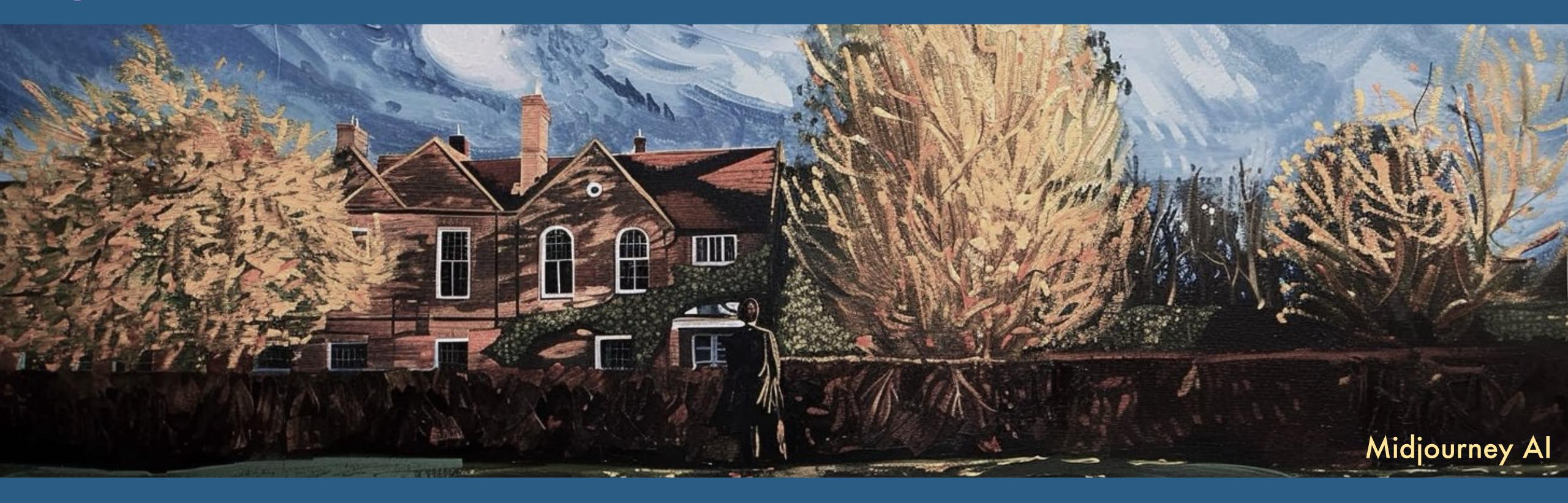
Modern machine learning methods for new physics searches

Sapienta ex machina?



14th NExT PhD workshop — Cosener's House 2023

Ramon Winterhalder — UCLouvain

Plan of attack

oday

1. Introduction to Machine Learning

Classification and Regression

Lecture I (60min)

• Example: MadMiner, Top Tagging

----- Coffee Break

OOTTEL DIKE/ (IV

2. Generative Models for the LHC

Diffusion Models, Normalizing flows

Lecture II (60min)

Example: MadNIS, MEM-ML

3. Anomaly detection

Autoencoders and CWoLA

Lecture III (60min)

• Examples: CWoLA-Hunting, ANODE, CATHODE,....

Fomorro

Plan of attack

1. Introduction to Machine Learning

Classification and Regression

ecture I (60min)

Example: MadMiner, Top Tagging

COFFEE BREAK

2. Generative Models for the LHC

Diffusion Models, Normalizing flows

Lecture II (60min

• Example: MadNIS, MEM-ML

3. Anomaly detection

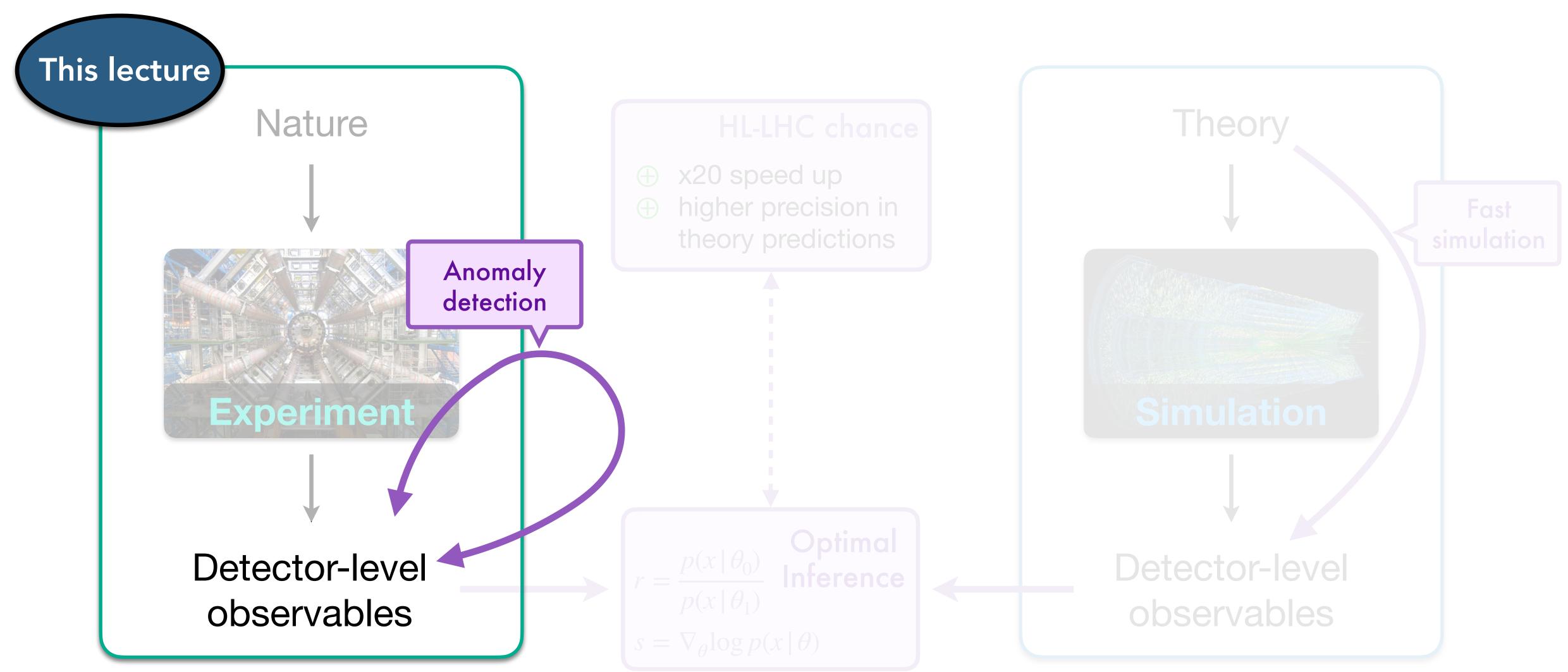
Autoencoders and CWoLA

Lecture III (60min)

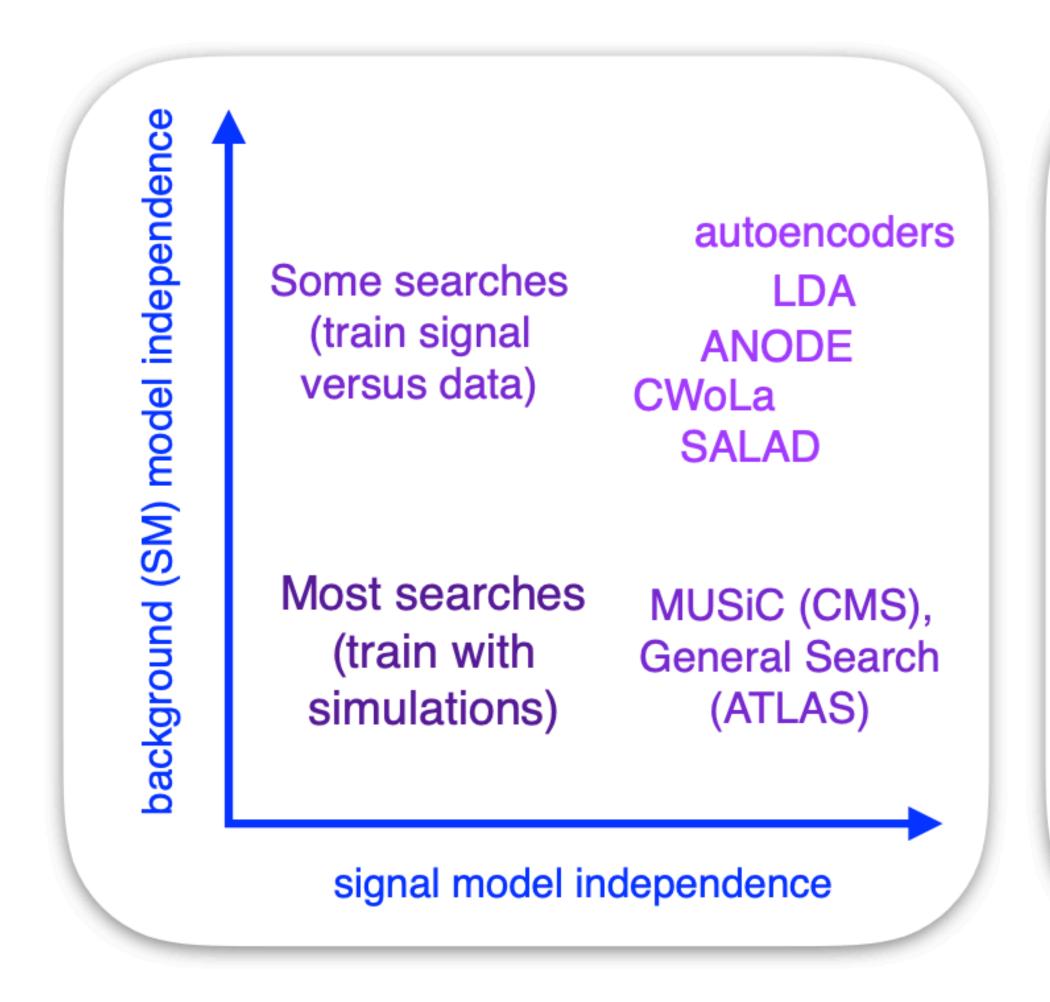
• Examples: CWoLA-Hunting, ANODE, CATHODE,....

