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Axion production

Axion production

Space produces a lot of axions:
o Primordial production
o Production in stars
o Superradiance
o Photon to axion conversion
We can detect:
o Axion to photon conversion or decay
o The absence of the energy source for axion production

o Gravitational effects
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Axion production

Detecting Axion Dark Matter

Axion decay to two photons:
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Axion production

Detecting Axion Dark Matter

For m, ~ 1 eV and gy, ~ 107 GeV, 7 ~ 1032 years. The decay
rate could be significantly enhanced by stimulated decay from
ambient photons. From Caputo, Regis, Taoso & Witte (1811.08436):
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Production in stars

Stellar cooling from axions

o The rate of cooling depends on the stellar environment.
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o Bounds on g, from ratio of Red Giant Branch to Horizontal
Branch stars. (Ayala et al, 1406.6053)
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Production in stars

Stellar cooling from axions

o The rate of cooling depends on the stellar environment.

o Therefore we can place bounds on axions using the number of
stars observed in each stellar phase. (Raffelt & Dearborn 1987)

o Bounds on g, from ratio of Red Giant Branch to Horizontal
Branch stars. (Ayala et al, 1406.6053)

o Bounds on g.. from the brightness of the Red Giant Branch
(Viaux et al, 1311.1669), and from the luminosity function of
white dwarfs (Raffelt 1986 and Blinnikov & Dunina-Barkovskaya,
1994).
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Superradiance

Superradiance

Superradiance is the amplification or enhancement of
radiation in a dissipative system.

Reproduced from Torres et al, 1612.06180
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Superradiance

Radiation from a moving particle
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Find the particle's rest mass by moving to comoving frame:
m; = vi(Ei — vi - pi), ms = vr(Er — vr - pr)
Am = —i(w —v; - k) + O(0v).

Brito, Cardosa & Pani, 1501.06570
Bekenstein & Schiffer, gr-qc/9803033
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Superradiance

Radiation from a moving particle

Am = —vi(w — v; - k) + O(0v).

o If the object is in its ground state initially, m; < my.
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Superradiance

Radiation from a moving particle

Am = —vi(w — v; - k) + O(0v).
o If the object is in its ground state initially, m; < my.

o Radiation can only be emitted if w(k) —v; -k <O0.

o This can occur with tachyons or from medium effects giving
w(k) < k.
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Superradiance

Radiation from a moving particle

Am = —vi(w —v; - k) + O(0v).

o Consider a medium with refractive index n = f = Vll )
ph
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Superradiance

Radiation from a moving particle

Am = —vi(w —v; - k) + O(0v).

1

Kk _
w Vph
o Radiation can be emitted only if v,, — v;cos(6) < 0 i.e. when
the particle’s velocity is greater than or equal to the radiation
phase velocity.

o Consider a medium with refractive index n =
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Superradiance

Radiation from a moving particle

Am = —vi(w —v; - k) + O(0v).

1

o Consider a medium with refractive index n =

k
w Vph
o Radiation can be emitted only if v,, — v;cos(6) < 0 i.e. when
the particle’s velocity is greater than or equal to the radiation
phase velocity.
o Cherenkov radiation: v,, — v;cos(f) =0, m; = my.
o If the particle can absorb photons, we can also have spontaneous
radiation with m; < my.
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Superradiance

Radiation from a moving particle

Am = —vi(w —v; - k) + O(0v).

