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Introduction

Dark Matter mass

Reproduced from Battaglieri et al, 1707.04591
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Introduction

Production

Ultralight DM must be non-thermally produced.

Decay of topological defects

Misalignment mechanism
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Axion Dark Matter production

Primordial axion production

Axions may be produced in the early universe by:

Particle decay (dark radiation)

Misalignment production (dark matter and dark energy):

Peccei-Quinn symmetry spontaneously broken. Massless axion field
created.
↓

Axion follows random walk in field space.
↓

Non-perturbative effects generate axion mass. Axion field is now
displaced from its minimum.
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Axion Dark Matter production

Axion Dark Matter

Coherently oscillating scalar field: ä + 3Hȧ + m2
aa = 0

Oscillations are damped by the expansion of the universe

Energy density redshifts like dark matter

Francesca Chadha-Day (Durham University) Lecture 2: Axion Dark Matter 6 / 39



Axion Dark Matter production

Axion Dark Matter

Some images adapted from

Vaquero, A., Redondo, J. &

Stadler, J. 1809.09241 and

Armengaud, E. et al., 1904.09155.
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Classical field description

Classical field description

The ultra-light DM field is the coherent state:

|φ〉 = exp

[∫
dq3

(2π)3
φ̃(q)â†(q)

]
|0〉 ,

such that:
〈φ| φ̂ |φ〉 = φ(x),

where φ(x) is the classical field.
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Classical field description

Classical field description

φ ∼ A(x , t)cos(mt − α(x , t))

If we write ψ = Aeiα, ψ obeys a Schrodinger-Poisson equation:

i∂tψ =

(
− 1

2m
O2 + mΦ

)
ψ

O2Φ = 4πGm|ψ|2

We cannot use this framework for cold DM, as A and α would not be
well defined.
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Classical field description

Classical field description

i∂tψ =

(
− 1

2m
O2 + mΦ

)
ψ

Ultralight DM is well approximated by a classical field limit of
quantum field theory. Large occupation numbers lead to a low
fractional uncertainty in the amplitude and phase dispersion.

ψ is not a wavefunction.
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Classical field description

Classical field description

ψ(t, x) =
√

n(t, x)ei~S(t,x)

OS(t, x) = mv(t, x)
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Classical field description

Number density

∂tn + O · j = 0

j =
N

2im
(ψ∗Oψ − ψOψ∗)
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Classical field description

Velocity

∂tv + (v · O)v + O(Q + Φ) = 0

Q = − 1

2m2

O2√n√
n
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Classical field description

Quantum Pressure

∂tv + (v · O)v + O(Q + Φ) = 0

Ultralight DM does not behave like a perfect fluid.

The ‘quantum pressure’ Q is a repulsive term that counteracts
the gravitational potential.

Q can be understood as arising from the zero point motion of
the ultra-light particles.
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Observational consequences

Ultralight DM structure

Ultralight DM possess a natural scale, the Jeans scale, equal to
the de Broglie wavelength of the ground state.

Stability below the Jeans scale is guaranteed by the Uncertainty
Principle.

Power on scales below the Jeans is suppressed.

Francesca Chadha-Day (Durham University) Lecture 2: Axion Dark Matter 15 / 39



Observational consequences

Ultralight DM in the CMB
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Observational consequences

Ultralight DM in the CMB

Reproduced from Hlozek et al (1410.2896)
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Observational consequences

Ultralight DM in the Lyman-α forest

Light from distant galaxies and quasars is absorbed by
intergalactic gas clouds.

We observe the Lyman-α absorption line from the ground state
to the first excited state of neutral hydrogen.

The absorption line is redshifted.

From the gas distribution, we infer the DM distribution.
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Observational consequences

Ultralight DM in the Lyman-α forest
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Observational consequences
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Observational consequences

Ultralight DM in the Lyman-α forest

Lyman-α forest data rules out ultralight DM with
m = 1− 10× 10−22 eV. (Iřsič et al, 1703.04683)

Recent work using machine learning to emulate the power
spectrum improves the bound to m > 2× 10−20 eV. (Rogers &
Peiris, 2007.12705)
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Observational consequences

The Cuspy Halo Problem
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Detecting Axion Dark Matter

Axion Haloscopes

Axions are much too light to detect with WIMP dark matter
detectors.