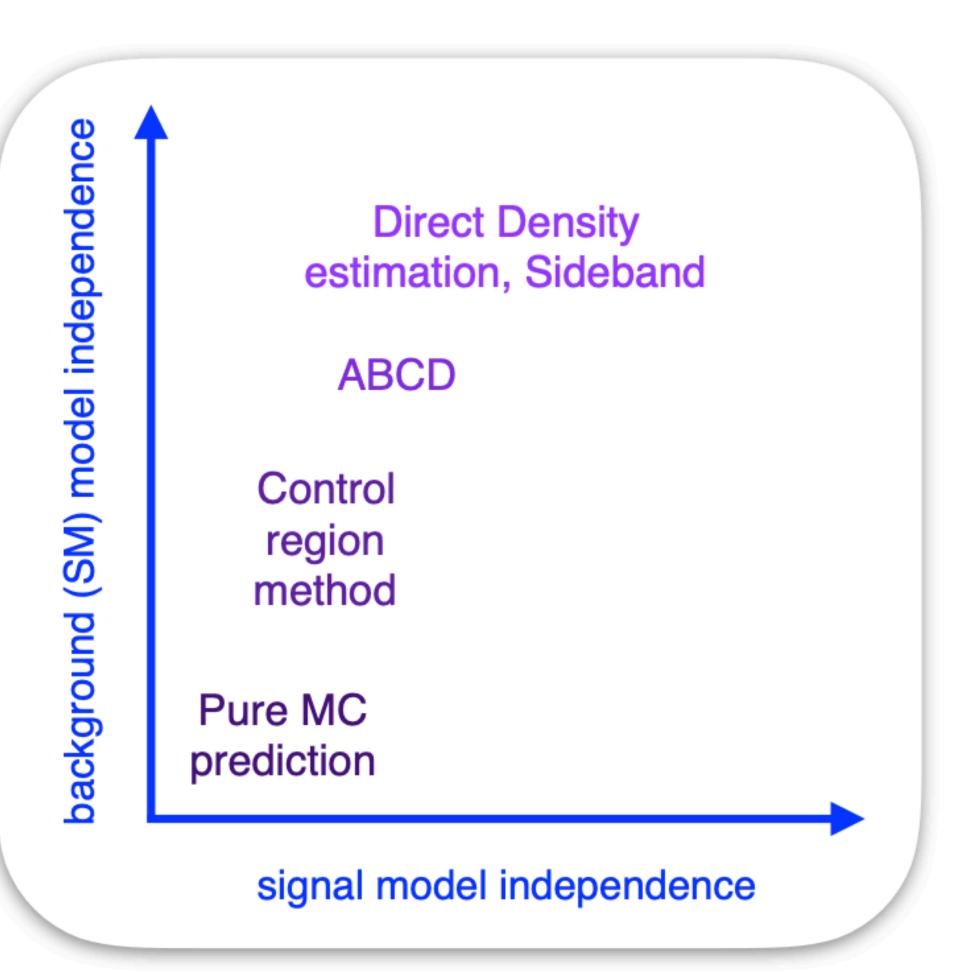
Fomorro

Reminder — LHC analysis



Simulation or data-driven searches

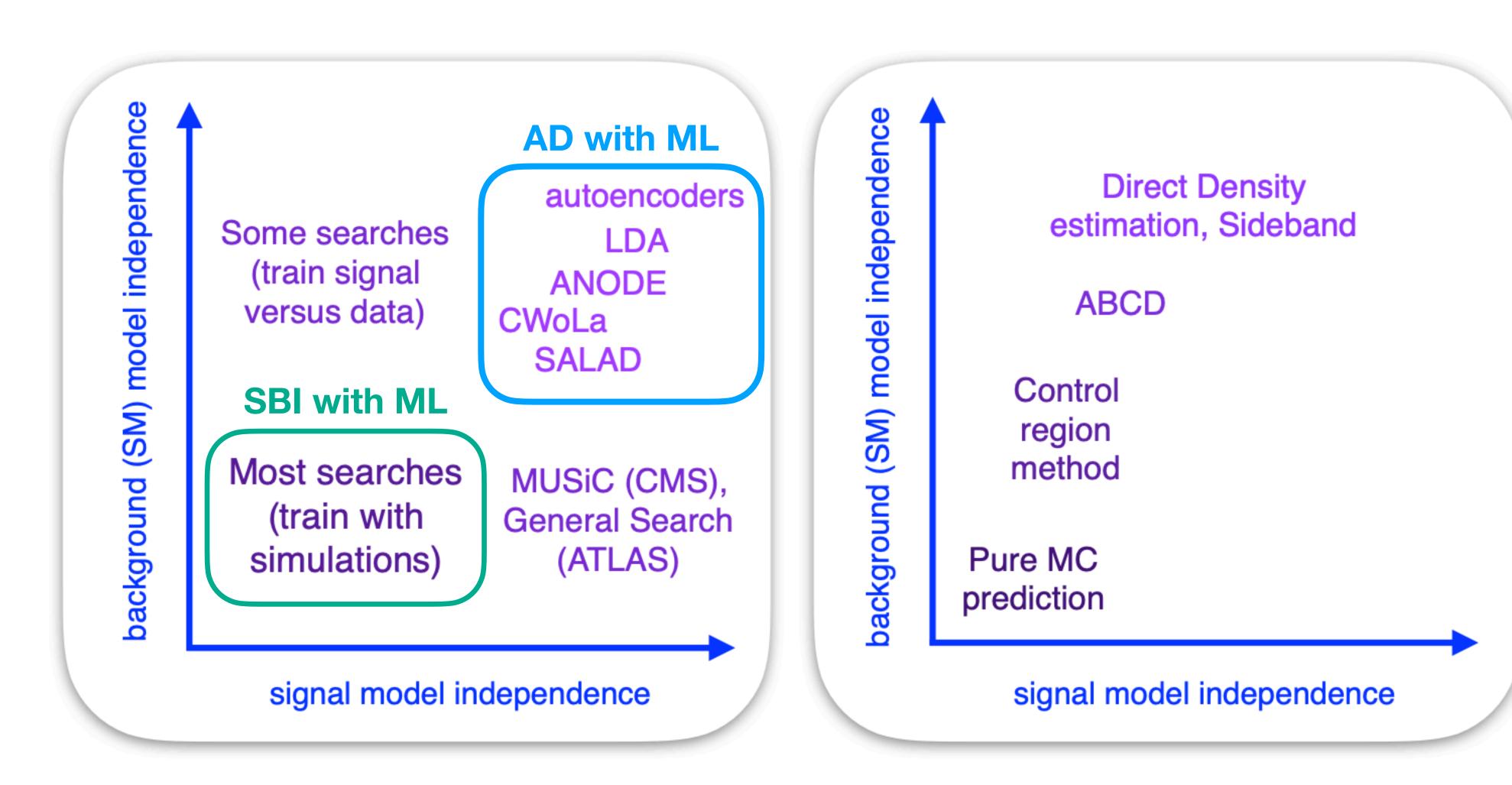




(a) Signal sensitivity

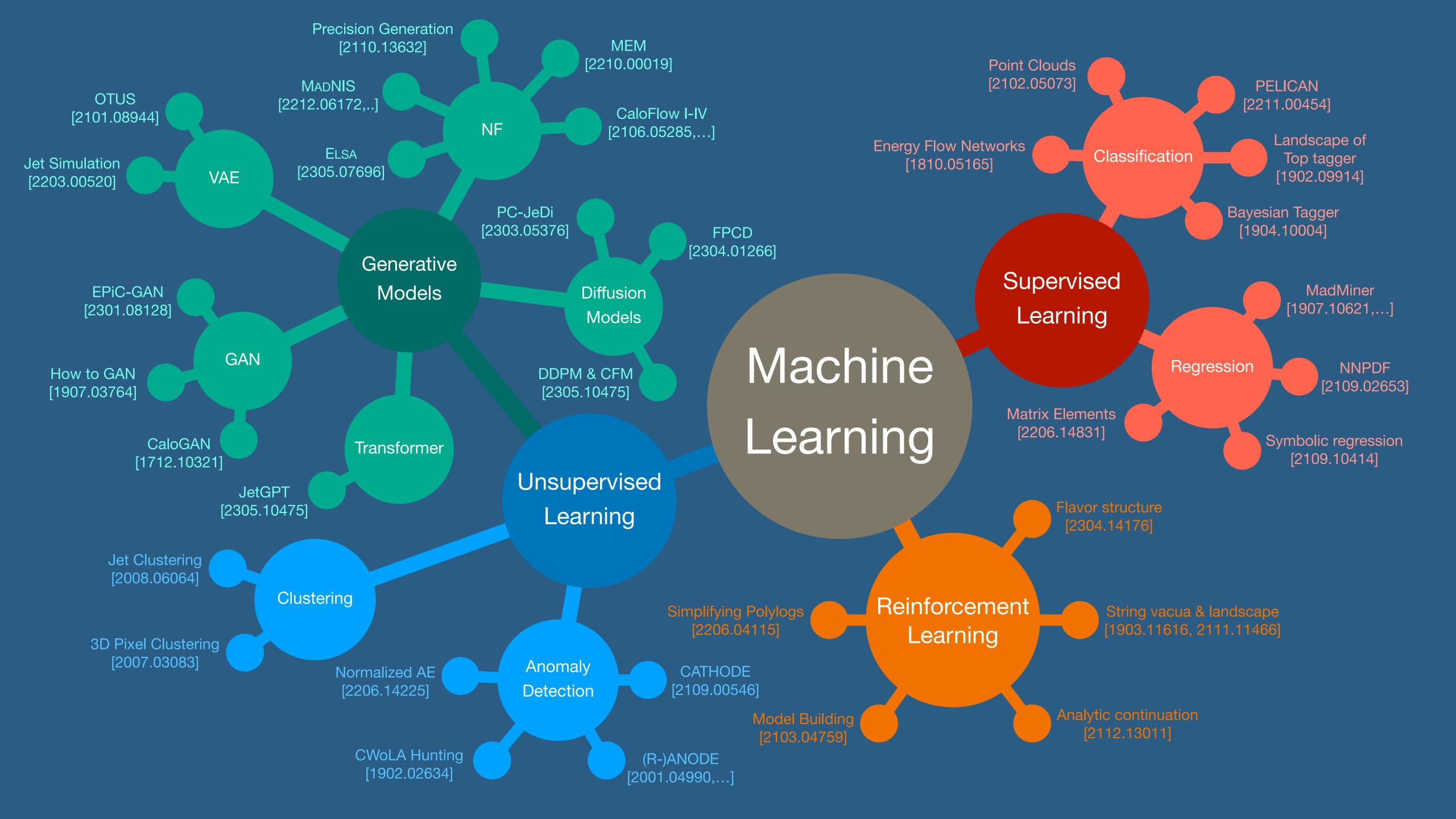
(b) Background specificity

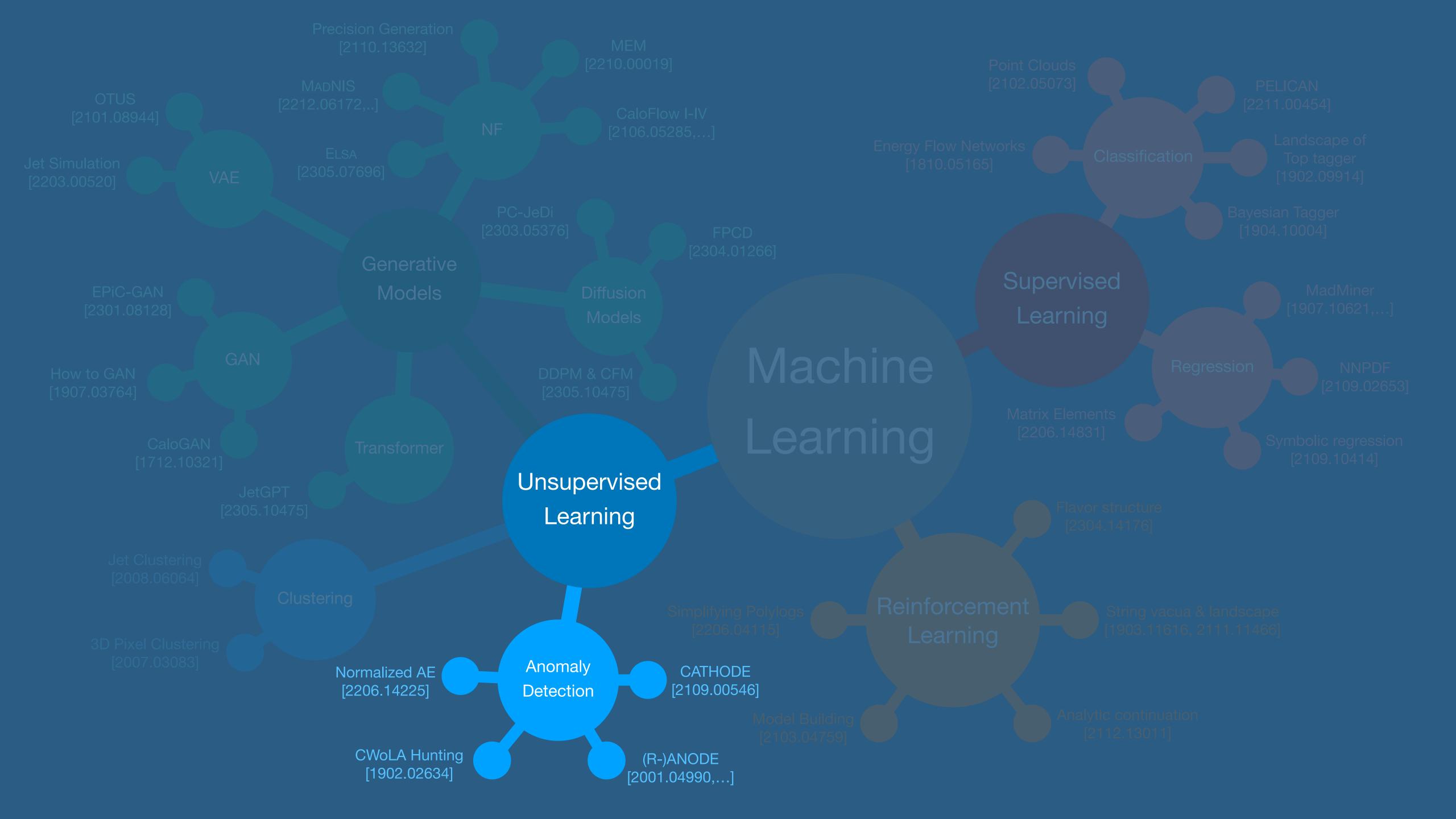
Simulation or data-driven searches



(a) Signal sensitivity

(b) Background specificity





Part III

Anomaly Detection

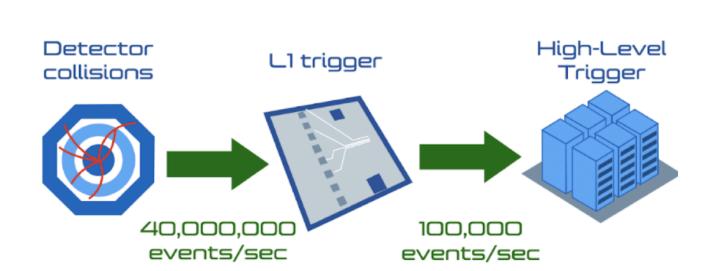
Community interest in AD

LHC Olympics

[Kasieczka et al: 2107.02821, 2101.08320]

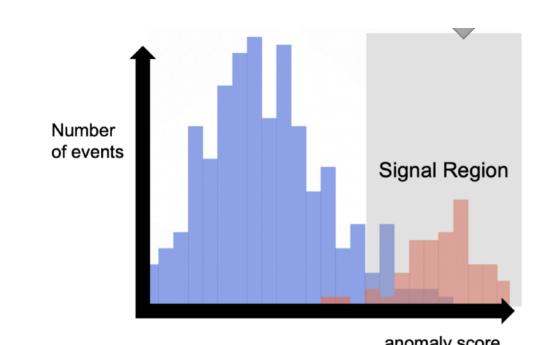
ADC2021

[Govorkova et al: 2107.02157]



Dark Machines

[Ostdiek et al: 2105.14027]



...and many papers:

Anomaly detection.

- Learning New Physics from a Machine [DOI]
- Anomaly Detection for Resonant New Physics with Machine Learning [DOI]
- Extending the search for new resonances with machine learning [DOI]
- Learning Multivariate New Physics [DOI]
- Searching for New Physics with Deep Autoencoders [DOI]
- QCD or What? [DOI]
- · A robust anomaly finder based on autoencoder
- Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI]
- Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI]
- Novelty Detection Meets Collider Physics [DOI]
- Guiding New Physics Searches with Unsupervised Learning [DOI]
- Does SUSY have friends? A new approach for LHC event analysis [DOI]
- Nonparametric semisupervised classification for signal detection in high energy physics
- Uncovering latent jet substructure [DOI]
- Simulation Assisted Likelihood-free Anomaly Detection [DOI]
- Anomaly Detection with Density Estimation [DOI]
- A generic anti-QCD jet tagger [DOI]
- Transferability of Deep Learning Models in Searches for New Physics at Colliders [DOI]
- Use of a Generalized Energy Mover's Distance in the Search for Rare Phenomena at Colliders [DOI]
- Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]
- Dijet resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector [DOI]

https://iml-wg.github.io/HEPML-LivingReview

Community interest in AD

Machine Learning for Anomaly Detection in Particle **Physics**

Vasilis Belis^{1,*}, Patrick Odagiu^{1,*}, and Thea Klæboe Aarrestad^{1,*}