1

o Consider a medium with refractive index n =

k
w Vph
o Radiation can be emitted only if v,, — v;cos(6) < 0 i.e. when
the particle’s velocity is greater than or equal to the radiation
phase velocity.

o Cherenkov radiation: v,, — v;cos(f) =0, m; = my.
o If the particle can absorb photons, we can also have spontaneous
radiation with m; < my.

o When v}, > v;, an absorption effect can become a spontaneous
radiation effect, taking energy from the particle’s kinetic energy.
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Superradiance

Radiation from a moving particle

Am = —vi(w —v; - k) + O(0v).

o For 1D motion, v, > v; cannot be satisfied in vacuum.
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Superradiance

Radiation from a moving particle

Am = —vi(w —v; - k) + O(0v).

o For 1D motion, v, > v; cannot be satisfied in vacuum.

o For a rotating system, the angular phase velocity of radiation
with azimuthal number m is 2.

o Superradiance can occur when w < mSQ.
o Superradiance requires that the rotating body be dissipative.
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Superradiance

Black Hole Superradiance

o Black holes may rotate and dissipation is provided by the
horizon.
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Superradiance

Black Hole Superradiance

o Black holes may rotate and dissipation is provided by the
horizon.

o The ergoregion of a Kerr black hole can amplify incident
radiation.

o Black holes can trap massive radiation.

o Could get exponential amplification of this trapped radiation - a
superradiant instability.
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Superradiance

Black Hole Superradiance

o Black holes may rotate and dissipation is provided by the
horizon.

o The ergoregion of a Kerr black hole can amplify incident
radiation.

o Black holes can trap massive radiation.

o Could get exponential amplification of this trapped radiation - a
superradiant instability.

o Black hole superradiance is effective for Beyond the Standard
Model bosons such as axions.
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Superradiance

Black Hole Superradiance

o Think about bound states of the axion field around a Kerr black
hole.
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Black Hole Superradiance

o Think about bound states of the axion field around a Kerr black
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Superradiance

Black Hole Superradiance

o Think about bound states of the axion field around a Kerr black
hole.

o Similar to Hydrogen atom wavefunctions ¢ ,,(r).

o The eigen-energies will have an imaginary component,
corresponding to the axion being eaten by the black hole, or to
superradiant amplification of the axion field.
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Superradiance

Black Hole Superradiance

1 1
5= [ dxv=g(- 57,0940 - 3mo?)

o The equations of motion admit quasi-bound states with
W = Wgr + Iwy.
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Black Hole Superradiance
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Superradiance

Black Hole Superradiance

1 1
5= [ dxv=g(- 57,0940 - 3mo?)

o The equations of motion admit quasi-bound states with
w = wr + iw.
o We can find w; numerically and in some cases analytically.

@ w; > 0 corresponds to superradiant amplification with timescale
1

wy '’
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Superradiance

Black Hole Superradiance

1 1
5= [ dxv=g(- 57,0940 - 3mo?)

o The equations of motion admit quasi-bound states with
w = wr + iw.
o We can find w; numerically and in some cases analytically.

@ w; > 0 corresponds to superradiant amplification with timescale
1

wy '’
o Time domain analysis has also been performed.

Zouros & Eardley, Annals of Physics, 1979
Detweiler, Phys Rev D, 1980
Dolan, 0705.2880 & 1212.1477
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Superradiance

Black Hole Superradiance
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o We have a superradiant instability when w < mQy.

«O>» < Fr «=>r «=)» DA



Superradiance

Black Hole Superradiance

o We have a superradiant instability when w < mQy.

o The instability is most efficient when the black hole's

gravitational radius is similar to the axion's compton radius:

GMm, ~ 1.
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Superradiance

Black Hole Superradiance

o We have a superradiant instability when w < mQy.

o The instability is most efficient when the black hole's

gravitational radius is similar to the axion's compton radius:

GMm, ~ 1.

o The instability is less efficient for higher / and m modes.
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Superradiance

Axion Black Hole Superradiance

Axions build up around Kerr black hole from an initial quantum
fluctuation. We might observe:
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Axion Black Hole Superradiance
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Superradiance

Axion Black Hole Superradiance
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Superradiance

Bosenova

Energy of a cloud of size R with N axions:

I(1+1)+1 NGMma+ N?

2m,R? R 327f2R3
At large N, the gradient energy of the axion field makes the cloud
unstable. The collapse may be observed as a gravitational wave and

potentially y-ray burst.

