4 4	[45]	
$\left \frac{d\sigma}{dp_{t\perp\bar{t}}^T} \right \left \frac{d\sigma}{d y_{t+\bar{t}} } \right $			
ATLAS tW cross section measurement.	1	[46]	
CMS tZ cross section measurement.	1	[47]	
CMS tW cross section measurement.	1	[48]	
ATLAS tZ cross section measurement.	1	[49]	
CMS $tZ(Z \to \ell^+ \ell^-)$ cross section measurement	1	[50]	
ATLAS four-top search in the multi-lepton and same-sign dilepton chan-	1	[51]	
nels.			
ATLAS four-top search in the single-lepton and opposite-sign dilepton	1	[52]	
channels.			
CMS four-top search in the multi-lepton and same-sign dilepton chan-	1	[53]	
nels.			
CMS four-top search in the single-lepton and opposite-sign dilepton	1	[54]	
channels.			
CMS $t\bar{t}b\bar{b}$ cross section measurement in the all-jet channel.	1	[55]	
CMS $t\bar{t}b\bar{b}$ cross section measurement in the dilepton channel.	1	[56]	

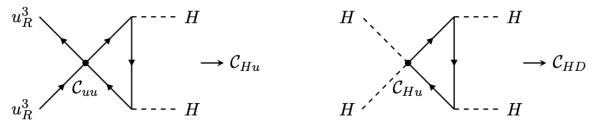
Measurements


EW precision observables	$n_{\mathbf{obs}}$	Ref.
Precision electroweak measurements on the Z resonance.	12	[1]
$\Gamma_{Z}, \sigma_{\text{had.}}^{0}, R_{\ell}^{0}, A_{FB}^{\ell}, A_{\ell}(\text{SLD}), A_{\ell}(\text{Pt}), R_{b}^{0}, R_{c}^{0} A_{FB}^{b}, A_{FB}^{c}, A_{b} \& A_{c}$		
Combination of CDF and D0 W-Boson Mass Measurements	1	[6]
LHC run 1 W boson mass measurement by ATLAS	1	[57]

• EWPO:

 $m_{\tilde{t}}^{2} = (m_{\tilde{z}}^{2})^{\circ} (1 + \pi_{\tilde{z}\tilde{t}}) \qquad G_{f} = G_{f}^{\circ} (1 - \pi_{uw}^{\circ}) \qquad \propto (m_{\tilde{t}}) = \alpha^{\circ}(m_{\tilde{z}}) (1 + \pi_{\tilde{y}\tilde{y}})$

The SM *is* an Effective Field Theory - SMEFT is the Fermi theory of the 21st century


Indirect evidence preceded direct discovery for nearly all SM particles. May be true of BSM!

2311.00020 Allwicher, Cornella, Isidori, Stefanek

Pow Composed for the served) Composed for the served Composed	$\mathcal{C}_{H\ell}^{(3)[ii]}$			
Pow Pow Pow Pow Pow Pow Pow Pow	$\mathcal{C}_{H\ell}^{(1)[ii]}$			
Power Po	$\mathcal{C}_{H\ell}^{[ii]}$			
Pow Critical C	$\mathcal{C}^{(3)[ii]}_{H_{\alpha}}$		~~~~	
Classical Control (Classical Control (Clastical Control (Classical Control (Classical Control (C_{HD}			
C ¹ / ₁ C ¹	$\mathcal{C}^{[ijji]}_{_{6\theta}}$			Powe
C ¹ / ₁ C ¹	$\mathcal{C}_{II\ell}^{(3)[33]}$		~~	
C ¹ / ₁ C ¹	$\mathcal{C}_{III}^{(1)[33]}$			
C ¹ / ₁ C ¹	$\mathcal{C}^{[33]}_{H_{\pi}}$		×	
City Z/W-pole (tree-level) City Z/W-pole (tree-level) City Z/W-pole (tree-level) City EW City EW City EW City EW City Flavor (Up) City Flavor (Down) <	$\mathcal{C}_{H_{\alpha}}^{(1)[33]}$		***	
City Z/W-pole (tree-level) City Z/W-pole (tree-level) City Z/W-pole (tree-level) City EW City EW City EW City EW City Flavor (Up) City Flavor (Down) <	$\mathcal{C}_{\mu_{q}}^{nq}$			
C ^{11/101} C ^{11/101}	$\mathcal{C}_{Hu}^{[ii]}$			Even
<i>Z/W</i> -pole (tree-level) <i>Z/W</i> -pole (RGE) <i>Z/W</i>	$\mathcal{C}_{IIa}^{(1)[ii]}$			
$Z_{W}^{(1)} = \frac{Z}{W} - pole (tree-level)$ $C_{W}^{(1)} = \frac{Z}{W$	$\mathcal{C}_{HJ}^{[ii]}$			
Z/W-pole (RGE) Z/W-pole	$\mathcal{C}^{[33]}_{Hd}$		Z/W-pole (tree-level)	
$C_{i_{1}}^{(1)_{[163]}}$ $C_{i_{3}}^{(1)_{[163]}}$ $C_{i_{3}}^{(1)_{[16]}}$ $C_{i_{3}}^$	$\mathcal{C}^{[33]}_{\mu_{\mu}}$		Z/W-pole (RGE)	
$C_{l_{u}}^{[n]} = Collider$ $C_{l_{u}}^{[n]} = Collider$ $EW (FCCee)$ EW $C_{r_{q}}^{[n]} = Collider$ EW $C_{r_{q}}^{[n]} = Collider$ EW $Flavor (Up)$ $Flavor (Down)$ $C_{l_{u}}^{[n]} = C_{r_{q}}^{[n]} $	$\mathcal{C}_{\ell a}^{(1)[ii33]}$			ι
$C_{l_{u}}^{[n]} = Collider$ $C_{l_{u}}^{[n]} = Collider$ $EW (FCCee)$ EW $C_{r_{q}}^{[n]} = Collider$ EW $C_{r_{q}}^{[n]} = Collider$ EW $Flavor (Up)$ $Flavor (Down)$ $C_{l_{u}}^{[n]} = C_{r_{q}}^{[n]} $	$\mathcal{C}_{\ell a}^{(3)[ii33]}$			C C
$C_{qq}^{(3)[i33]} \\ C_{qq}^{(3)[i33]} \\ C_{($	$C^{[ii33]}_{\ell_{H}}$			
$C_{qq}^{[244]} = \frac{1}{10} + 1$	$\mathcal{C}_{aa}^{(3)[ii33]}$			
$C_{qq}^{(i)333} = C_{qq}^{(i)333} = EW $ $C_{qq}^{(i)333} = C_{qq}^{(i)333} = Flavor (Up) $ $C_{qq}^{(i)333} = C_{qq}^{(i)333} = C_{qq}^$	$\mathcal{C}^{[33ii]}_{ae}$			
$C_{qq}^{(1)[3333]} = EW$ $= Flavor (Up)$ $C_{qq}^{(3)[333]} = C_{qq}^{(3)[333]} = C_{qq}^{(3)[33]} = $	$C_{eu}^{[ii33]}$		\boxtimes EW (FCCee)	
$\begin{array}{c} C_{qq}^{(3)[ij]} \\ C_{lq}^{(1)[333]} \\ C_{lq}^{(333)} \\ C_{qu}^{(333)} \\ C_{qu}^{(33$	$C_{qq}^{(1)[3333]}$		EW	ι
$C_{tq}^{(1)[333]} = Flavor (Down) \\ C_{tq}^{(3333]} \\ C_{tu}^{(3333]} \\ C_{tu}^{(3333]} \\ C_{tu}^{(3333]} \\ C_{exs}^{(3333]} \\ C_{exs}^{(3333]} \\ C_{exs}^{(3333)} \\ C_{exs}^{(3333)} \\ C_{exs}^{(3333)} \\ C_{exs}^{(3333)} \\ C_{exs}^{(3333)} \\ C_{exs}^{(333)} \\ C_{exs}^{(3)} \\ C_{exs}^{(3$	$\mathcal{C}^{(3)[iijj]}_{aa}$			
$\begin{array}{c} C_{t_{q}}^{(5000)} \\ C_{\eta u}^{(3333)} \\ C_{q q}^{(3333)} \\ C_{e q}^{(13333)} \\ C_{e q}^{(1333)} \\ C_{e q}^{(133)} \\ C_{e q}^{$	$C_{\ell a}^{(\hat{1})[3333]}$		Flavor (Up)	
$\begin{array}{c} C_{t_{q}}^{(5000)} \\ C_{\eta u}^{(3333)} \\ C_{q q}^{(3333)} \\ C_{e q}^{(13333)} \\ C_{e q}^{(1333)} \\ C_{e q}^{(133)} \\ C_{e q}^{$	$\mathcal{C}_{\ell a}^{(3)[3333]}$		Flavor (Down)	
$\begin{array}{c} C_{\eta u}^{(1)[3333]} \\ C_{q e}^{(333)} \\ C_{e q q e}^{(1)[3333]} \\ C_{e q q q q}^{(1)[3333]} \\ C_{e q q q q q}^{(1)[3333]} \\ C_{e q q q q q q q q q q q q q q q q q q q$	$\mathcal{C}^{[3333]}_{\ell u}$			
$\begin{array}{c} C_{qq}^{13333} \\ C_{qq}^{2} \\ C_{ex3}^{3333} \\ C_{ex3}^{13333} \\ C_{ex3}^{1333} \\ C_{ex3}^{1333$	$C_{qu}^{(1)[3333]}$			
$\begin{array}{c} C_{ex}^{[3333]} \\ C_{ex}^{[3333]} \\ C_{ex}^{[333]} \\ C_{ex}^{[333]} \\ C_{ex}^{[333]} \\ C_{ex}^{[1]333]} \\ C_{ex}^{[1]333]} \\ C_{ex}^{[1]333]} \\ C_{ex}^{[1]333]} \\ C_{ex}^{[1]333]} \\ C_{ex}^{[33]} \\ C$	$\mathcal{C}^{[3333]}_{uu}$			
$\begin{array}{c} & Higgs decays \\ C_{equ}^{[33]} \\ C_{equ}^{(1)[33]} \\ C_{equ}^{(1)[3]} \\ C_$	$\mathcal{C}_{qe}^{[3333]}$			
$\begin{array}{c} C_{eq}^{(33)} \\ C_{equ}^{(33)} \\ C_{equ}^{(1)[333]} \\ C_{equ}^{(1)[333]} \\ C_{equ}^{(1)[33]} \\ C_{equ}^{(1)[33]} \\ C_{eq}^{(3)[ij]} \\ C_{eq}^{(3)[ij]} \\ C_{eq}^{(3)[ij]} \\ C_{eq}^{(3)[ij]} \\ C_{eq}^{(3)[33i]} \\ C_{eq}^{$	$\mathcal{C}_{cu}^{[3333]}$			
$\begin{array}{c} C_{l}^{(3)} \\ C_{lequ} \\ C_{l}^{(1)[333]} \\ C_{lequ}^{(1)[333]} \\ C_{lq}^{(3)[ij]} \\ C_{lq}^{(3)[ij]}$	$\mathcal{C}_{eH}^{[33]}$		Higgs decays	
$\begin{array}{c} C_{lequ}^{(1)[3333]} \\ c_{lequ}^{(3)[3333]} \\ C_{lq}^{(3)[ij]} \\ C_{lq}^{(3)[ij]} \\ C_{lq}^{(3)[ij]} \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array}$	$\mathcal{C}^{[33]}_{JH}$			Natu
$\begin{array}{c} C_{\ell\ell}^{(3)(3)i} \\ C_{\ellq}^{(3)[33ii]} \\ C_{\ellq}^{(3)[33ii]} \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array}$	$C_{\ell equ}^{(1)[3333]}$			Nata
$\begin{array}{c} C_{\ell\ell}^{(3)(3)i} \\ C_{\ellq}^{(3)[33ii]} \\ C_{\ellq}^{(3)[33ii]} \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array}$	$C_{auad}^{(1)[3333]}$			
$\begin{array}{c c} C_{\ell q}^{(3)[iij]} \\ C_{\ell q}^{(3)[33ii]} \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array}$	$\mathcal{C}_{ee}^{[i33i]}$		$ au \ { m LFU}$	
0 10 20 30 40 50	$\mathcal{C}_{\ell g}^{(3)[iijj]}$			
0 10 20 30 40 50	$\mathcal{C}_{\ell q}^{(3)[33ii]}$			
		0 10 20	30 40 50	
IEV		${ m TeV}$		