¹Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland

*e-mail: vbelis@ethz.ch, podagiu@ethz.ch, thea.aarrestad@cern.ch

ABSTRACT

The detection of out-of-distribution data points is a common task in particle physics. It is used for monitoring complex particle detectors or for identifying rare and unexpected events that may be indicative of new phenomena or physics beyond the Standard Model. Recent advances in Machine Learning for anomaly detection have encouraged the utilization of such techniques on particle physics problems. This review article provides an overview of the state-of-the-art techniques for anomaly detection in particle physics using machine learning. We discuss the challenges associated with anomaly detection in large and complex data sets, such as those produced by high-energy particle colliders, and highlight some of the successful applications of anomaly detection in particle physics experiments.

[2312.14190]

Available on the CERN CDS information server

CMS PAS EXO-22-026

CMS Physics Analysis Summary

Contact: cms-pag-conveners-exotica@cern.ch

2024/03/20

Model-agnostic search for dijet resonances with anomalous jet substructure in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$

The CMS Collaboration

Abstract

This note introduces a model-agnostic search for new physics in the dijet final state. Other than the requirement of a narrow dijet resonance with a mass in the range of 1800-6000 GeV, minimal additional assumptions are placed on the signal hypothesis. Search regions are obtained by utilizing multivariate machine learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods - based on unsupervised, weakly-supervised and semi-supervised algorithms - are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 138 fb⁻¹, recorded in the years 2016 to 2018 by the CMS experiment at the LHC, at a centre-of-mass energy of 13 TeV. No significant excesses above background expectation are seen, and exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass and jet substructure. Many of these signatures have not previously been searched for at the LHC, making the limits reported on the corresponding benchmark models the first ever and the most stringent to date.