Axion haloscopes use the axion’s interaction with the photon to
search for the local axion dark matter density.
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Detecting Axion Dark Matter

Axion-Maxwell equations

L =
1

2
∂µa∂

µa − 1

2
m2

aa
2 − gaγγ

4
aF F̃

Fµν = ∂µAν − ∂νAµ

F̃µν = εµνρσF
ρσ

1
4
F F̃ = E · B

In a background magnetic field, axions and photons can interconvert.
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Detecting Axion Dark Matter

Axion-Maxwell equations

The Euler-Lagrange equations give us the axion-Maxwell equations:

O · E = ρ− gaγγB · Oa

O · B = 0

O× E = −Ḃ

O× B = Ė + J− gaγγ(E× Oa − ȧB)
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Detecting Axion Dark Matter

Axion Dark Matter eXperiment

Axion dark matter oscillates
with period τ ∼ 1/ma.

Conducting cavity of length
L ∼ 1/ma sources resonant
conversion of DM axions to
photons.

Background magnetic field

Scan over different values of
L

Experimental tests of the
invisible axion, Sikivie 1983,
PRL 51
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Detecting Axion Dark Matter

Axion haloscopes

Reproduced from 1510.05775.
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Detecting Axion Dark Matter

Axion haloscopes

Neglect gradients in a: O× B = Ė + J + gaγγ ȧB

For complete results, we should integrate the axion-Maxwell
equations in the cavity with appropriate boundary conditions.

Use an equivalent circuit to approximate the power converted
from axion dark matter to EM waves.
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Detecting Axion Dark Matter

Axion haloscopes

Assume field changes due to axion-photon coupling are small:

B = B0 + δB

E = E0 + δE

J = J0 + δJ

a = a0 + δa
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Detecting Axion Dark Matter

Axion haloscopes

0th order in gaγγ:

O× B0 = 0

1st order gaγγ:

O× δB = δĖ + gaγγ ȧB0 + δJ

An electric field cavity mode is induced by the axion dark matter.
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Detecting Axion Dark Matter

Axion haloscopes

Trial solution:

Ė = −gaγγB0ȧ

Model the cavity mode as an equivalent RLC circuit.
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Detecting Axion Dark Matter

Axion haloscopes

Equate energy stored in cavity mode and capacitor:∫
1

2
E 2dV =

q2

2C
,

where q is the charge on the capacitor.
Circuit equation of motion:

Lq̈ + Rq̇ +
q

C
= V (t)
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Detecting Axion Dark Matter

Axion haloscopes

Equate driving force terms in Lagrangians:

V (t) =
gaγγa(t)B0

∫
E · ẑdV√

C
∫
E 2dV

= gaγγa(t)B0

√
fnlmV

C
,

where fnlm is a form factor for a given cavity mode.
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Detecting Axion Dark Matter

Axion haloscopes

Power delivered to equivalent circuit on resonance:

P =
< V (t)2 >

R
= g 2

aγγB
2
0Vfnlm

1

RC
< a(t)2 >

This is the power transferred from the axion dark matter to EM
waves in the cavity.
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Detecting Axion Dark Matter

Axion haloscopes

What are R and C for our detector? Express in terms of measureable
cavity mode parameters:

Q =
1

R

√
L

C

ω0 =
1√
LC

Measure Q and ω0 by driving the cavity mode (without axions!).
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Detecting Axion Dark Matter

Axion haloscopes

P = g 2
aγγB

2
0 < a(t)2 > Vfnlmω0Q

when ω0 ' ma.

We use the dark matter density distribution in the Milky Way to
estimate the local DM density. Equate this to the energy density in a:

ρDM = m2
a < a(t)2 >
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Detecting Axion Dark Matter

Axion haloscopes

This gives us:

P = g 2
aγγB

2
0

ρDM
m2

a

Vfnlmω0Q

when ω0 ' ma.
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Detecting Axion Dark Matter

Axion haloscopes

Need to scan over resonant frequencies as ma is unknown.

Resonant condition requires L ∼ 1/ma (i.e. one wavelength fits
in cavity)

If ma is too low, we can’t build a cavity big enough to achieve
resonance.

If ma is too high, the resonant cavity is too small for measurable
power output.

This motivates more sophisticated axion haloscopes.
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Detecting Axion Dark Matter

Axion haloscopes
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Reproduced from the Particle Data Group
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