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Axion production

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Superradiance

Photon to axion conversion

We can detect:

Axion to photon conversion or decay

The absence of the energy source for axion production

Gravitational effects
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Axion production

Detecting Axion Dark Matter

Axion decay to two photons:

Γa→γγ =
g2
aγγm

3
a

64π

Eγ = ma/2

∆Eγ = Eγ
σ
c
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Axion production

Detecting Axion Dark Matter

For ma ∼ 1µeV and gaγγ ∼ 10−10 GeV, τ ∼ 1032 years. The decay
rate could be significantly enhanced by stimulated decay from
ambient photons. From Caputo, Regis, Taoso & Witte (1811.08436):
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Production in stars

Production in stars
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Production in stars

Stellar cooling from axions

The rate of cooling depends on the stellar environment.

Therefore we can place bounds on axions using the number of
stars observed in each stellar phase. (Raffelt & Dearborn 1987)

Bounds on gaγγ from ratio of Red Giant Branch to Horizontal
Branch stars. (Ayala et al, 1406.6053)

Bounds on gaee from the brightness of the Red Giant Branch
(Viaux et al, 1311.1669), and from the luminosity function of
white dwarfs (Raffelt 1986 and Blinnikov & Dunina-Barkovskaya,
1994).
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Superradiance

Superradiance

Superradiance is the amplification or enhancement of
radiation in a dissipative system.

Reproduced from Torres et al, 1612.06180
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Superradiance

Radiation from a moving particle

Ef = Ei − ω, pf = pi − k

Find the particle’s rest mass by moving to comoving frame:

mi = γi(Ei − vi · pi), mf = γf (Ef − vf · pf)

∆m = −γi(ω − vi · k) +O(δv).

Brito, Cardosa & Pani, 1501.06570
Bekenstein & Schiffer, gr-qc/9803033
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Superradiance

Radiation from a moving particle

∆m = −γi(ω − vi · k) +O(δv).

If the object is in its ground state initially, mi ≤ mf .

Radiation can only be emitted if ω(k)− vi · k ≤ 0.

This can occur with tachyons or from medium effects giving
ω(k) < k .
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Superradiance

Radiation from a moving particle

∆m = −γi(ω − vi · k) +O(δv).

Consider a medium with refractive index n = k
ω

= 1
vph

.

Radiation can be emitted only if vph − vicos(θ) ≤ 0 i.e. when
the particle’s velocity is greater than or equal to the radiation
phase velocity.

Cherenkov radiation: vph − vicos(θ) = 0, mi = mf .

If the particle can absorb photons, we can also have spontaneous
radiation with mi < mf .

When vph > vi , an absorption effect can become a spontaneous
radiation effect, taking energy from the particle’s kinetic energy.
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Superradiance

Radiation from a moving particle

∆m = −γi(ω − vi · k) +O(δv).

For 1D motion, vph > vi cannot be satisfied in vacuum.

For a rotating system, the angular phase velocity of radiation
with azimuthal number m is ω

m
.

Superradiance can occur when ω < mΩ.

Superradiance requires that the rotating body be dissipative.
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Superradiance

Black Hole Superradiance

Black holes may rotate and dissipation is provided by the
horizon.

The ergoregion of a Kerr black hole can amplify incident
radiation.

Black holes can trap massive radiation.

Could get exponential amplification of this trapped radiation - a
superradiant instability.

Black hole superradiance is effective for Beyond the Standard
Model bosons such as axions.
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Superradiance

Black Hole Superradiance

Reproduced from 1501.06570
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Superradiance

Black Hole Superradiance

Think about bound states of the axion field around a Kerr black
hole.

Similar to Hydrogen atom wavefunctions ψnlm(r).

The eigen-energies will have an imaginary component,
corresponding to the axion being eaten by the black hole, or to
superradiant amplification of the axion field.
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Superradiance

Black Hole Superradiance

S =

∫
d4x
√
−g(−1

2
OµφO

µφ− 1

2
maφ

2)

The equations of motion admit quasi-bound states with
ω = ωR + iωI .

We can find ωI numerically and in some cases analytically.