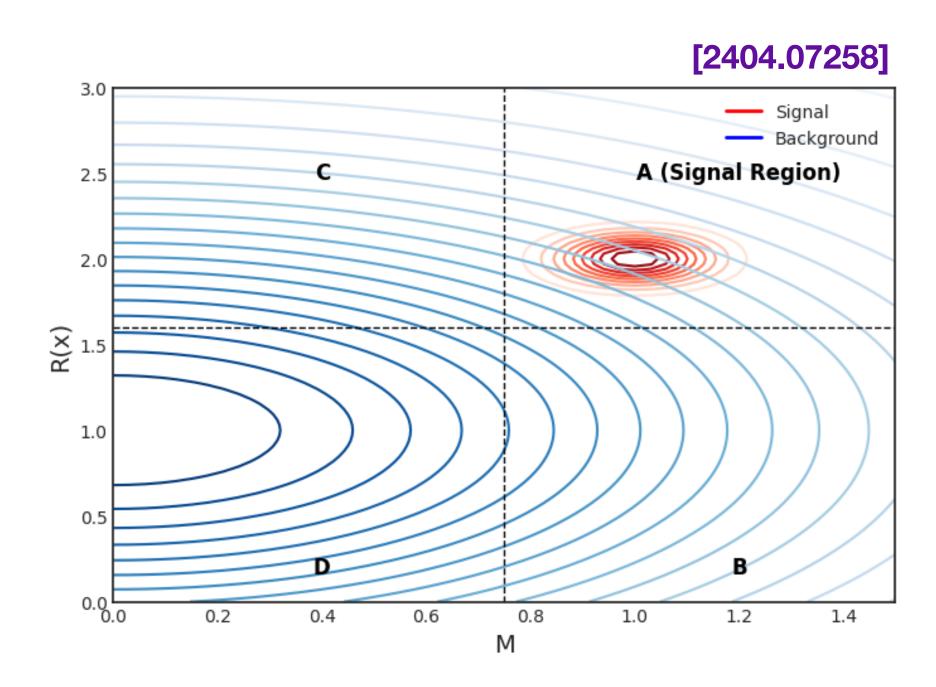
[CMS-PAS-EXO-22-026]

Two Types of Anomaly Detection

Outlier Detection

(non-resonant)

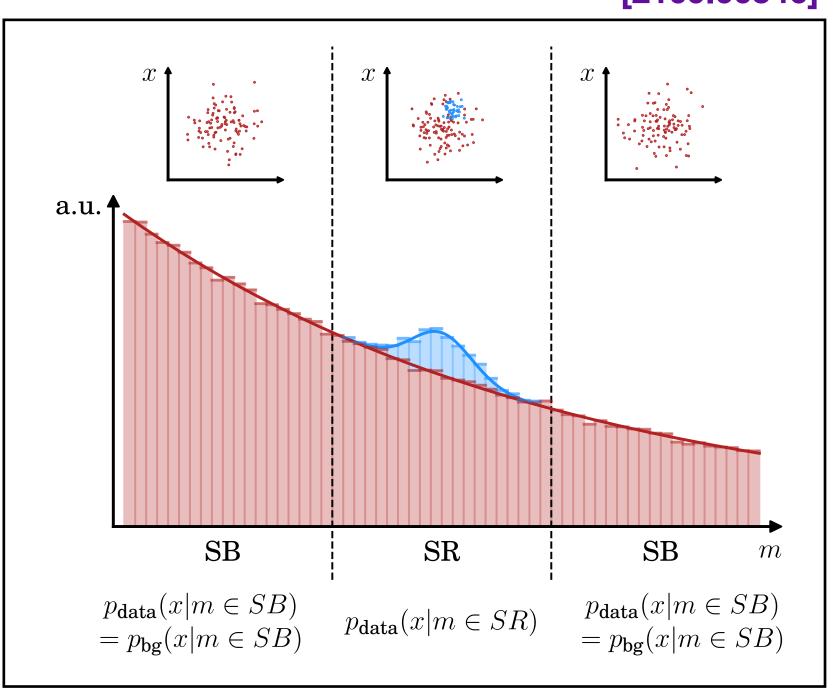
- Searching for unique and unexpected events
- In HEP, this (might) appear in the tails of dist.



Overdensities (resonant)

Analagous to traditional bump hunt

[2109.00546]

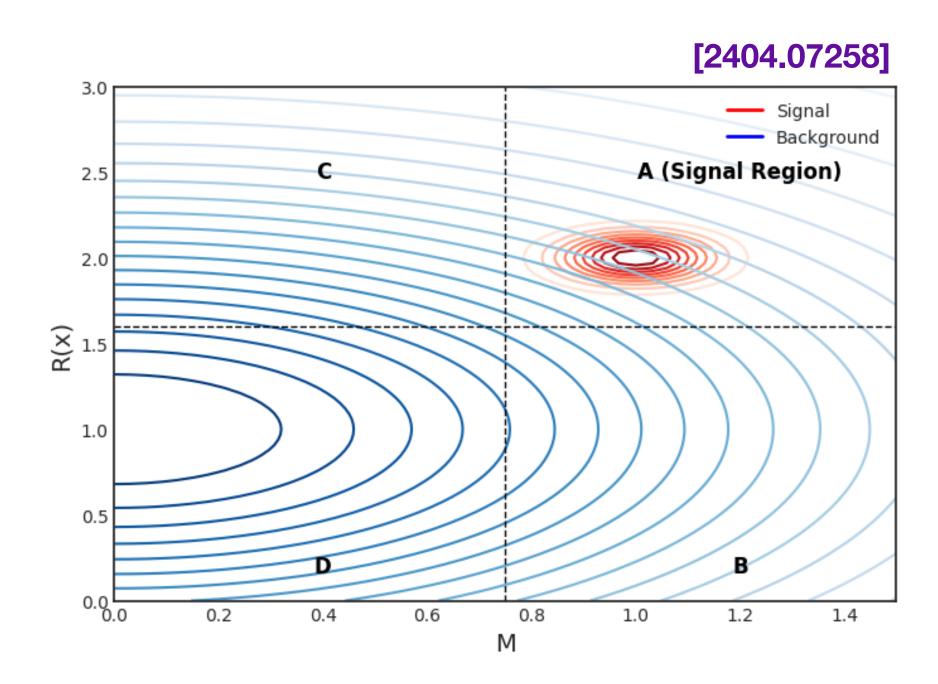


Two Types of Anomaly Detection

Outlier Detection

(non-resonant)

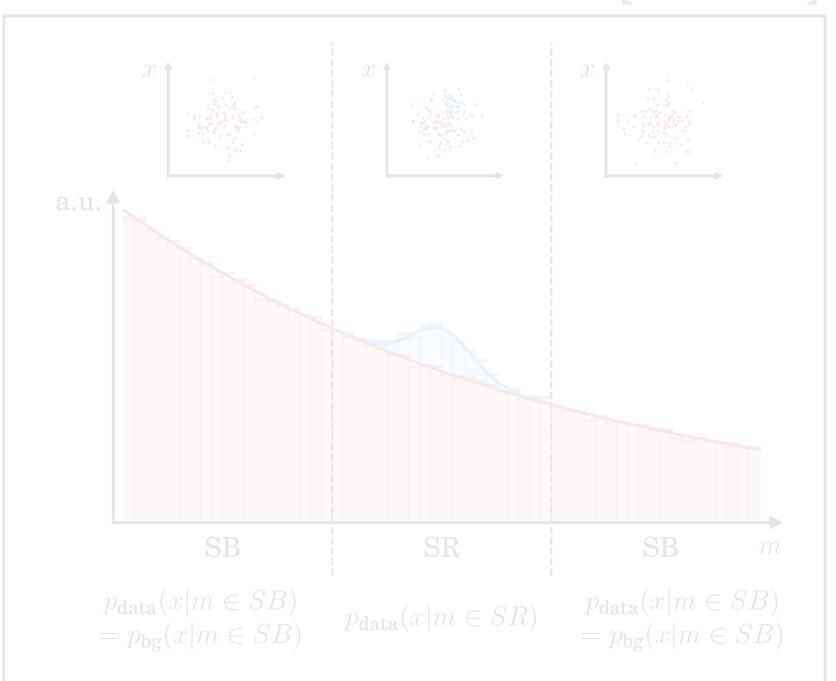
- Searching for unique and unexpected events
- In HEP, this (might) appear in the tails of dist.

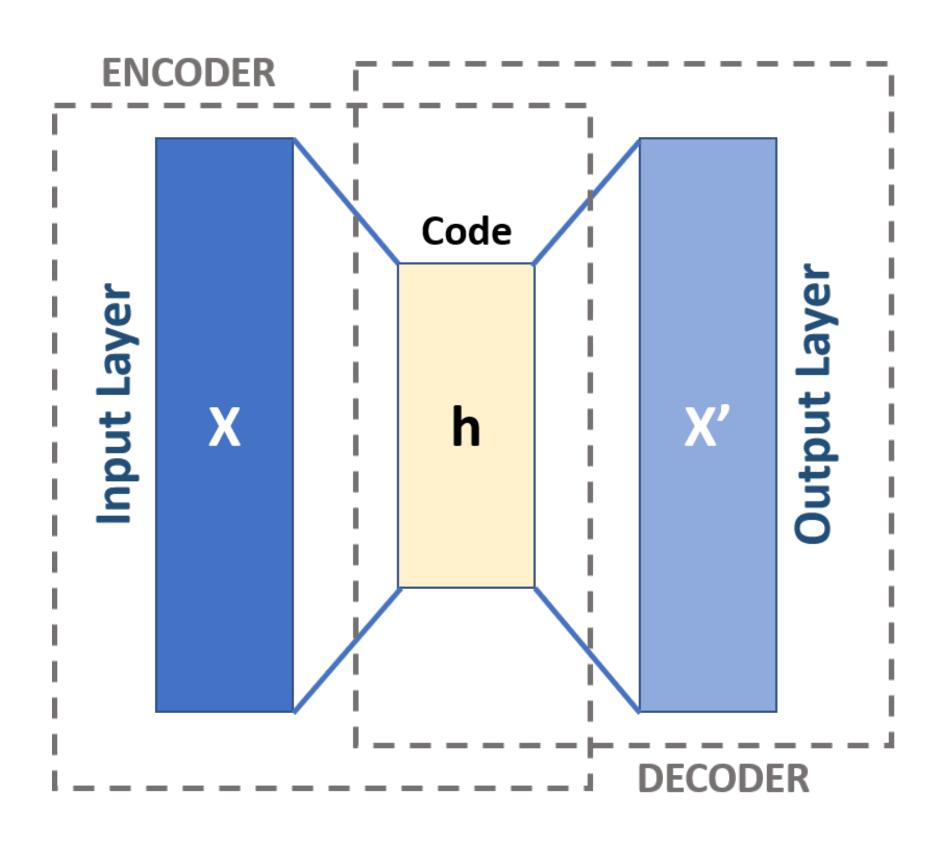


Overdensities (resonant)