Powerful indirect exploration of the multi-TeV scale @ FCC-ee

Even for TeV-scale new physics coupling only to third generation!

Figure 1. Next-to-leading log running of four-quark operators into C_{HD} .

Naturalness a major motivation for fully exploring 3rd gen @ TeV

Take aesthetic problems seriously.

<u>Example 1</u>

$$F = m_{inertia}a$$
 $F \propto \frac{q_1q_2}{r^2}$

Inertial mass and charge have nothing to do with each other, and yet for gravity we arbitrarily set by hand

$$q = m_{inertia}$$

Solution to this equivalence problem took centuries: Newtonian gravity \rightarrow GR

Take fine-tuning problems seriously.

e.g. 2205.05708 N. Craig - Snowmass review, 1307.7879 G. Giudice - Naturalness after LHC

<u>Example 2</u>

$$(m_e c^2)_{obs} = (m_e c^2)_{bare} + \Delta E_{\text{Coulomb}}. \qquad \Delta E_{\text{Coulomb}} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r_e}.$$
Avoiding cancellation between "bare" mass and divergent self-energy in classical electrodynamics requires new physics around
$$e^2/(4\pi\varepsilon_0 m_e c^2) = 2.8 \times 10^{-13} \text{ cm}$$
Indeed, the positron and quantum-mechanics appears just before!
$$\Delta E = \Delta E_{\text{Coulomb}} + \Delta E_{\text{pair}} = \frac{3\alpha}{4\pi} m_e c^2 \log \frac{\hbar}{m_e c r_e}$$

Take fine-tuning problems seriously.

e.g. 2205.05708 N. Craig - Snowmass review, 1307.7879 G. Giudice - Naturalness after LHC

Example 3

Divergence in pion mass:
$$m_{\pi^\pm}^2 - m_{\pi^0}^2 = rac{3lpha}{4\pi}\Lambda^2$$

Experimental value is $m_{\pi^{\pm}}^2 - m_{\pi_0}^2 \sim (35.5\,{
m MeV})^2$

Expect new physics at $\Lambda \sim 850$ MeV to avoid fine-tuned cancellation.

ho meson appears at 775 MeV!

Take fine-tuning problems seriously.

e.g. 2205.05708 N. Craig - Snowmass review, 1307.7879 G. Giudice - Naturalness after LHC

Example 4

Divergence in Kaons mass difference in a theory with only up, down, strange:

$$m_{K_{L}^{0}} - m_{K_{S}^{0}} = \simeq \frac{1}{16\pi^{2}} m_{K} f_{K}^{2} G_{F}^{2} \sin^{2} \theta_{C} \cos^{2} \theta_{C} \times \Lambda^{2}$$

Avoiding fine-tuned cancellation requires $\Lambda < 3$ GeV.

Gaillard & Lee in 1974 predicted the charm quark mass!

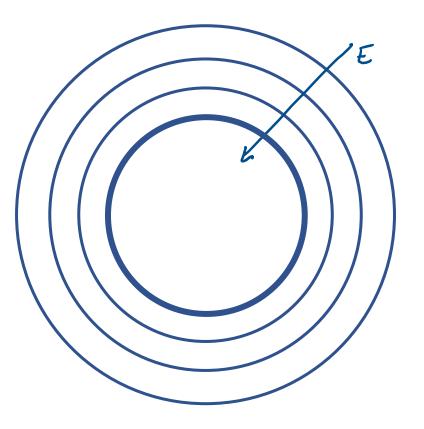
Take fine-tuning problems seriously.

e.g. 2205.05708 N. Craig - Snowmass review, 1307.7879 G. Giudice - Naturalness after LHC

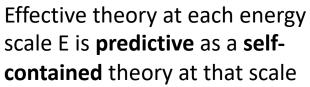
<u>Higgs?</u>

Higgs also has a quadratically divergent contribution to its mass

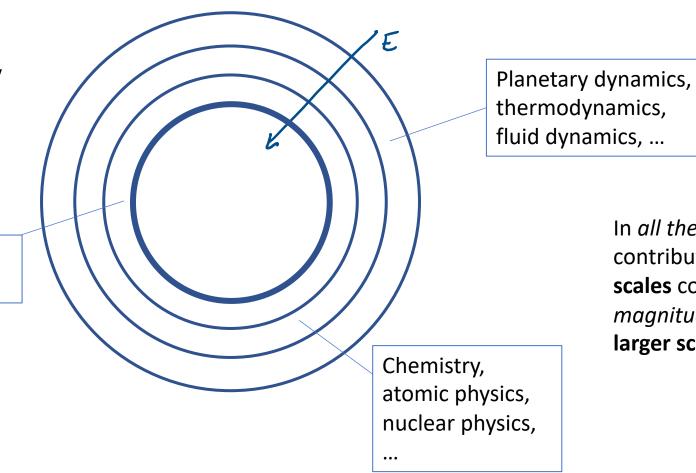
$$\Delta m_{H}^{2} = \frac{\Lambda^{2}}{16\pi^{2}} \left(-6y_{t}^{2} + \frac{9}{4}g^{2} + \frac{3}{4}g'^{2} + 6\lambda \right)$$


Avoiding fine-tuned cancellation requires $\Lambda < O(100)$ GeV??

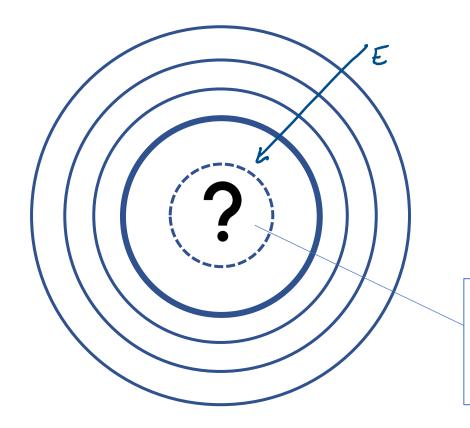
As Λ is pushed to the TeV scale by null results, tuning is around 10% - 1%.


Note: in the SM the Higgs mass is a parameter to be measured, not calculated. What the quadratic divergence represents (independently of the choice of renormalisation scheme) is the fine-tuning in an underlying theory in which we expect the Higgs mass to be calculable.

• Why is unnatural fine-tuning such a big deal?