V(R) ~ N

Arvanitaki & Dubovsky, 1004.3558
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Superradiance

Black hole spin depletion

We can measure black hole spins:
o X-ray spectra of black hole X-ray binaries

o Gravitational wave emission from mergers
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Superradiance

Black hole spin depletion

o Superradiance would lead to gaps in the black hole mass vs spin
plot.

Francesca Chadha-Day (IPPP) Lecture 3: Searching for Axions 22/33



Superradiance

Black hole spin depletion

o Superradiance would lead to gaps in the black hole mass vs spin
plot.

o If £, is too low, bosenova collapse prevents spin depletion.
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Superradiance

Black hole spin depletion

o Superradiance would lead to gaps in the black hole mass vs spin
plot.

o If £, is too low, bosenova collapse prevents spin depletion.

o Stellar mass BH spin measurements exclude
6x1078eV < m, <2x 107 1eV for f, > 1013GeV.
(Arvanitaki, Baryakhtar & Huang, 1411.2263)
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Superradiance

Black hole spin depletion

o Superradiance would lead to gaps in the black hole mass vs spin
plot.

o If £, is too low, bosenova collapse prevents spin depletion.

o Stellar mass BH spin measurements exclude
6x1078eV < m, <2x 107 1eV for f, > 1013GeV.
(Arvanitaki, Baryakhtar & Huang, 1411.2263)

o Advanced Ligo will be sensitive to m, < 107 eV. (Arvanitaki
et al, 1604.03958).
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Superradiance

Indirect detection of the axion cloud

o ‘Atomic’ transitions (Arvanitaki et al, 1604.03958)
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Superradiance

Indirect detection of the axion cloud

o ‘Atomic’ transitions (Arvanitaki et al, 1604.03958)
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o Lasing (lkeda, Brito & Cardos, 1811.04950)
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Superradiance

Indirect detection of the axion cloud

©

‘Atomic’ transitions (Arvanitaki et al, 1604.03958)

©

Birefringence (Plascencia & Urbano, 1711.08298)

©

Lasing (lkeda, Brito & Cardos, 1811.04950)

©

Orbits in binary systems (Kavic et al, 1910.06977)
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o Axion self-interaction can lead to level mixing.
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Superradiance

Caveats

o Axion self-interaction can lead to level mixing.

o Axion annihilations could decrease the superradiance rate.
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Superradiance

Caveats

o Axion self-interaction can lead to level mixing.
o Axion annihilations could decrease the superradiance rate.

o For large initial seeds, if both superradiant and non-superradiant
modes are populated, the instability may not occur (Ficarra,
Pani & Witek, 1812.02758.).
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Axion-photon conversion

Axion-photon conversion
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o Plasma frequency: w, = <47Ta:,_2>
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o Mixing: A, = 2‘%

Passry (L) = [ (1,0,01F(L)) [* + [ (0.1, 01F(L)) [
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Transparency of intergalactic space

Intergalactic Space
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Axion-photon conversion

Anomalous Transparency Hint
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Axion-photon conversion

Photon-axion conversion in Galaxy Clusters

Chandra
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Axion-photon conversion

Photon survival probability
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Axion-photon conversion

Spectra with axions

A1798 Syt A1795 Sy1 with axions

EW# ++ h +++*ﬁ++
f P

*#

3
Energy (keV)

B
Energy (keV)

Left: the observed spectrum of the Seyfert galaxy 2E3140 in the galaxy
cluster A1795 fitted with an absorbed power law. Right: the same
spectrum multiplied by the photon survival probability for a realisation of
the A1795 magnetic field and assuming the existence of axions with

82y =5 X 10712GeV L.
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Axion-photon conversion

Bounds

The leading bounds are from Chandra transmission grating
spectroscopy of quasar H1821+643 (J Sisk-Reynés et al,
2109.03261):
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Conclusions

Axion bounds
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