Analagous to traditional bump hunt

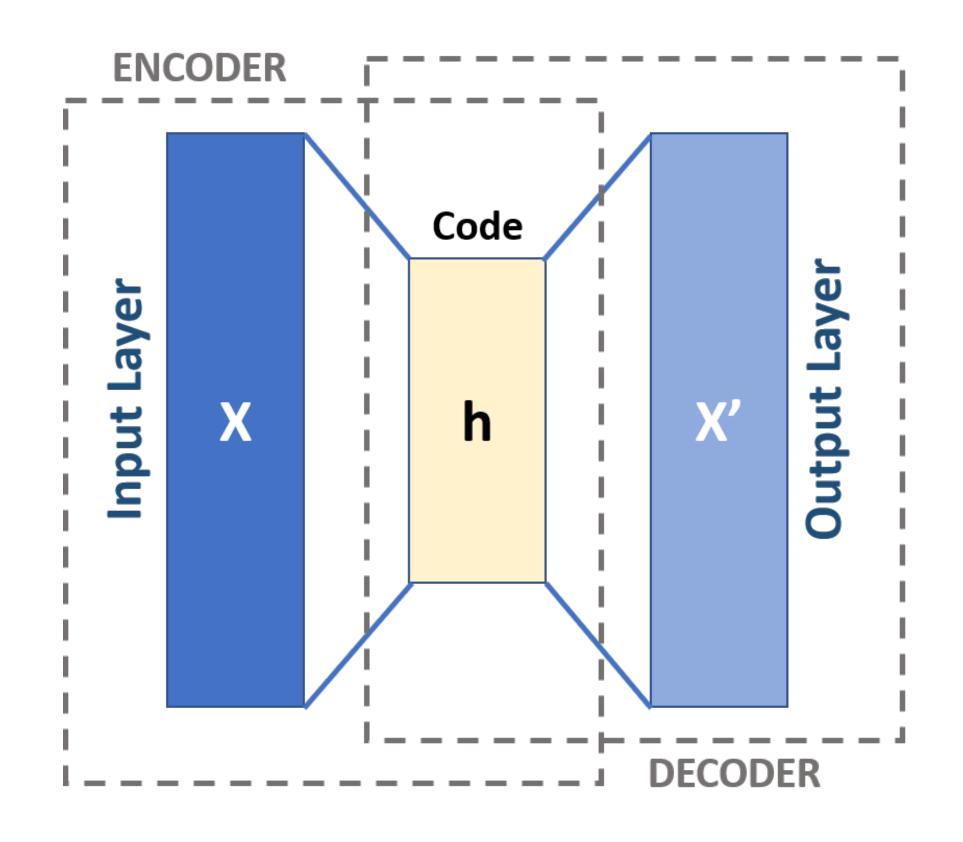
2109.00546]

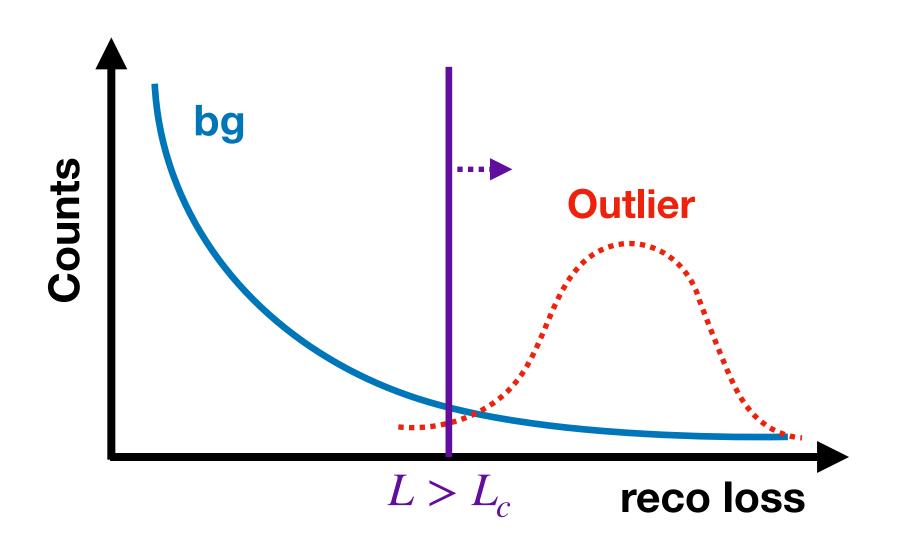




AE trained on bg.

$$L = \frac{1}{N} \sum_{i} (AE(x_i) - x_i)^2$$

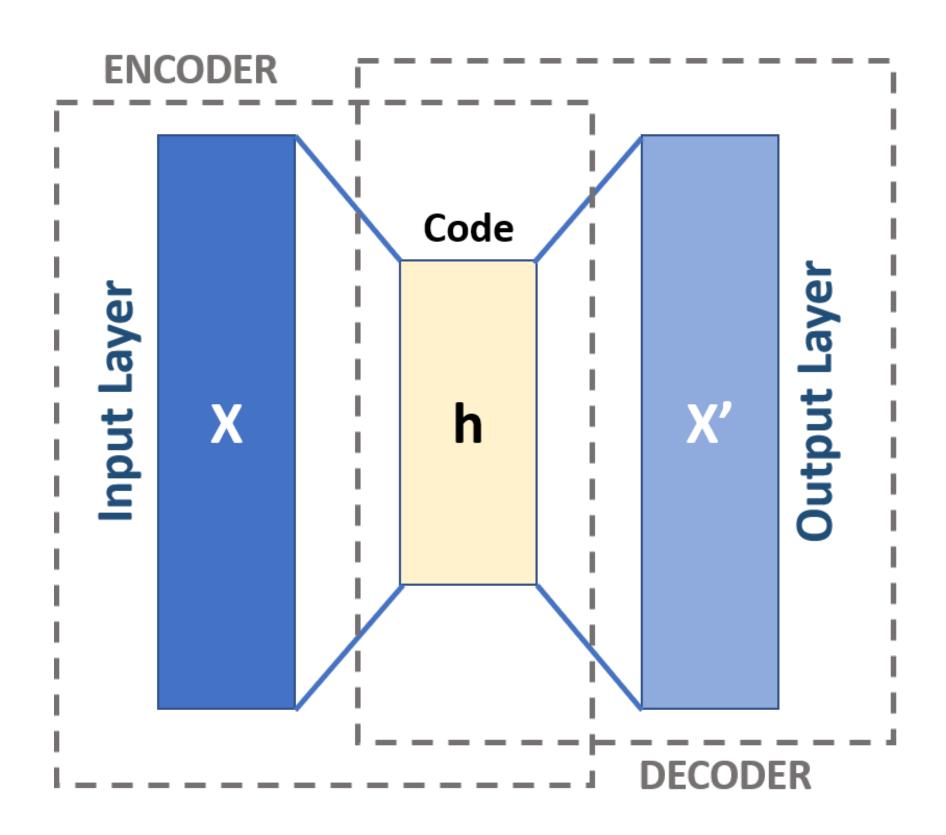




• Use $L>L_C$ to cut interesting events [Heimel et al: 1808.08979] [Farina et al: 1808.08992]

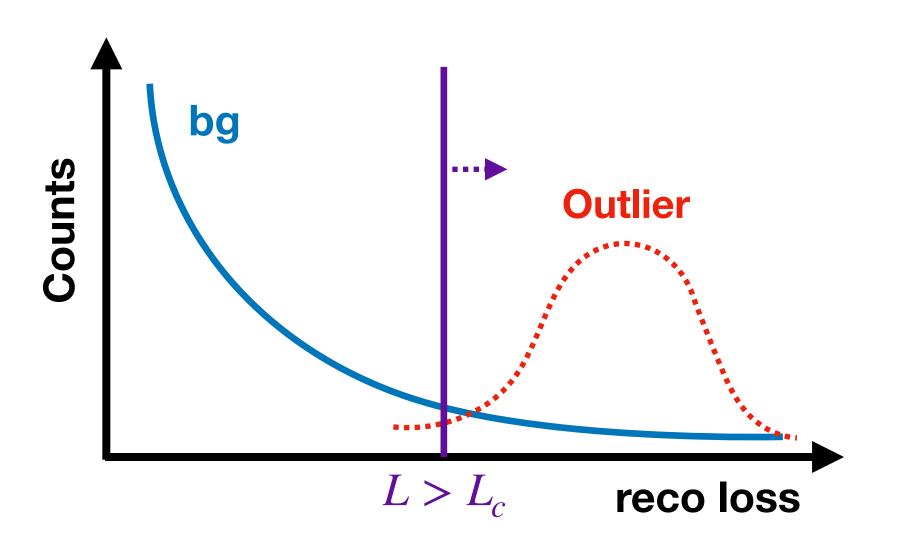
AE trained on bg.

$$L = \frac{1}{N} \sum_{i} (AE(x_i) - x_i)^2$$

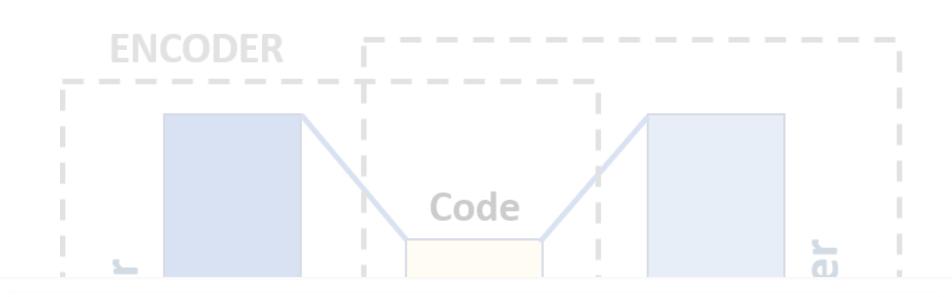


AE trained on bg.