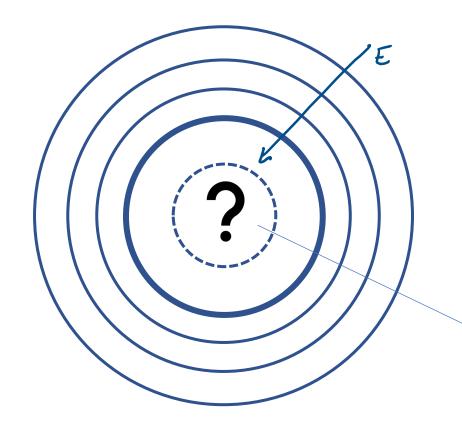

Effective theory at each energy scale E is **predictive** as a **self-contained** theory at that scale

• Why is unnatural fine-tuning such a big deal?


Strong / weak interactions, ...

In all theories so far, no contributions from **smaller scales** compete with similar magnitude to effects **on larger scales**

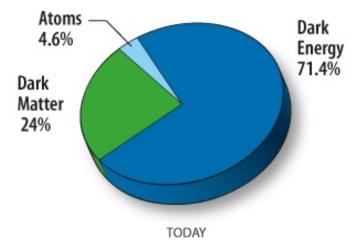
- Why is unnatural fine-tuning such a big deal?
- Indicates an unprecedented breakdown of the effective theory structure of nature

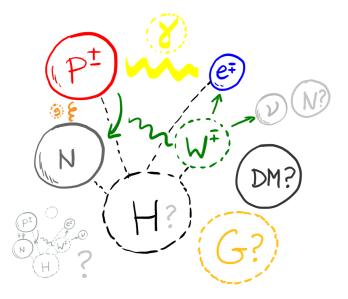

Effective theory at each energy scale E is **predictive** as a **self-contained** theory at that scale

Unnatural Higgs means the next layer *is no longer predictive* without including contributions *from much smaller scales*

- Why is unnatural fine-tuning such a big deal?
- Indicates an unprecedented breakdown of the effective theory structure of nature

Effective theory at each energy scale E is **predictive** as a **self-contained** theory at that scale


Unnatural Higgs means the next layer *is no longer predictive* without including contributions *from much smaller scales*


• Are we missing a **new** *"post-naturalness"* principle?

c.f. null results in search for aether

Naturalness aside, many more open questions

- What is the origin of the Higgs?
- What is the origin of matter?
- What is the **origin of flavour**?
- What is the origin of dark matter and dark energy?
- What is the **origin of neutrino mass**?
- What is the origin of the Standard Model?

- Telescopes are observatories of the very large
- Colliders observe the very small
- We need all eyes open on all scales in our universe

$FCC-ee \rightarrow FCC-hh$

HC

27 km

• CERN Future Circular Collider (FCC) proposal (2040s - 2080s)

Future Circular Collider

100 km

• A particle observatory for the 21st century

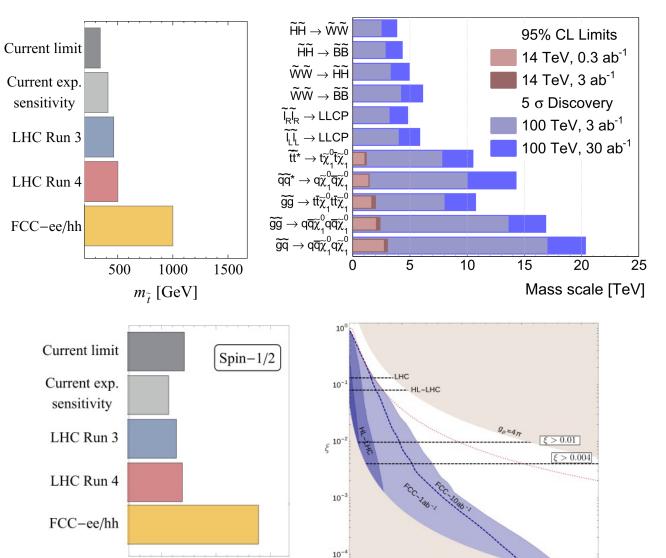
SPS

Geneva

PS

Google Earth Image © 2016 DigitalGlobe Image Landsat / Copernicus

"BSM discovery prospects" \rightarrow "Exploring origins"


• What is the **purpose** of a **next-generation particle observatory**?

To explore the fundamental origins of our universe and its laws

- Exploring, not searching
 - "Exploring the origins of our universe" is a more accurate **mission statement**, unlike e.g. "searching for supersymmetry and dark matter"
 - "Exploring the origin of the Higgs" simpler to convey than naturalness
- "Discovery stories" risks putting the focus on promising to find new physics
- "Exploring origins" puts the focus on open BSM questions to be answered
 - Emphasises colliders as a general-purpose particle observatory with a wide-ranging physics programme

(Rename FCC to the International Particle Observatory?) See CERN Courier article: https://cerncourier.com/a/future-colliders-are-particle-observatories/

Origin of the Higgs

10

20

m_p [TeV]

30

40

1000

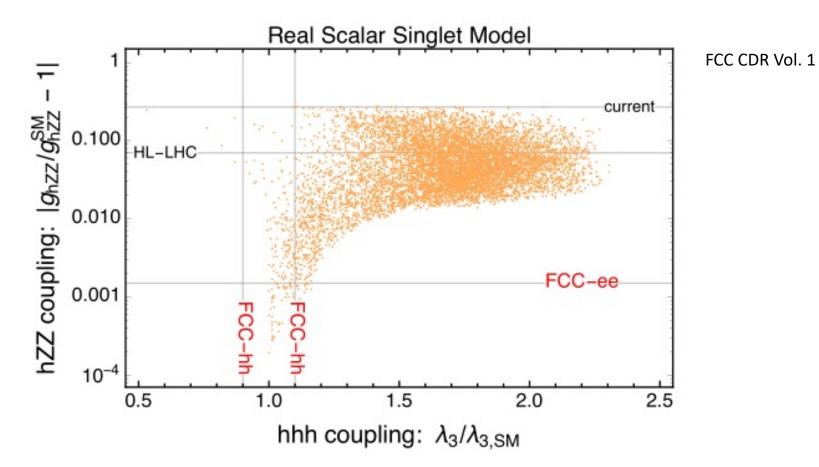
 m_T [GeV]

500

1500

FCC CDR Vol. 1

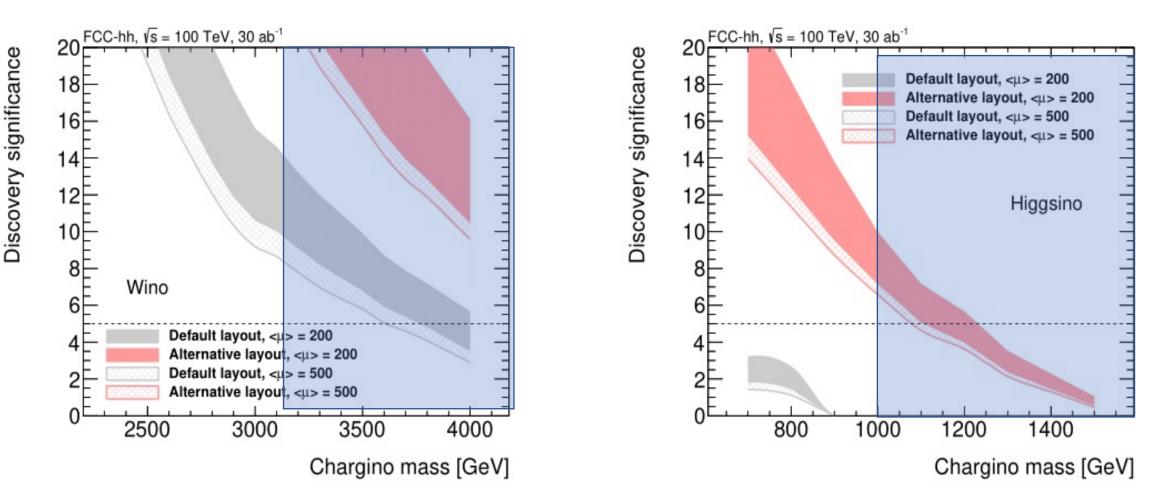
Note: naturalness aside, still motivation in exploring origin of Higgs in models from which it emerges, where its mass is *calculable*


Supersymmetry

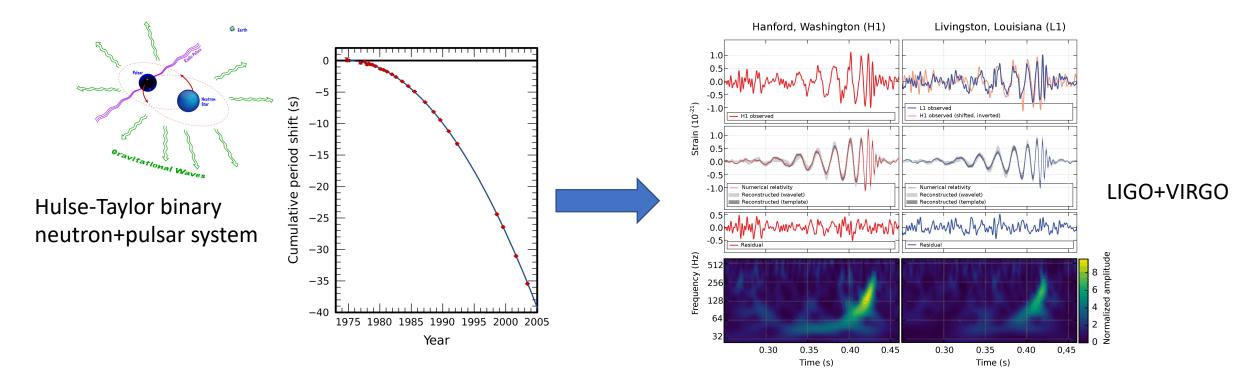
- Massless spins 0, 1/2, 1, 3/2, 2 only
- Spin 3/2 *must* be supersymmetric
- (Ir)relevant for solving **naturalness**?