ωI > 0 corresponds to superradiant amplification with timescale
τ = 1

ωI
.

Time domain analysis has also been performed.

Zouros & Eardley, Annals of Physics, 1979
Detweiler, Phys Rev D, 1980
Dolan, 0705.2880 & 1212.1477
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Superradiance

Black Hole Superradiance

Reproduced from Stott & Marsh, 1805.02016
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Superradiance

Black Hole Superradiance

We have a superradiant instability when ω < mΩH .

The instability is most efficient when the black hole’s
gravitational radius is similar to the axion’s compton radius:
GMma ∼ 1.

The instability is less efficient for higher l and m modes.
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Superradiance

Axion Black Hole Superradiance

Axions build up around Kerr black hole from an initial quantum
fluctuation. We might observe:

‘Bosenova’ explosion as axion cloud collapses

Depletion of black hole spin

Indirect detection of the axion cloud
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Superradiance

Bosenova

Energy of a cloud of size R with N axions:

V (R) ∼ N
l(l + 1) + 1

2maR2
− N

GMma

R
+

N2

32πf 2a R
3

At large N , the gradient energy of the axion field makes the cloud
unstable. The collapse may be observed as a gravitational wave and
potentially γ-ray burst.

Arvanitaki & Dubovsky, 1004.3558
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Superradiance

Black hole spin depletion

We can measure black hole spins:

X-ray spectra of black hole X-ray binaries

Gravitational wave emission from mergers
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Superradiance

Black hole spin depletion

Superradiance would lead to gaps in the black hole mass vs spin
plot.

If fa is too low, bosenova collapse prevents spin depletion.

Stellar mass BH spin measurements exclude
6× 10−13 eV < ma < 2× 10−11 eV for fa & 1013GeV .
(Arvanitaki, Baryakhtar & Huang, 1411.2263)

Advanced Ligo will be sensitive to ma . 10−10 eV. (Arvanitaki
et al, 1604.03958).
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Superradiance

Black hole spin depletion

Reproduced from Stott & Marsh, 1805.02016
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Superradiance

Indirect detection of the axion cloud

‘Atomic’ transitions (Arvanitaki et al, 1604.03958)

Birefringence (Plascencia & Urbano, 1711.08298)

Lasing (Ikeda, Brito & Cardos, 1811.04950)

Orbits in binary systems (Kavic et al, 1910.06977)
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Superradiance

Caveats

Axion self-interaction can lead to level mixing.

Axion annihilations could decrease the superradiance rate.

For large initial seeds, if both superradiant and non-superradiant
modes are populated, the instability may not occur (Ficarra,
Pani & Witek, 1812.02758.).
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Axion-photon conversion

Axion-photon conversion

ω +

 ∆γ 0 ∆γax

0 ∆γ ∆γay

∆γax ∆γay ∆a

− i∂z

 | γx〉| γy〉
| a〉

 = 0

∆γ =
−ω2

pl

2ω

Plasma frequency: ωpl =
(

4πα ne
me

) 1
2

∆a = −m2
a

ω
.

Mixing: ∆γai = Bi

2M

Pa→γ(L) = | 〈1, 0, 0|f (L)〉 |2 + | 〈0, 1, 0|f (L)〉 |2
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Axion-photon conversion

Transparency of intergalactic space
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Axion-photon conversion

Anomalous Transparency Hint

Reproduced from Meyer, Horns & Raue, 1302.1208.
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Axion-photon conversion

Photon-axion conversion in Galaxy Clusters
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Axion-photon conversion

Photon survival probability
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Axion-photon conversion

Spectra with axions

Left: the observed spectrum of the Seyfert galaxy 2E3140 in the galaxy
cluster A1795 fitted with an absorbed power law. Right: the same
spectrum multiplied by the photon survival probability for a realisation of
the A1795 magnetic field and assuming the existence of axions with
gaγ = 5× 10−12GeV−1.
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Axion-photon conversion

Bounds

The leading bounds are from Chandra transmission grating
spectroscopy of quasar H1821+643 (J Sisk-Reynés et al,
2109.03261):
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Conclusions

Axion bounds
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