$$L = \frac{1}{N} \sum_{i} (AE(x_i) - x_i)^2$$



- Use $L>L_C$ to cut interesting events [Heimel et al: 1808.08979] [Farina et al: 1808.08992]
- Fully unsupervised
- © Complexity bias [Finke et al: 2104.09051]
- not invariant under coordinate transformations [Kasieczka et al: 2209.06225]



A Normalized Autoencoder for LHC Triggers

Barry M. Dillon¹, Luigi Favaro¹, Tilman Plehn¹, Peter Sorrenson², and Michael Krämer³

1 Institut für Theoretische Physik, Universität Heidelberg, Germany 2 Heidelberg Collaboratory for Image Processing, Universität Heidelberg, Germany 3 Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, Germany

June 23, 2023

[2206.14225]

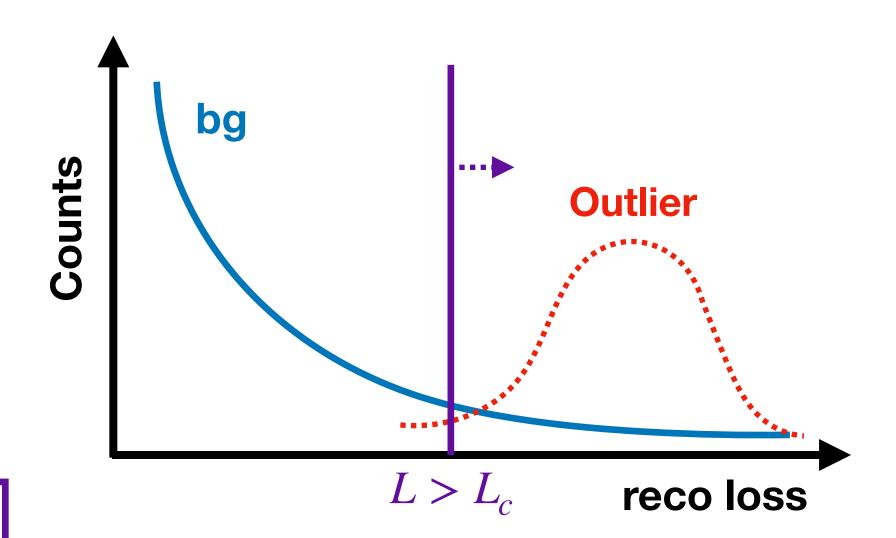
Submission

DECODER

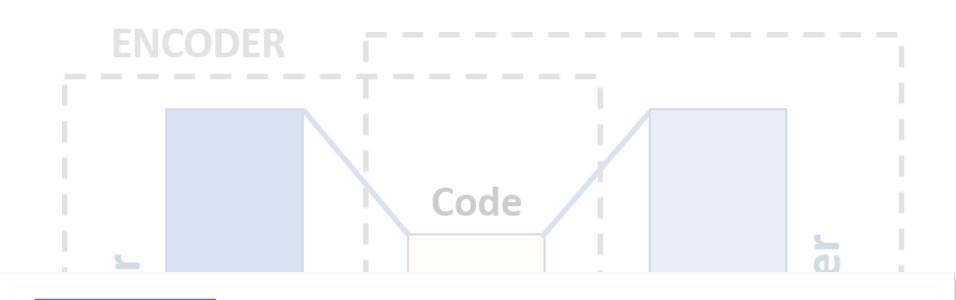
AE trained on bg.

SciPost Physics

$$L = \frac{1}{N} \sum_{i} (AE(x_i) - x_i)^2$$



- Use $L>L_C$ to cut interesting events [Heimel et al: 1808.08979] [Farina et al: 1808.08992]
- Fully unsupervised
- © Complexity bias [Finke et al: 2104.09051]
- not invariant under coordinate transformations [Kasieczka et al: 2209.06225]



A Normalized Autoencoder for LHC Triggers

Barry M. Dillon¹, Luigi Favaro¹, Tilman Plehn¹, Peter Sorrenson², and Michael Krämer³

1 Institut für Theoretische Physik, Universität Heidelberg, Germany 2 Heidelberg Collaboratory for Image Processing, Universität Heidelberg, Germany 3 Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, Germany

June 23, 2023

[2206.14225]

Submission

SciPost Physics

SciPost Physics

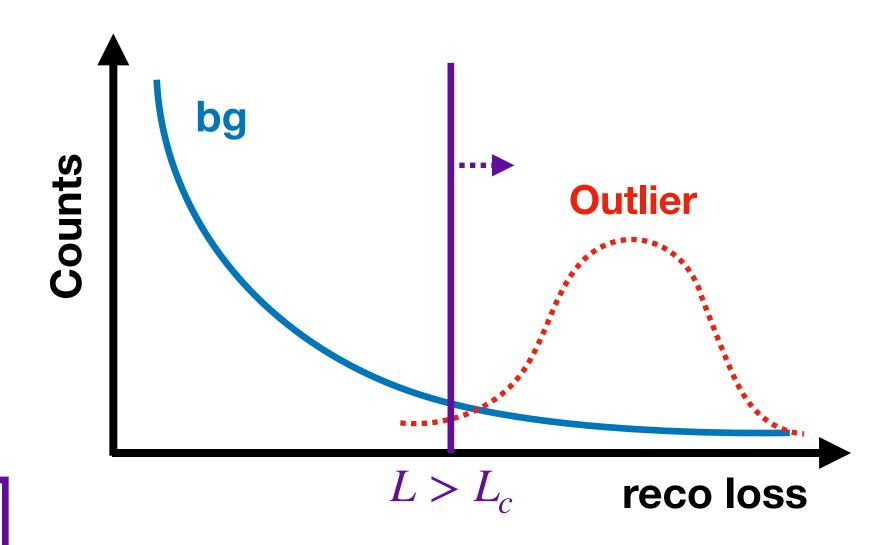
Submission

Anomalies, Representations, and Self-Supervision

Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn Institut für Theoretische Physik, Universität Heidelberg, Germany

January 13, 2023

[2301.04660]



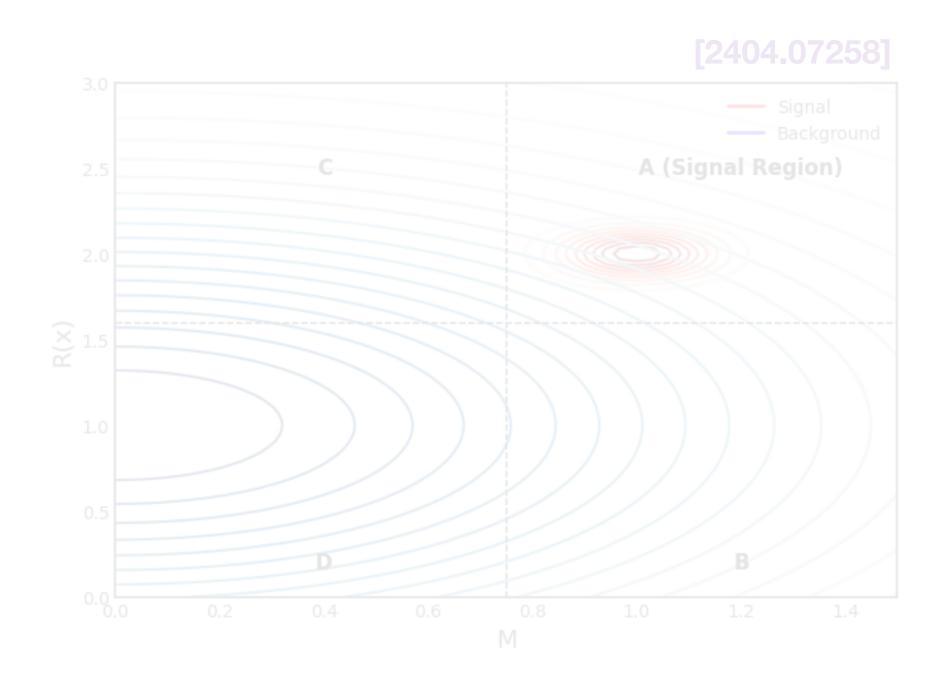
- Use $L>L_C$ to cut interesting events [Heimel et al: 1808.08979] [Farina et al: 1808.08992]
- Fully unsupervised
- © Complexity bias [Finke et al: 2104.09051]
- not invariant under coordinate transformations [Kasieczka et al: 2209.06225]

Two Types of Anomaly Detection

Outlier Detection

(non-resonant)

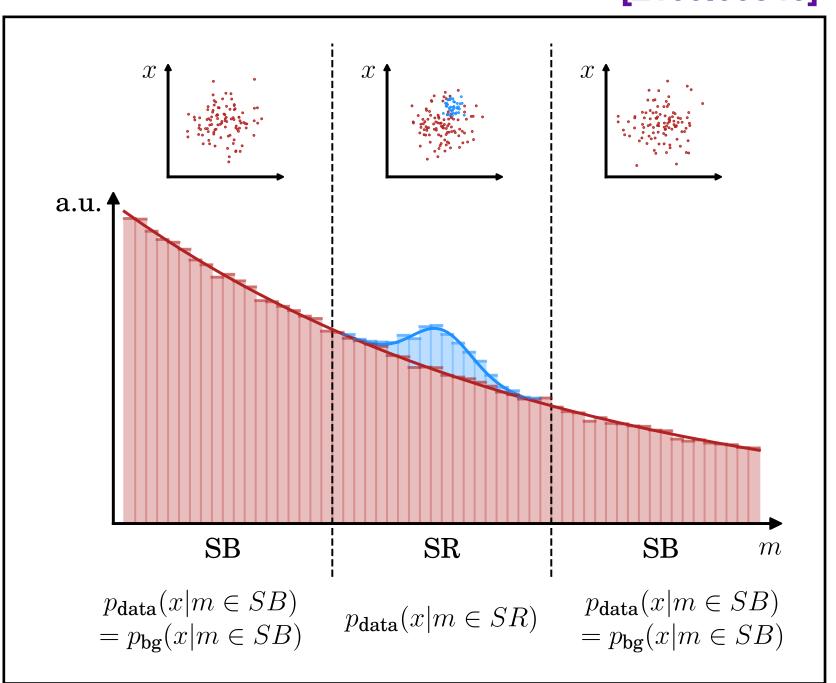
- Searching for unique and unexpected events
- In HEP, this (might) appear in the tails of dist.