- Composite Higgs / extra dimensions
 - Is the Higgs **elementary** or **composite**?
 - Are there *accessible* extra dimensions?

Origin of matter

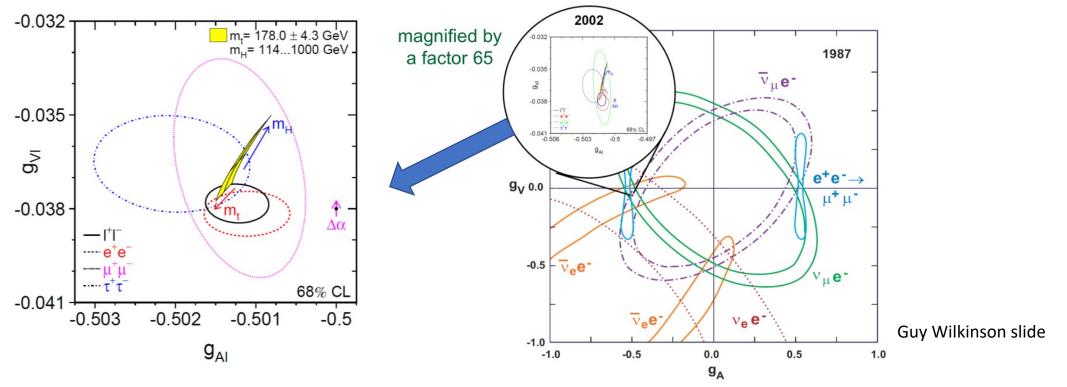

• Nature of the **electroweak phase transition**: *first* or *second order*?

• Potential corroboration with gravitational wave signal at LISA


Origin of dark matter

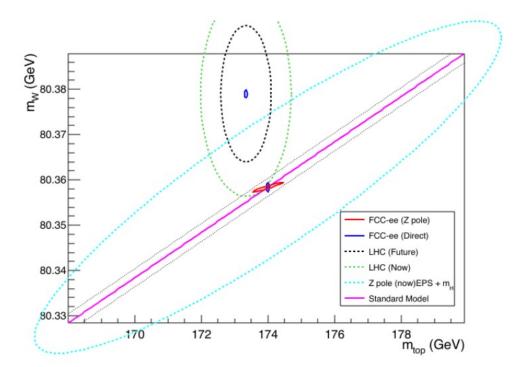
• FCC-hh coverage of entire doublet and triplet thermal WIMP mass range

Why high energy after high precision?


• Follow up indirect observations with direct exploration

 Note: in astro/cosmo, observing known objects and processes in new regimes or to better accuracy is reason enough to keep making progress!

No BSM or new discoveries at LEP


- 1980-1990s: LEP physics programme a resounding success
- Improved our fundamental picture of nature by orders of magnitude

• Indirect precision probe of physics at higher energies

No BSM or new discoveries at FCC-ee?

• Further zooming in on our fundamental picture of nature

• Rich physics programme covering Higgs, top, electroweak, multibosons, flavour, rare decays, neutrinos, QCD, heavy ions and more.

No guarantee of new discoveries at FCC-hh?

- **Note**: GAIA, JWST or LIGO did not promise to discover exotic new physics or break GR
- No guarantee of discovery at Tevatron either. Hadron collisions thought by some to be too messy to do physics.
- Value in pushing frontiers: we learn something regardless of outcome
- **Definite questions** are answered, even if in the negative
- Science is about *continually refining existing knowledge* and *exploring the unknown*
- A new generation of data management, analysis techniques, improved measurements, theoretical calculational tools, hardware development, cutting-edge engineering, large international collaboration, popular culture inspiration, and spirit of fundamental exploration, can only benefit humanity regardless of our own short-sighted disappointment at lack of BSM. Doing good science is its own reward.

Potential BSM outcomes for naturalness

- Radically conservative: naturalness restored just around the corner
 - Natural supersymmetry
 - Composite Higgs/extra dimensions

Creatively conservative

- Twin Higgs
- Stealth supersymmetry

• Post-naturalness BSM

- Split supersymmetry
- Vector-like fermions only
- Higgs criticality
- Cosmological dynamics

• Radically new?

- Hard to imagine what form this might take, by definition
- How might this show up?

Potential BSM outcomes for naturalness

- Radically conservative: naturalness restored just around the corner
 - Natural supersymmetry
 - Composite Higgs/extra dimensions

Creatively conservative

- Twin Higgs
- Stealth supersymmetry

Post-naturalness BSM

- Split supersymmetry
- Vector-like fermions only
- Higgs criticality
- Cosmological dynamics

Radically new?

- Hard to imagine what form this might take, by definition
- How might this show up?

Potential BSM outcomes for naturalness

- Radically conservative: naturalness restored just around the corner
 - Natural supersymmetry
 - Composite Higgs/extra dimensions

Creatively conservative

- Twin Higgs
- Stealth supersymmetry

• Post-naturalness BSM

- Split supersymmetry
- Vector-like fermions only
- Higgs criticality
- Cosmological dynamics

• Radically new?

- Hard to imagine what form this might take, by definition
- How might this show up?

"Radically conservative" historical precedent

- 1930-40s: Success of QED. **QFT** emerges as the *new fundamental description of Nature*.
- 1960s: QFT is unfashionable, non-Abelian theory dismissed as an unrealistic generalisation of local symmetry-based forces. Widely believed a radically new framework will be required e.g. to understand the strong force.
- 1970s: QFT triumphs following Yang-Mills+Higgs+asymptotic freedom+renormalisation. Nature is radically conservative, but more unified than ever.
- 1980s: Success of SM. QFT understood as **most general EFT consistent with symmetry**. Higgs and cosmological constant *violate this symmetry principle*.

"Radically conservative" naturalness solution

- 1980-2020s: Success of SM, established as the *fundamental description of Nature* **up to TeV scale**.
- 2040s: QFT is unfashionable, supersymmetry theory dismissed as an unrealistic generalisation of symmetry principles. Widely believed a radically new framework will be required *e.g. to understand naturalness*.
- 2060s: QFT triumphs following Yang-Mills+Higgs+asymptotic freedom+renormalisation+supersymmetry. Nature is radically conservative, but more unified than ever.
- 2080s: Success of MSSM?

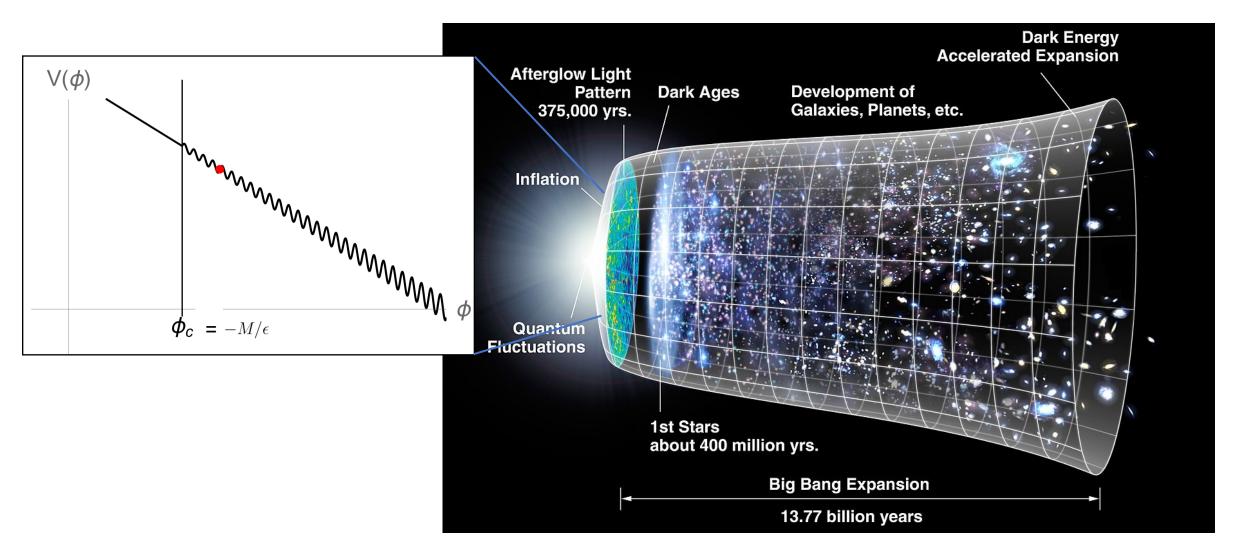
Potential BSM outcomes for naturalness

- Radically conservative: naturalness restored just around the corner
 - Natural supersymmetry
 - Composite Higgs/extra dimensions

Creatively conservative

- Twin Higgs
- Stealth supersymmetry

• **Post-naturalness** BSM


- Split supersymmetry
- Vector-like fermions only
- Higgs criticality
- Cosmological dynamics

• Radically new?

