Lecture 2: Axion Dark Matter

Francesca Chadha-Day

Durham University

NExT PhD Workshop, July 2024

 \bar{a}

ミドイモドー

∢ ロ ▶ ィ 何 ▶ ィ

- ² [Axion Dark Matter production](#page-4-0)
- ³ [Classical field description](#page-8-0)
- ⁴ [Observational consequences](#page-15-0)
- ⁵ [Detecting Axion Dark Matter](#page-23-0)

E

∢ ロ ▶ ィ 何 ▶ ィ

Dark Matter mass

 \equiv

Production

- Ultralight DM must be non-thermally produced.
- Decay of topological defects
- Misalignment mechanism

E

ミトィミト

 \leftarrow \Box \rightarrow

 \leftarrow \leftarrow \leftarrow

Primordial axion production

Axions may be produced in the early universe by:

Particle decay (dark radiation)

 \rightarrow \equiv \rightarrow

4 **D** F

Primordial axion production

Axions may be produced in the early universe by:

- Particle decay (dark radiation)
- Misalignment production (dark matter and dark energy):

Peccei-Quinn symmetry spontaneously broken. Massless axion field created.

> ↓ Axion follows random walk in field space.

↓ Non-perturbative effects generate axion mass. Axion field is now displaced from its minimum.

←ロト ←何ト ←ヨト ←ヨト

Axion Dark Matter

- Coherently oscillating scalar field: $\ddot{a} + 3H\dot{a} + m_a^2 a = 0$
- Oscillations are damped by the expansion of the universe \bullet
- Energy density redshifts like dark matter

ミトイヨト

Axion Dark Matter

Some images adapted from Vaquero, A., Redondo, J. & Stadler, J. 1809.09241 and Armengaud, E. et al., 1904.09155.

 \leftarrow \Box \rightarrow

The ultra-light DM field is the coherent state:

$$
|\phi\rangle = \exp\left[\int \frac{d q^3}{(2\pi)^3} \tilde{\phi}(q) \hat{a}^\dagger(q)\right]|0\rangle\,,
$$

such that:

$$
\langle \phi | \hat{\phi} | \phi \rangle = \phi(x),
$$

∢ ロ ▶ ィ 何 ▶ ィ

ミトィミト

where $\phi(x)$ is the classical field.

E

$$
\phi \sim A(x,t)\cos(mt - \alpha(x,t))
$$

If we write $\psi=A\textrm{e}^{i\alpha},\,\psi$ obeys a Schrodinger-Poisson equation:

$$
i\partial_t \psi = \left(-\frac{1}{2m}\nabla^2 + m\Phi\right)\psi
$$

$$
\nabla^2 \Phi = 4\pi Gm|\psi|^2
$$

We cannot use this framework for cold DM, as A and
$$
\alpha
$$
 would not be well defined.

∢ ロ ▶ ィ 何 ▶ ィ

코 H K 코 H

E

$$
i\partial_t \psi = \left(-\frac{1}{2m}\nabla^2 + m\Phi\right)\psi
$$

- Ultralight DM is well approximated by a classical field limit of quantum field theory. Large occupation numbers lead to a low fractional uncertainty in the amplitude and phase dispersion.
- $\circ \psi$ is not a wavefunction.

Classical field description

 $\psi(t,{\bf x}) = \sqrt{n(t,{\bf x})}$ e $i\hbar S(t,x)$

$\nabla S(t, \mathbf{x}) = m\mathbf{v}(t, \mathbf{x})$

E

イロト イ押 トイミト イミトー

Number density

$\partial_t n + \nabla \cdot \mathbf{j} = 0$

$\mathbf{j} =$ N 2_im $(\psi^* \nabla \psi - \psi \nabla \psi^*)$

E

イロト イ押 トイヨ トイヨ トー

Velocity

$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla (Q + \Phi) = 0$ $\prime = -$ 1 $2m^2$ ∇^2 $\sqrt{ }$ $\overline{\overline{n}}$ √ \overline{n}

E

イロト イ母 トイヨ トイヨト

Quantum Pressure

$$
\partial_t \bm{v} + (\bm{v} \cdot \nabla) \bm{v} + \nabla (Q + \bm{\Phi}) = 0
$$

- Ultralight DM does not behave like a perfect fluid.
- The 'quantum pressure' Q is a repulsive term that counteracts the gravitational potential.
- Q can be understood as arising from the zero point motion of the ultra-light particles.