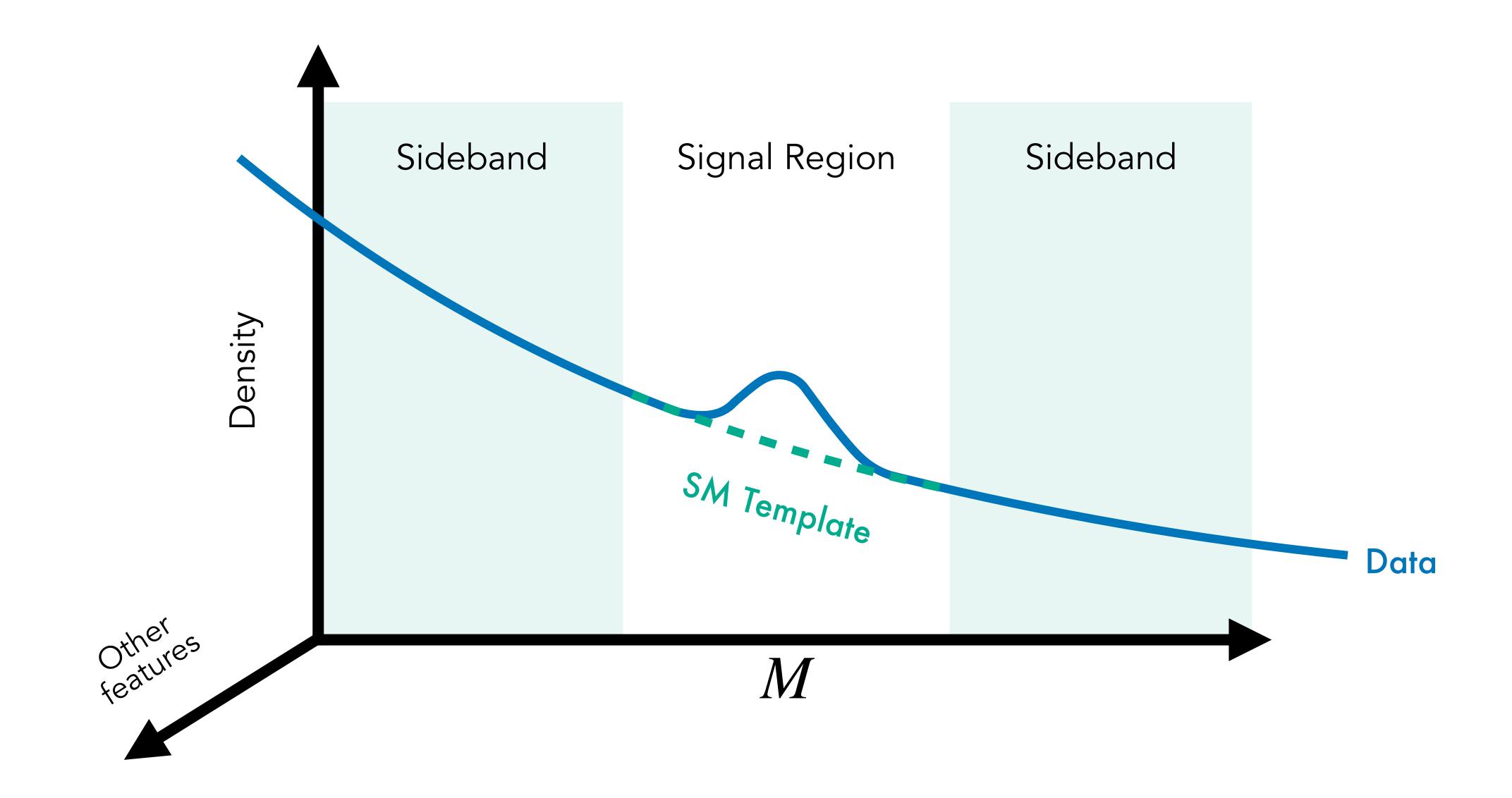


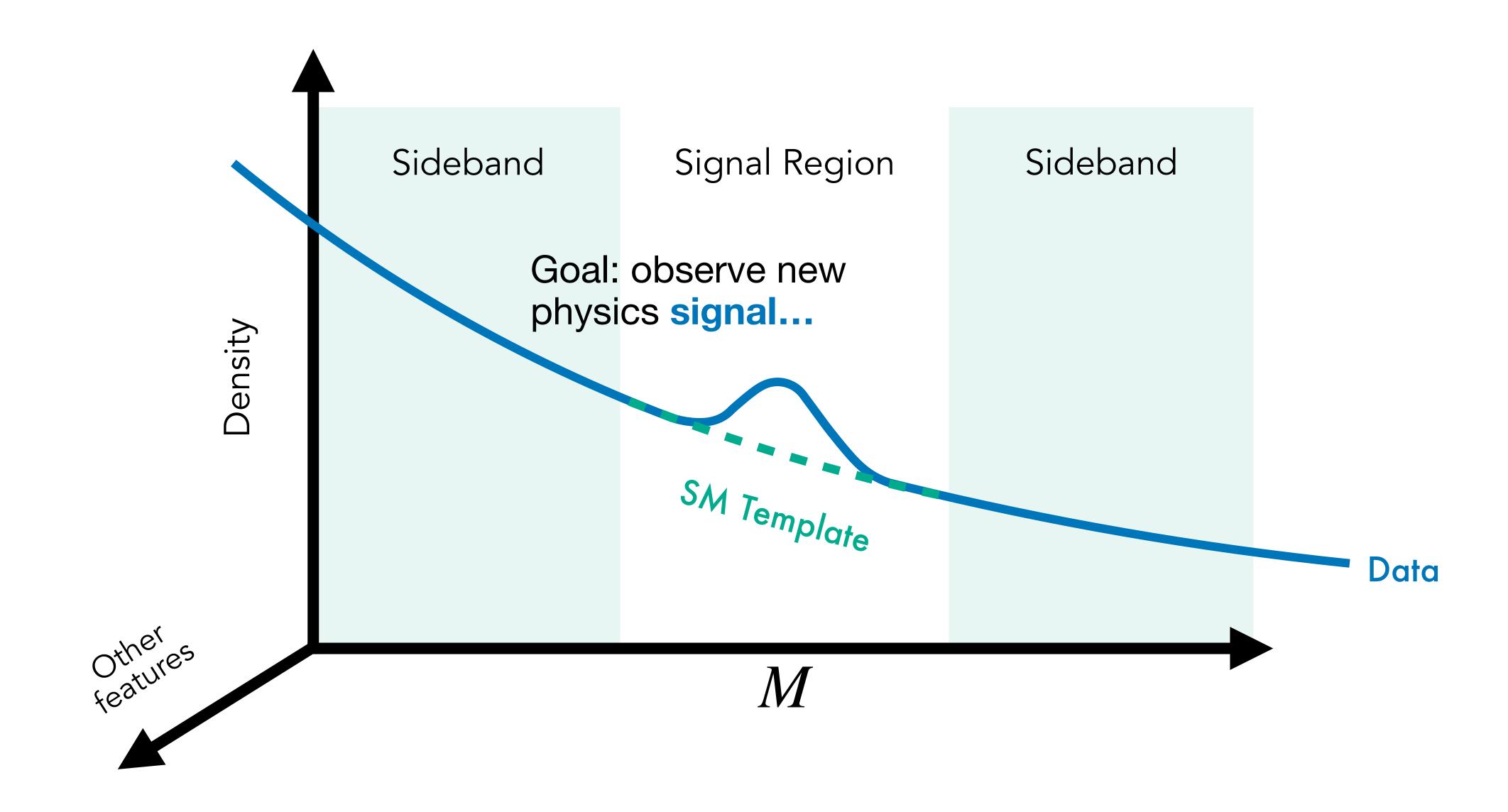
Overdensities (resonant)