- Hard to imagine what form this might take, by definition
- How might this show up?

Cosmological solutions to naturalness problems

• Cosmological evolution during inflation could play a role

Cosmological solutions to naturalness problems

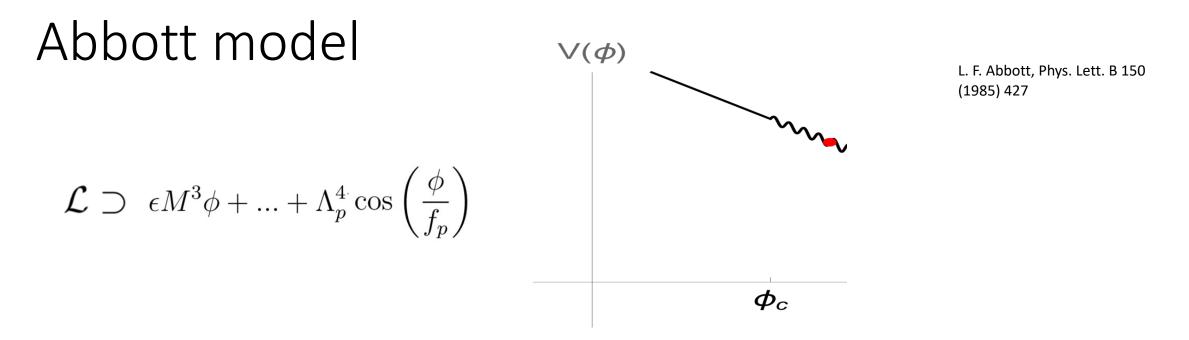
• The **good**: QCD axion solution of strong CP problem

• The **bad**: Abbott relaxation of cosmological constant

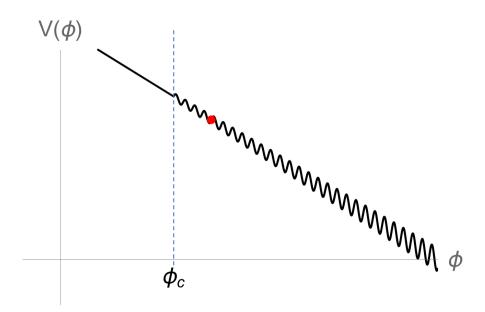
• The ugly: Cosmological relaxation of weak scale

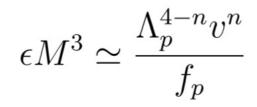
• The exotic: Self-Organised Localisation

Cosmological solutions to naturalness problems


- The **good**: QCD axion solution of strong CP problem
 - Most likely candidate for existing in nature
- The **bad**: Abbott relaxation of cosmological constant
 - Doesn't work
- The ugly: Cosmological relaxation of weak scale
 - Works, but wouldn't bet on it yet
- The exotic: Self-Organised Localisation
 - Requires eternal inflation

$$\mathcal{L} \supset \Lambda_p^4 \cos\left(\frac{\phi}{f_p}\right)$$

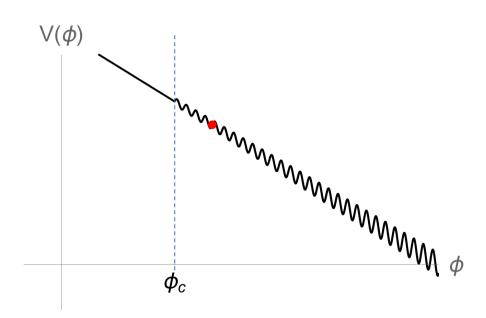

- Needs no introduction widely accepted cosmological solution
- First incarnation (Weinberg-Wilczek axion) ruled out ⇒ DFSZ / KSVZ invisible axion
- Has a 'halo of truth' to it, but also lack of attractive alternatives
- Still a PQ quality problem: requires additional UV model-building

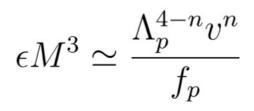


- Vacuum energy relaxed by ϕ
- Periodic potential barriers **suppressed** by Hawking temperature
- **Unsuppressed** for small enough vacuum energy density ⇒ **trapped at small CC**
- However, ends in **cold empty universe**
- Reheating requires *e.g. null energy condition violation*

Alberte et al 1608.05715 Graham, Kaplan, Rajendran 1902.06793

- Assume Higgs mass is naturally large at cut-off M
 - $\mathcal{L} \supset (M^2 + \epsilon M\phi)|h|^2 + \epsilon M^3\phi + \dots + \Lambda_p^{4-n}v^n \cos\left(\frac{\phi}{f_p}\right)$
- Higgs quadratic term scanned by axion-like field φ during inflation
- φ protected by shift symmetry, explicitly broken by small parameter ε
- Backreaction when $< h > \sim v$ stops ϕ evolution at small electroweak scale v

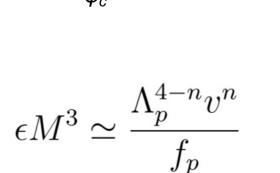


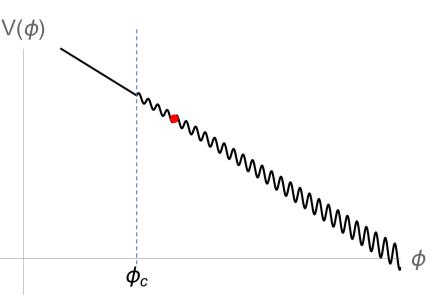


• Assume Higgs mass is naturally large at cut-off M

$$\mathcal{L} \supset (M^2 + \epsilon M \phi) |h|^2 + \epsilon M^3 \phi + \dots + \Lambda_p^{4-n} v^n \cos\left(\frac{\phi}{f_p}\right)$$

- Higgs quadratic term scanned by axion-like field φ during inflation
- φ protected by shift symmetry, explicitly broken by small parameter ε
- Backreaction when $< h > \sim v$ stops ϕ evolution at small electroweak scale v

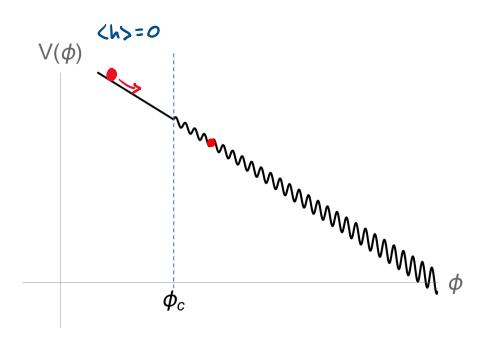


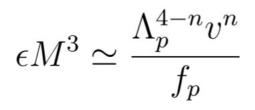


• Assume Higgs mass is naturally large at cut-off M

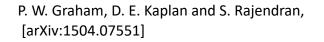
$$\mathcal{L} \supset \left(M^2 + \epsilon M\phi\right)|h|^2 + \epsilon M^3\phi + \dots + \Lambda_p^{4-n}v^n \cos\left(\frac{\phi}{f_p}\right)$$

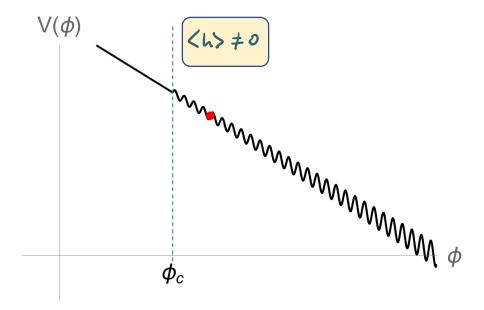
- Higgs quadratic term scanned by axion-like field φ during inflation
- φ protected by shift symmetry, explicitly broken by small parameter ε
- Backreaction when $< h > \sim v$ stops φ evolution at small electroweak scale v

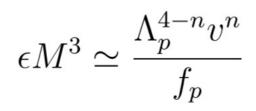




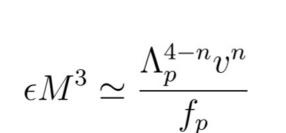
• Assume Higgs mass is naturally large at cut-off M

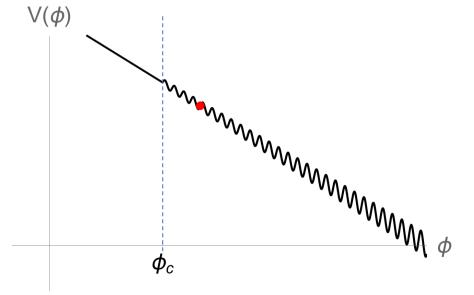

$$\mathcal{L} \supset \left(M^2 + \epsilon M \phi \right) |h|^2 + \epsilon M^3 \phi + \dots + \Lambda_p^{4-n} v^n \cos \left(\frac{\phi}{f_p} \right)$$


- Higgs quadratic term scanned by axion-like field φ during inflation
- φ protected by shift symmetry, explicitly broken by small parameter ε
- Backreaction when $< h > \sim v$ stops φ evolution at small electroweak scale v



- Assume Higgs mass is naturally large at cut-off M
 - $\mathcal{L} \supset (M^2 + \epsilon M\phi)|h|^2 + \epsilon M^3\phi + \dots + \Lambda_p^{4-n}v^n \cos\left(\frac{\phi}{f_p}\right)$
- Higgs quadratic term scanned by axion-like field φ during inflation
- φ protected by shift symmetry, explicitly broken by small parameter ε
- Backreaction when $< h > \sim v$ stops ϕ evolution at small electroweak scale v