Ultralight DM structure

- Ultralight DM possess a natural scale, the Jeans scale, equal to the de Broglie wavelength of the ground state.
- Stability below the Jeans scale is guaranteed by the Uncertainty Principle.
- Power on scales below the Jeans is suppressed.

Ultralight DM in the CMB

 4 ロ \rightarrow 4 \overline{m} \rightarrow 4

÷. -4

Ultralight DM in the CMB

- Light from distant galaxies and quasars is absorbed by intergalactic gas clouds.
- \bullet We observe the Lyman- α absorption line from the ground state to the first excited state of neutral hydrogen.
- The absorption line is redshifted.
- From the gas distribution, we infer the DM distribution.

- \bullet Lyman- α forest data rules out ultralight DM with $m = 1 - 10 \times 10^{-22}$ eV. (Iršič et al. 1703.04683)
- Recent work using machine learning to emulate the power spectrum improves the bound to $m > 2 \times 10^{-20}$ eV. (Rogers & Peiris, 2007.12705)

The Cuspy Halo Problem

- Axions are much too light to detect with WIMP dark matter detectors.
- Axion haloscopes use the axion's interaction with the photon to search for the local axion dark matter density.

Axion-Maxwell equations

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a}^{2} a^{2} - \frac{g_{a\gamma\gamma}}{4} aF\tilde{F}
$$

\n
$$
\tilde{F}_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}
$$

\n
$$
\tilde{F}_{\mu\nu} = \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}
$$

\n
$$
\frac{1}{4} F\tilde{F} = \mathbf{E} \cdot \mathbf{B}
$$

In a background magnetic field, axions and photons can interconvert.

(□) (/ [□])

 $\rightarrow \quad 4 \quad \overline{\Rightarrow} \quad \rightarrow$

E

Axion-Maxwell equations

The Euler-Lagrange equations give us the axion-Maxwell equations:

$$
\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a
$$

$$
\nabla \cdot \mathbf{B} = 0
$$

$$
\triangledown \times \textbf{E} = -\dot{\textbf{B}}
$$

$$
\triangledown \times \mathbf{B} = \dot{\mathbf{E}} + \mathbf{J} - g_{a\gamma\gamma} (\mathbf{E} \times \triangledown a - \dot{a}\mathbf{B})
$$

∢ ロ ▶ ィ 何 ▶ ィ

 \exists \rightarrow \rightarrow \exists \rightarrow

E

Axion Dark Matter eXperiment

- Axion dark matter oscillates with period $\tau \sim 1/m_a$.
- Conducting cavity of length $L \sim 1/m_a$ sources resonant conversion of DM axions to photons.
- Background magnetic field
- Scan over different values of L
- Experimental tests of the invisible axion, Sikivie 1983, PRL 51

イロト イ何 トイヨ トイヨト

Francesca Chadha-Day (Durham University) [Lecture 2: Axion Dark Matter](#page-0-0) 2008 2008 26 / 39

Reproduced from 1510.05775.

E

 \triangleleft ∃⇒

 \leftarrow \Box \rightarrow

- Neglect gradients in a: $\nabla \times \mathbf{B} = \mathbf{E} + \mathbf{J} + g_{\text{avv}}$ a**B**
- For complete results, we should integrate the axion-Maxwell equations in the cavity with appropriate boundary conditions.
- Use an equivalent circuit to approximate the power converted from axion dark matter to EM waves.