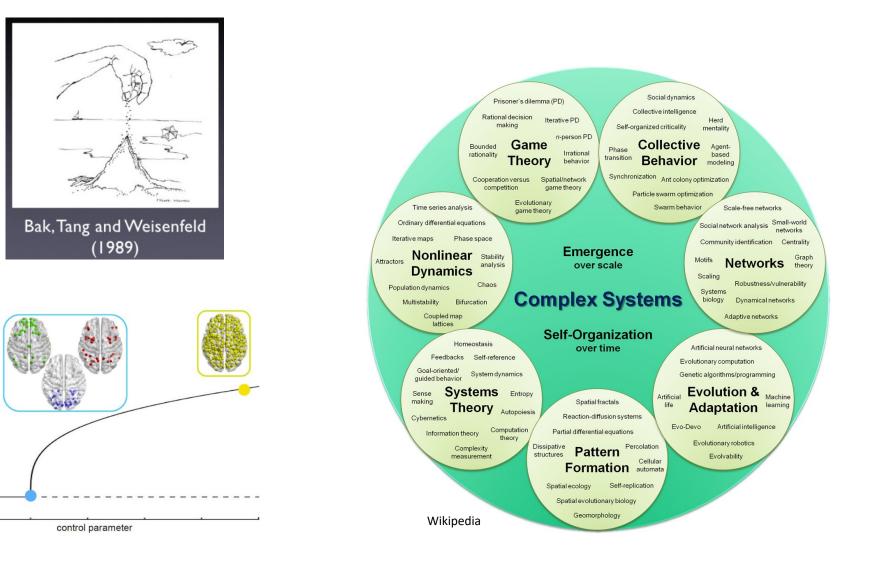

Constraints: H < v, classical rolling vs quantum, inflaton energy density dominates relaxion, etc.


Very small ε and natural scanning range lead to super-planckian field excursions, exponential e-foldings...

Assume Higgs mass is naturally lexcur

$$\mathcal{L} \supset (M^2 + \epsilon M\phi)|h|^2 + \epsilon M^3\phi + \dots + \Lambda_p^{4-n}v^n \cos\left(\frac{\phi}{f_p}\right)$$

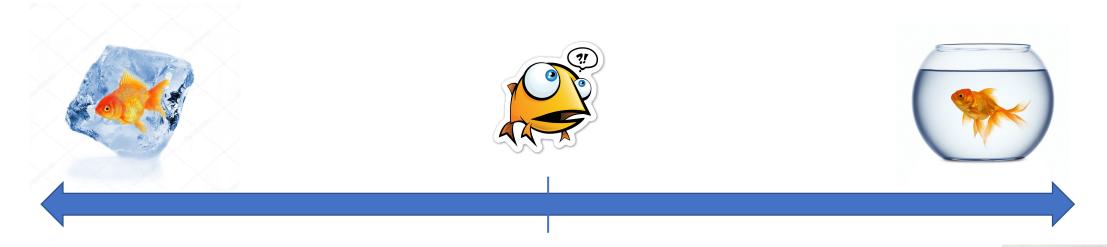
- Higgs quadratic term scanned by axion-like field φ during inflation
- φ protected by shift symmetry, explicitly broken by small parameter ε
- Backreaction when $< h > \sim v$ stops ϕ evolution at small electroweak scale v

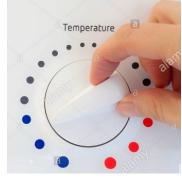

$$\mathcal{L} \supset (M^2 + \epsilon M\phi)|h|^2 + \epsilon M^3\phi + \dots + \Lambda_p^{4-n}v^n \cos\left(\frac{\phi}{f_p}\right)$$

- **n=1** models Graham et al [1504.07551]
 - Confining gauge group G=QCD: Need additional ingredients to overcome strong-CP problem
 See e.g. most recently: Chatrchyan, Servant [2210.01148]
 - New gauge group G: coincidence problem
- **n=2** models Espinosa et al [1506.09217]
 - G can be at higher scales, raises M cut-off too
 - **Requires second scalar** to relax relaxion barriers: double-scanning mechanism
- **n=0** models Hook and Marques-Tavares [1607.01786], **TY** [1701.09167]
 - More promising, make use of axial gauge coupling

$$\mathcal{L} = \frac{1}{32\pi^2} \frac{a}{f} \epsilon^{\mu\nu\rho\sigma} \mathrm{Tr} G_{\mu\nu} G_{\rho\sigma}$$

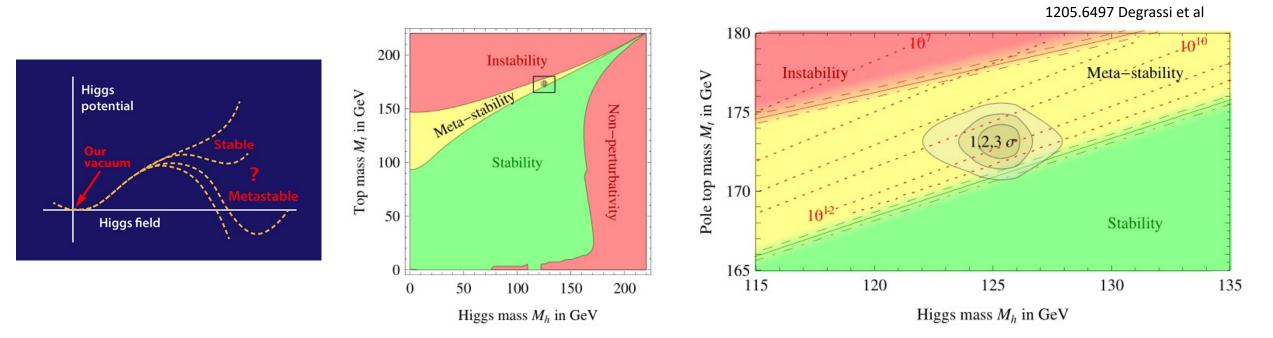
Self-Organised Criticality

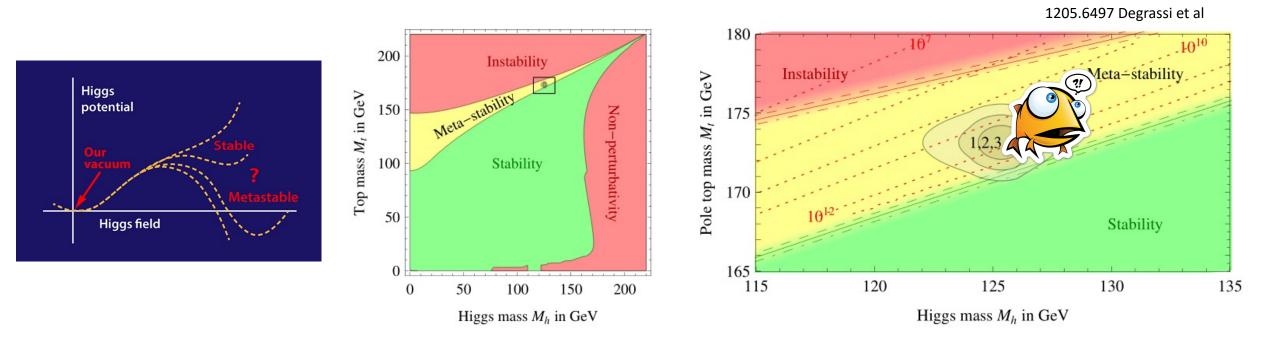

• Many systems in nature **self-tuned** to live near criticality



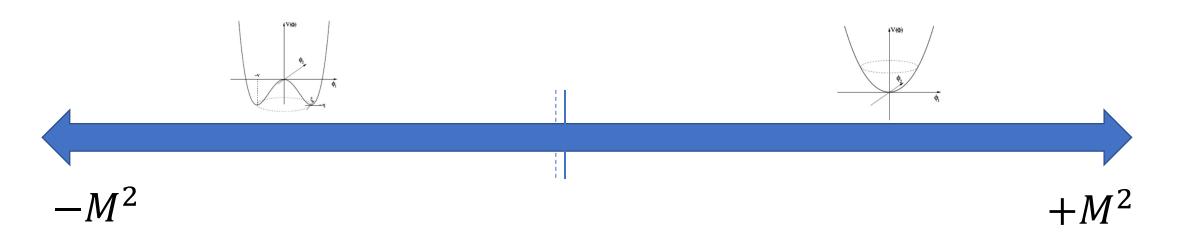
https://www.quantamagazine.org/to ward-a-theory-of-self-organizedcriticality-in-the-brain-20140403/ paramete

Critical points

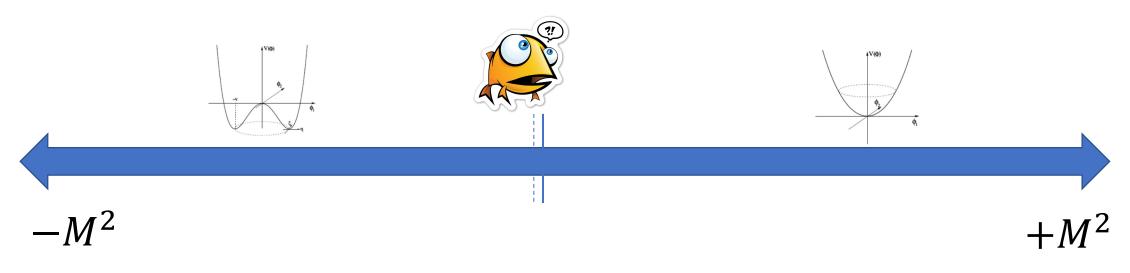

• To be at the **critical point** of a classical phase transition **requires tuning**


• Living **near criticality** is highly **non-generic**!

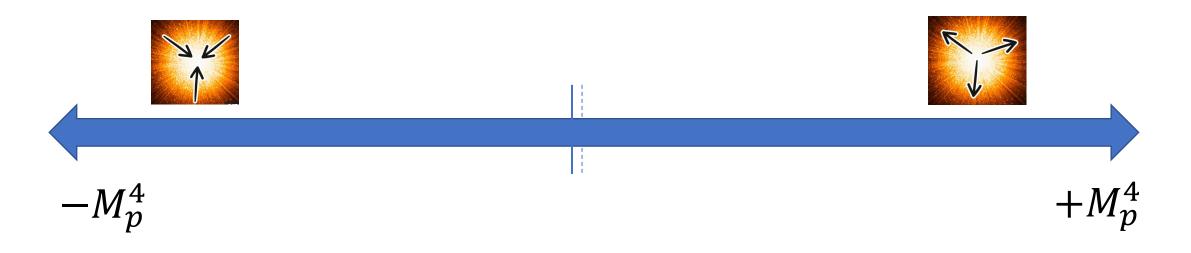
• 1) Higgs potential **metastability** in SM


• Living on critical boundary of two phases coexisting

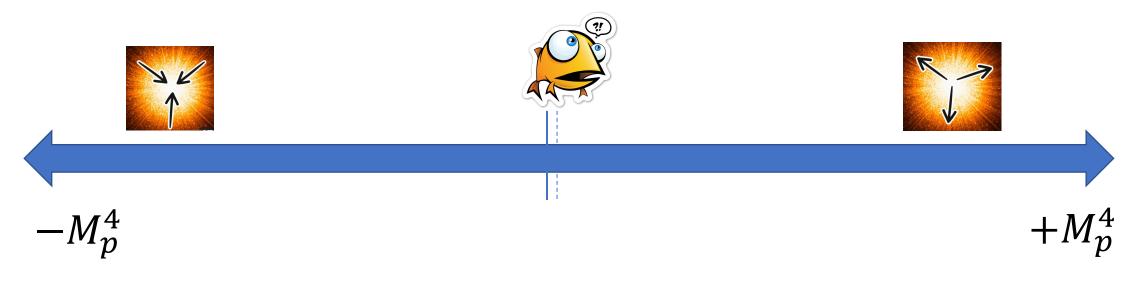
• 1) Higgs potential **metastability** in SM


Living on critical boundary of two phases coexisting

• 2) Higgs mass


• Tuned close to boundary between ordered and disordered phase

• 2) Higgs mass


• Tuned close to boundary between ordered and disordered phase

• 3) Cosmological constant

• Tuned close to boundary between implosion and explosion

• 3) Cosmological constant

• Tuned close to boundary between implosion and explosion

- Why do we appear to live at a **special point** close to criticality?
- Conventional explanations:
 - 1) Metastability: heavy new physics restores stability?
 - 2) Higgs mass: new symmetries?
 - 3) **Cosmological constant**: anthropics?
- Alternatively, hints for a new principle beyond EFT expectations at play?

Self-Organised Criticality

- Fundamental self-organised criticality in our universe?
- Need a mechanism for self-organisation of fundamental parameters

e.g. Self-Organized Criticality in eternal inflation landscape: J. Khoury et al 1907.07693, 1912.06706, 2003.12594

- Self-Organised Localisation (SOL):
 - cosmological quantum phase transitions localise fluctuating scalar fields during inflation at critical points

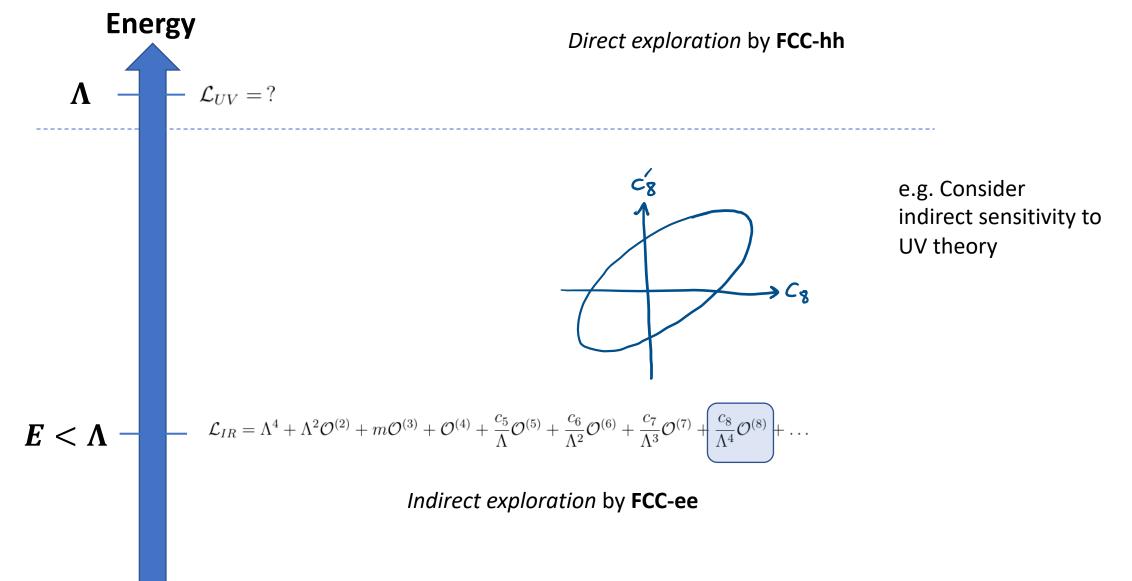
Giudice, McCullough, TY 2105.08617

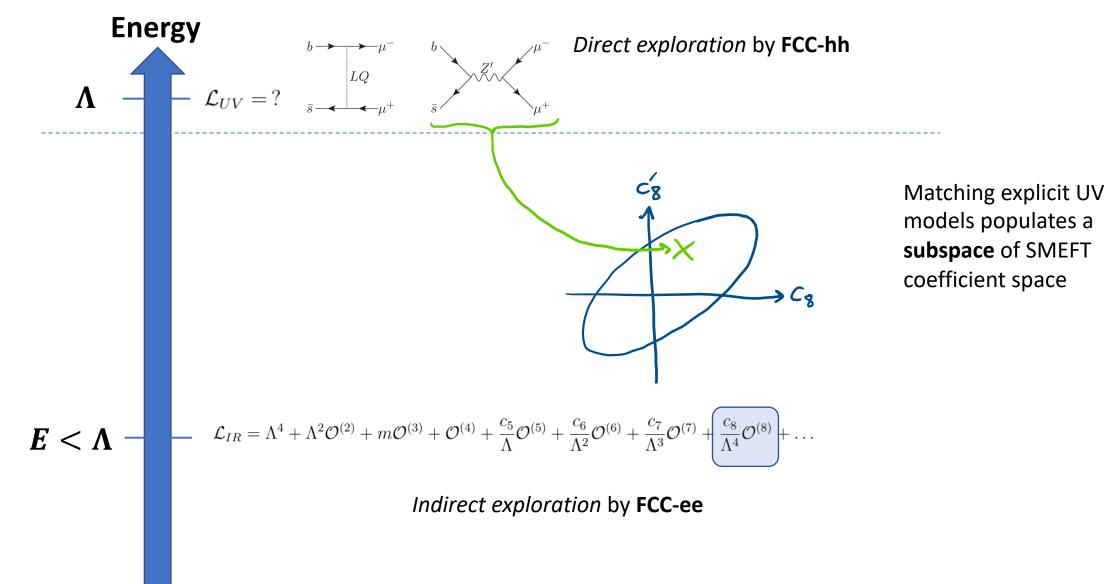
Potential BSM outcomes for naturalness at TeV scale

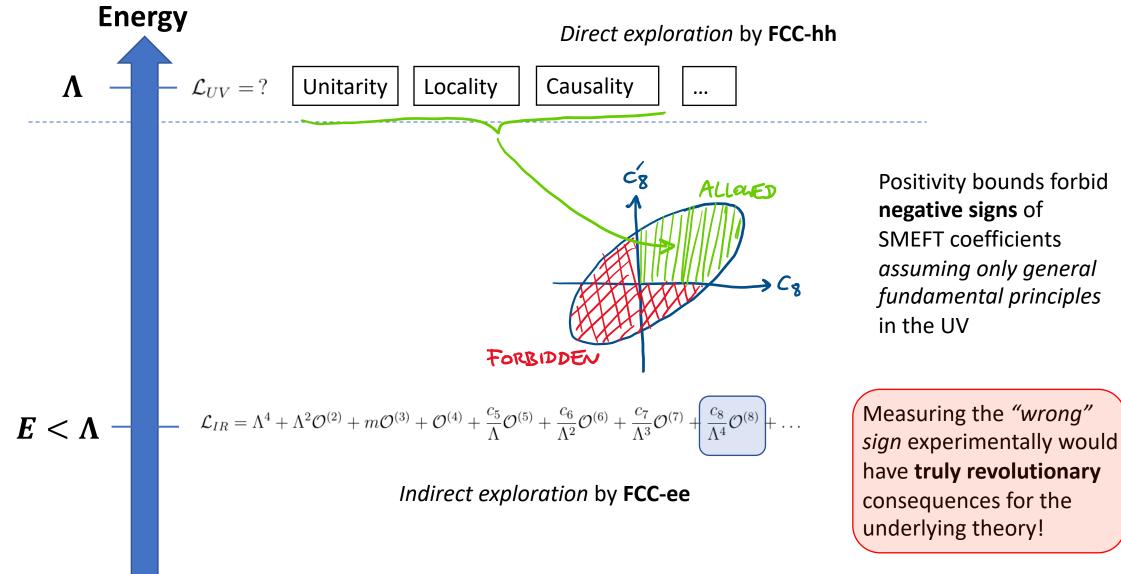
- Radically conservative: naturalness restored just around the corner
 - Natural supersymmetry
 - Composite Higgs/extra dimensions