Assume field changes due to axion-photon coupling are small:

$$
\mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B}
$$

$$
\mathbf{E} = \mathbf{E}_0 + \delta \mathbf{E}
$$

$$
\mathbf{J} = \mathbf{J}_0 + \delta \mathbf{J}
$$

$$
a = a_0 + \delta a
$$

 \equiv

イロト イ部 トイミト イミト

0th order in $g_{a\gamma\gamma}$:

$$
\triangledown \times \bm{B}_0 = 0
$$

1st order $g_{a\gamma\gamma}$:

$$
\nabla \times \delta \mathbf{B} = \delta \dot{\mathbf{E}} + g_{a\gamma\gamma} \dot{a} \mathbf{B}_0 + \delta \mathbf{J}
$$

An electric field cavity mode is induced by the axion dark matter.

 \equiv

イロト イ母ト イヨト イヨト

Trial solution:

$$
\dot{\textbf{E}}=-g_{\textit{a}\gamma\gamma}\textbf{B}_0\dot{\textit{a}}
$$

Model the cavity mode as an equivalent RLC circuit.

 \leftarrow

 \equiv \rightarrow E

 \sim

Equate energy stored in cavity mode and capacitor:

$$
\int \frac{1}{2} E^2 dV = \frac{q^2}{2C},
$$

where q is the charge on the capacitor. Circuit equation of motion:

$$
L\ddot{q} + R\dot{q} + \frac{q}{C} = V(t)
$$

Equate driving force terms in Lagrangians:

$$
V(t) = \frac{g_{a\gamma\gamma}a(t)B_0 \int \mathbf{E} \cdot \hat{\mathbf{z}}dV}{\sqrt{C \int E^2 dV}} = g_{a\gamma\gamma}a(t)B_0 \sqrt{\frac{f_{nlm}V}{C}},
$$

where f_{nlm} is a form factor for a given cavity mode.

E

イロト イ母ト イヨト イヨト

Power delivered to equivalent circuit on resonance:

$$
P=\frac{}{R}=g_{a\gamma\gamma}^2B_0^2Vf_{nlm}\frac{1}{RC}
$$

This is the power transferred from the axion dark matter to EM waves in the cavity.

E

∢ ロ ▶ ィ 何 ▶ ィ

What are R and C for our detector? Express in terms of measureable cavity mode parameters:

$$
Q = \frac{1}{R} \sqrt{\frac{L}{C}}
$$

$$
\omega_0 = \frac{1}{\sqrt{LC}}
$$

Measure Q and ω_0 by driving the cavity mode (without axions!).

$$
P = g_{a\gamma\gamma}^2 B_0^2 < a(t)^2 > V f_{nlm} \omega_0 Q
$$

when $\omega_0 \simeq m_a$.

We use the dark matter density distribution in the Milky Way to estimate the local DM density. Equate this to the energy density in a:

$$
\rho_{DM}=m_a^2
$$

Francesca Chadha-Day (Durham University) [Lecture 2: Axion Dark Matter](#page-0-0) 36 / 39

E

This gives us:

$$
P = g_{a\gamma\gamma}^2 B_0^2 \frac{\rho_{DM}}{m_a^2} V f_{nlm} \omega_0 Q
$$

when $\omega_0 \simeq m_a$.

 \equiv

イロト イ部 トイミト イヨト

- \bullet Need to scan over resonant frequencies as $m₂$ is unknown.
- \bullet Resonant condition requires $L \sim 1/m_a$ (i.e. one wavelength fits in cavity)
- If $m₂$ is too low, we can't build a cavity big enough to achieve resonance.
- If m_a is too high, the resonant cavity is too small for measurable power output.
- This motivates more sophisticated axion haloscopes.

イロト イ何 トイヨ トイヨ トー

Reproduced from the Particle Data Group

Francesca Chadha-Day (Durham University) [Lecture 2: Axion Dark Matter](#page-0-0) 39 / 39

 \leftarrow \Box \rightarrow

 \equiv \rightarrow Ξ