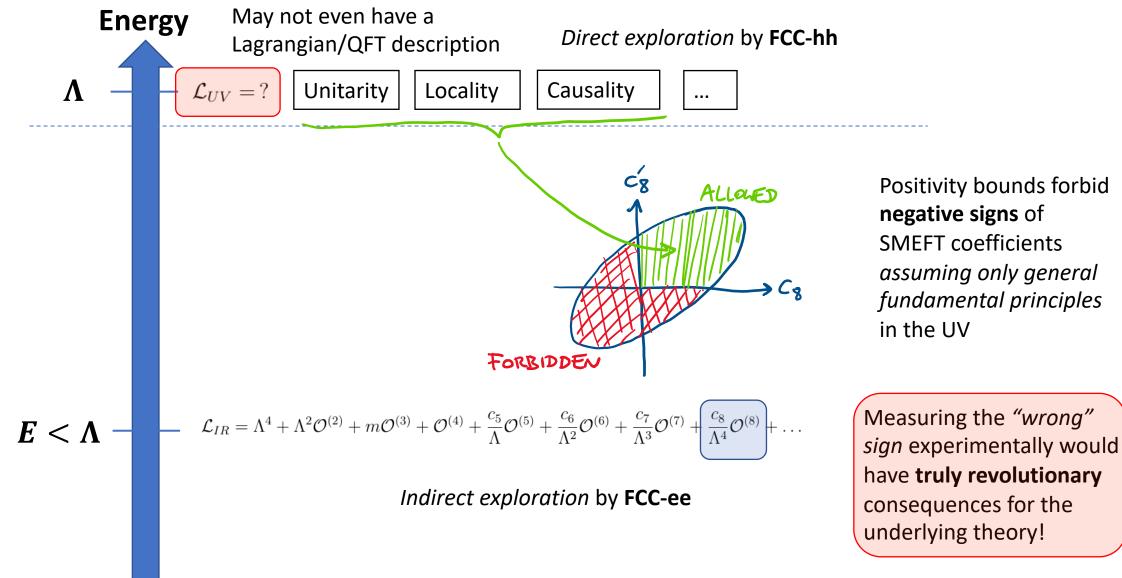
Creatively conservative

- Twin Higgs
- Stealth supersymmetry

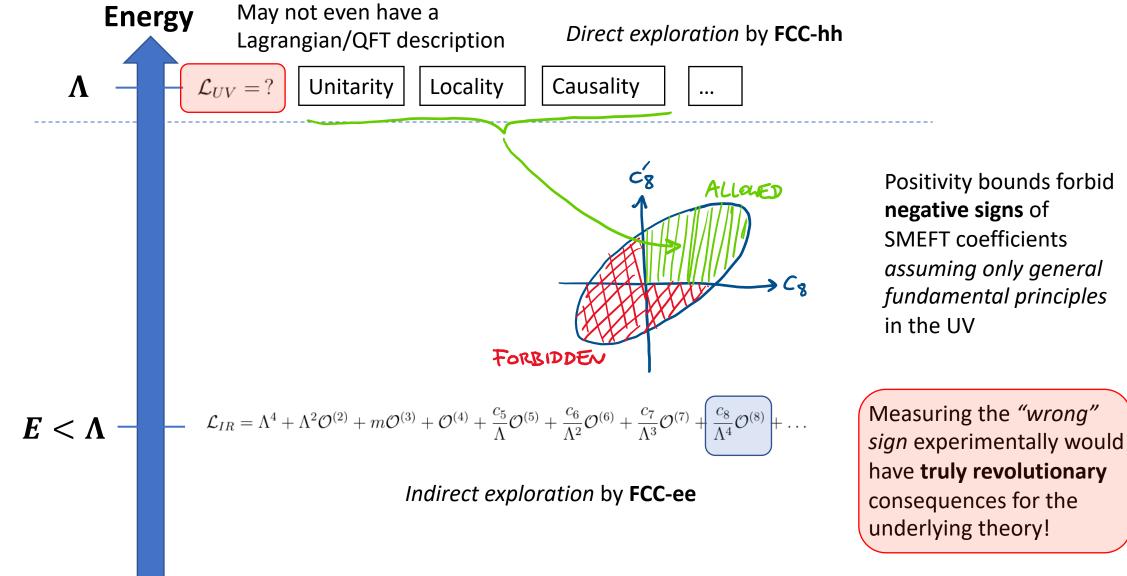

• Post-naturalness BSM

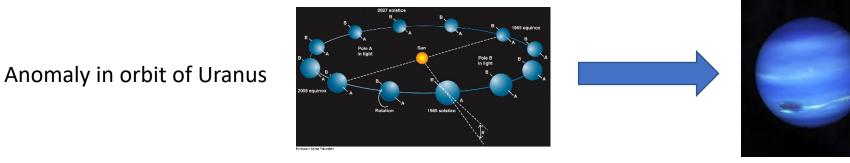

- Split supersymmetry
- Vector-like fermions only
- Lowered vacuum instability scale
- Weak-scale new physics for cosmological dynamics


Radically new?


- Hard to imagine what form this might take, by definition
- How might this show up?

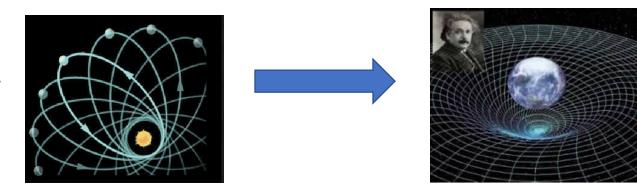
Energy Direct exploration by FCC-hh $\mathcal{L}_{UV} = ?$ Λ $\mathcal{L}_{IR} = \Lambda^4 + \Lambda^2 \mathcal{O}^{(2)} + m \mathcal{O}^{(3)} + \mathcal{O}^{(4)} + \frac{c_5}{\Lambda} \mathcal{O}^{(5)} + \frac{c_6}{\Lambda^2} \mathcal{O}^{(6)} + \frac{c_7}{\Lambda^3} \mathcal{O}^{(7)} + \frac{c_8}{\Lambda^4} \mathcal{O}^{(8)} + \dots$ $E < \Lambda$ – *Indirect exploration* by **FCC-ee**





Positivity may correlate EFT with the electroweak hierarchy problem

2308.06226 Davighi, Melville, Mimasu, TY


• Sometimes an anomaly in **indirect precision** measurement = *something missing*

Discovery of Neptune

• Sometimes its implications are *far more radical*

Anomaly in orbit of Mercury

Explained by General Relativity

- TeV scale is the new frontier we should be excited to explore
 - New phenomena every time we reach a new energy scale
- Doing good science is the main motivation
 - Colliders are general-purpose tools for a wide-ranging physics programme
- BSM is just one potential outcome
 - Not the be all and end all --- see every other field of science
- Keep an open mind
 - Spirit of pushing fundamental knowledge and exploration as far as possible

 "What would be the use of such extreme refinement in the science of measurement? [...] The more important fundamental laws and facts of physical science have all been discovered, and these are so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote. [...]"

–A. Michelson 1903

 "What would be the use of such extreme refinement in the science of measurement? Very briefly and in general terms the answer would be that in this direction the greater part of all future discovery must lie. The more important fundamental laws and facts of physical science have all been discovered, and these are so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote. Nevertheless, it has been found that there are apparent exceptions to most of these laws, and this is particularly true when the observations are pushed to a limit, i.e., whenever the circumstances of experiment are such that extreme cases can be examined."

-A. Michelson 1903

- 1900: Almost all data agree spectacularly with the fundamental framework of the time, *no reason to doubt its universal applicability or completeness*.
- 1920s: A combination of precision measurements (Mercury), aesthetic arguments (relativity) supported by null experimental results (Michelson-Morley), and theoretical inconsistencies (Rayleigh-Jeans UV catastrophe) lead to an overhaul of the fundamental picture at smaller scales and higher energies after pushing the frontiers of technology and theory into new regimes.

- 2020: Almost all data agree spectacularly with the fundamental framework of the time, *no reason to doubt its universal applicability or completeness*.
- 2050s: A combination of precision measurements (MW, Hubble), aesthetic arguments (naturalness) supported by null experimental results (LHC), and theoretical inconsistencies (black hole information paradox) lead to an overhaul of the fundamental picture at smaller scales and higher energies after pushing the frontiers of technology and theory into new regimes.