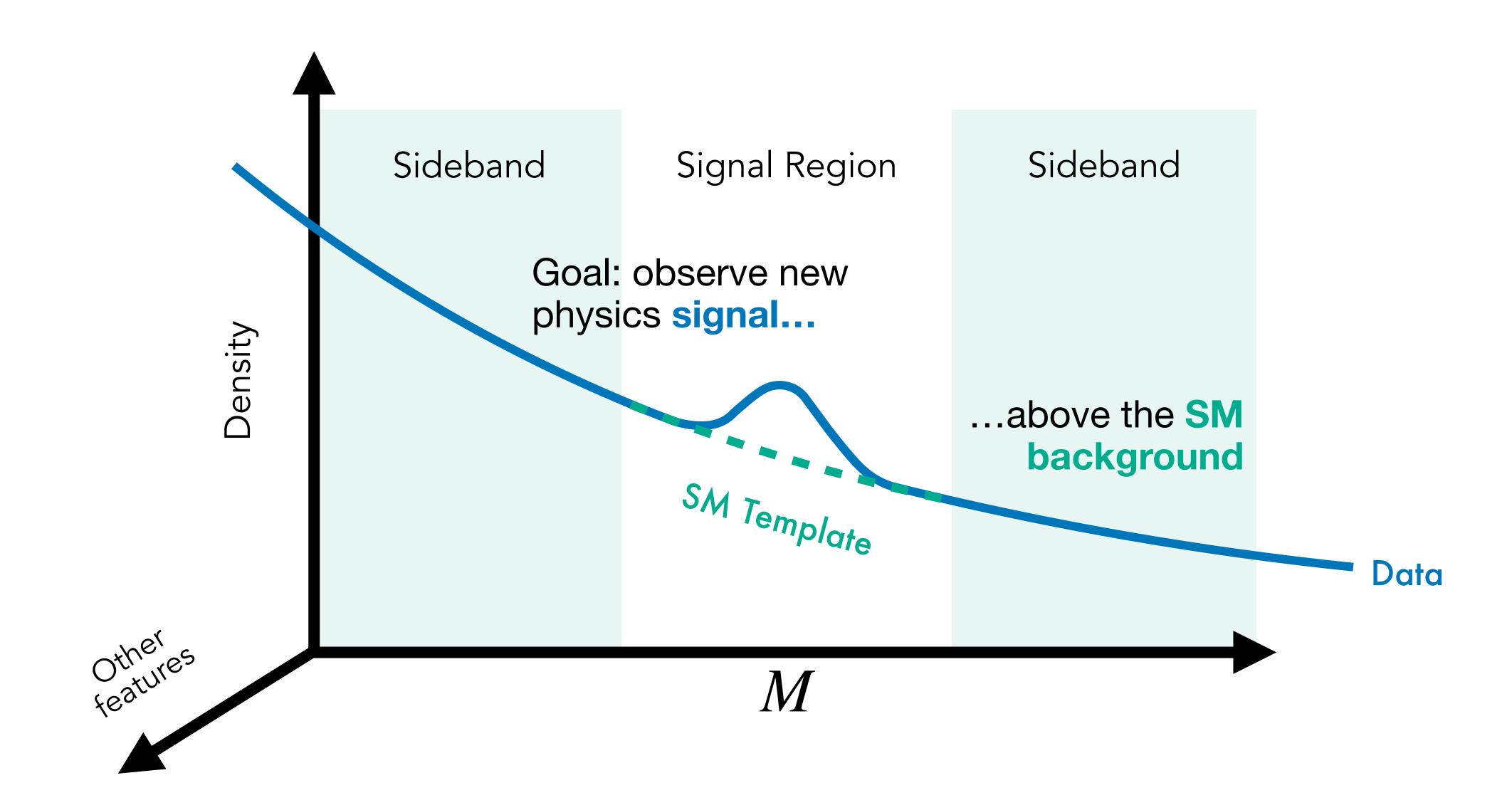
Analagous to traditional bump hunt

[2109.00546]



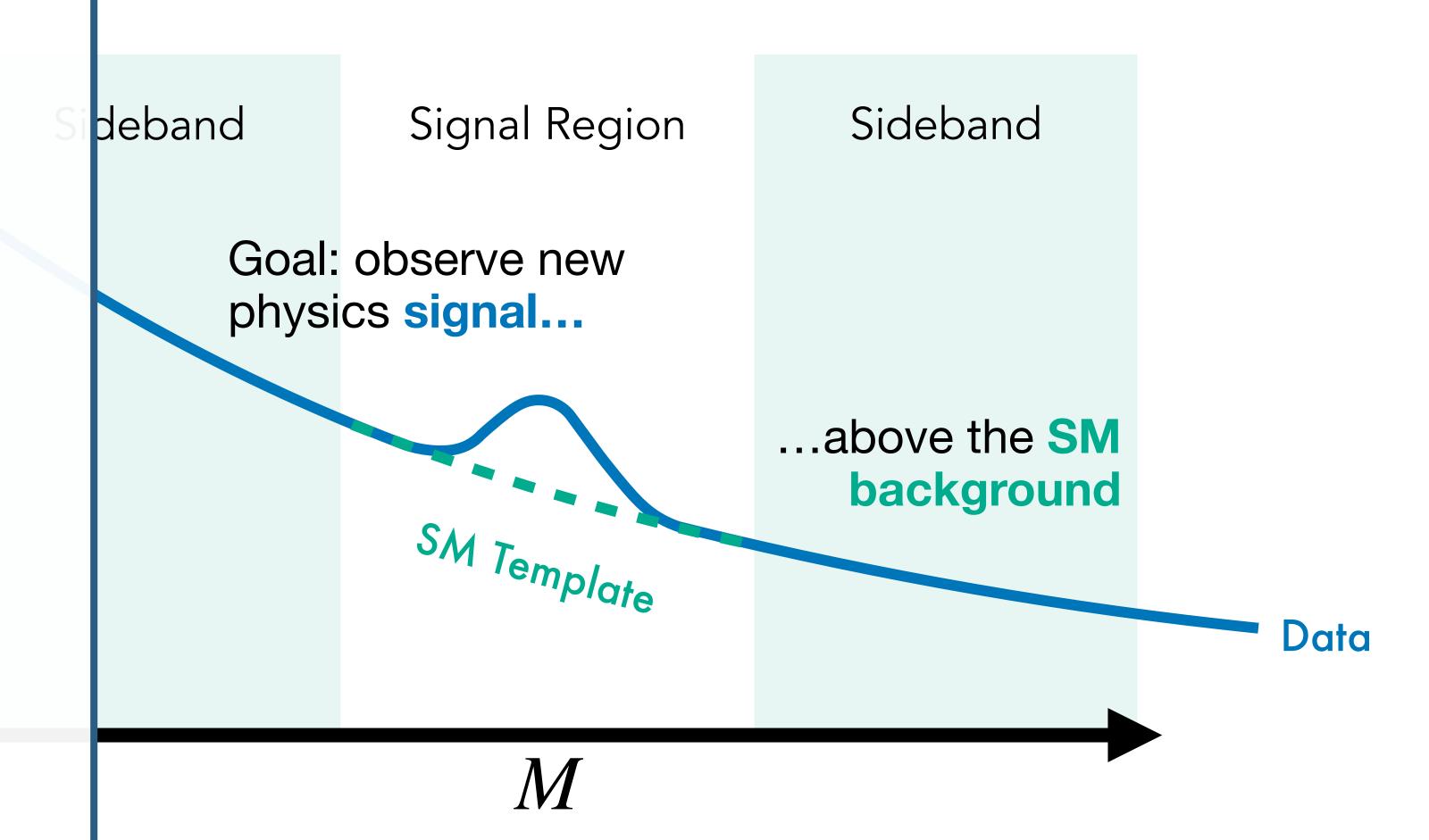




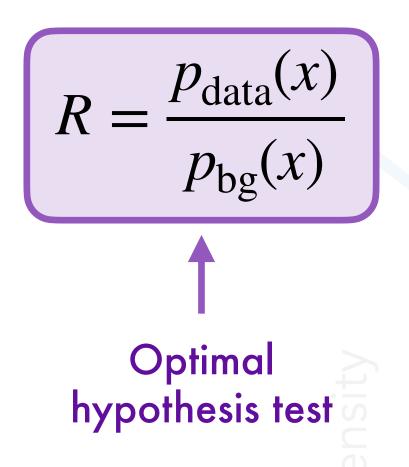


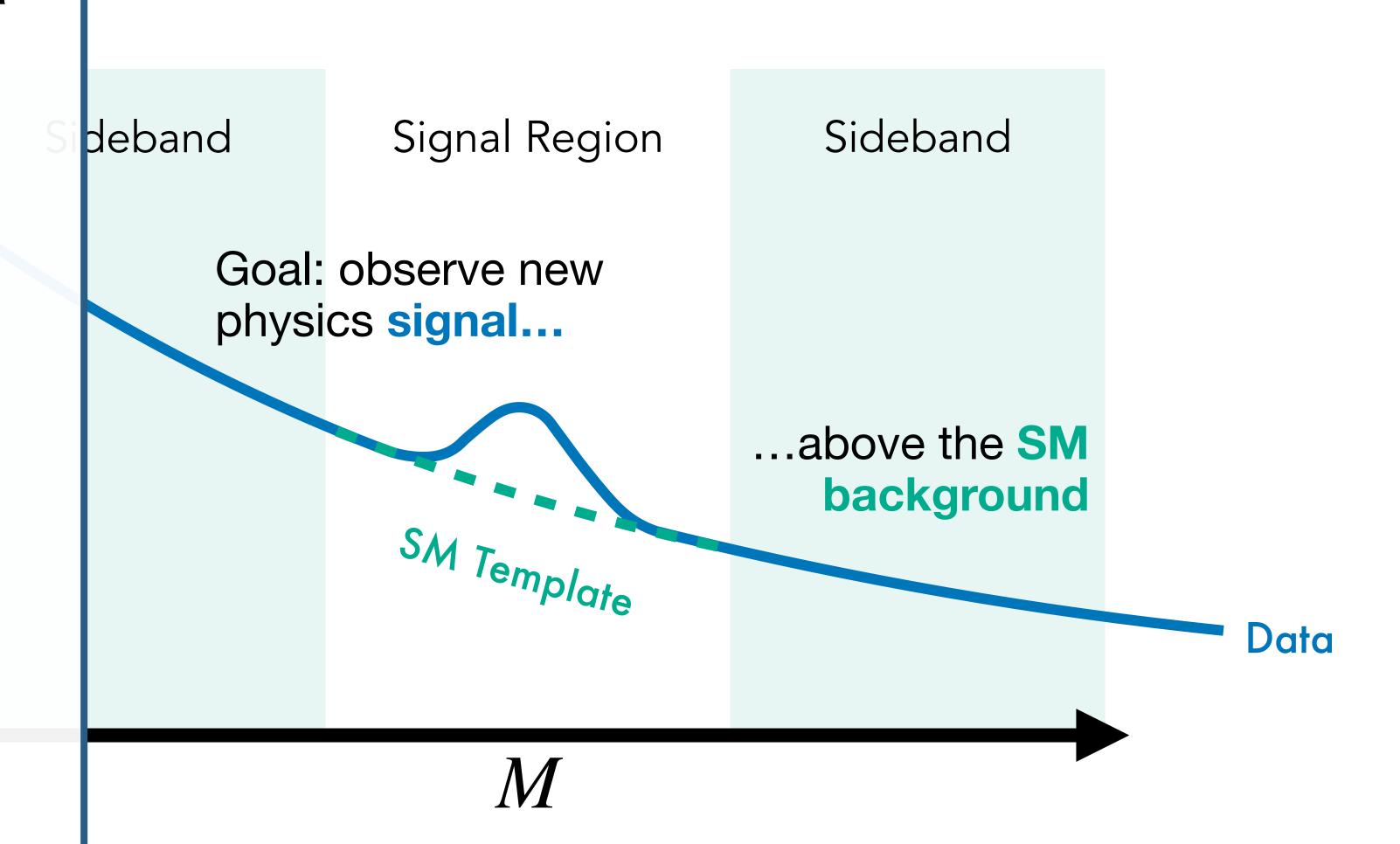
Neyman-Pearson Lemma

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$



Neyman-Pearson Lemma



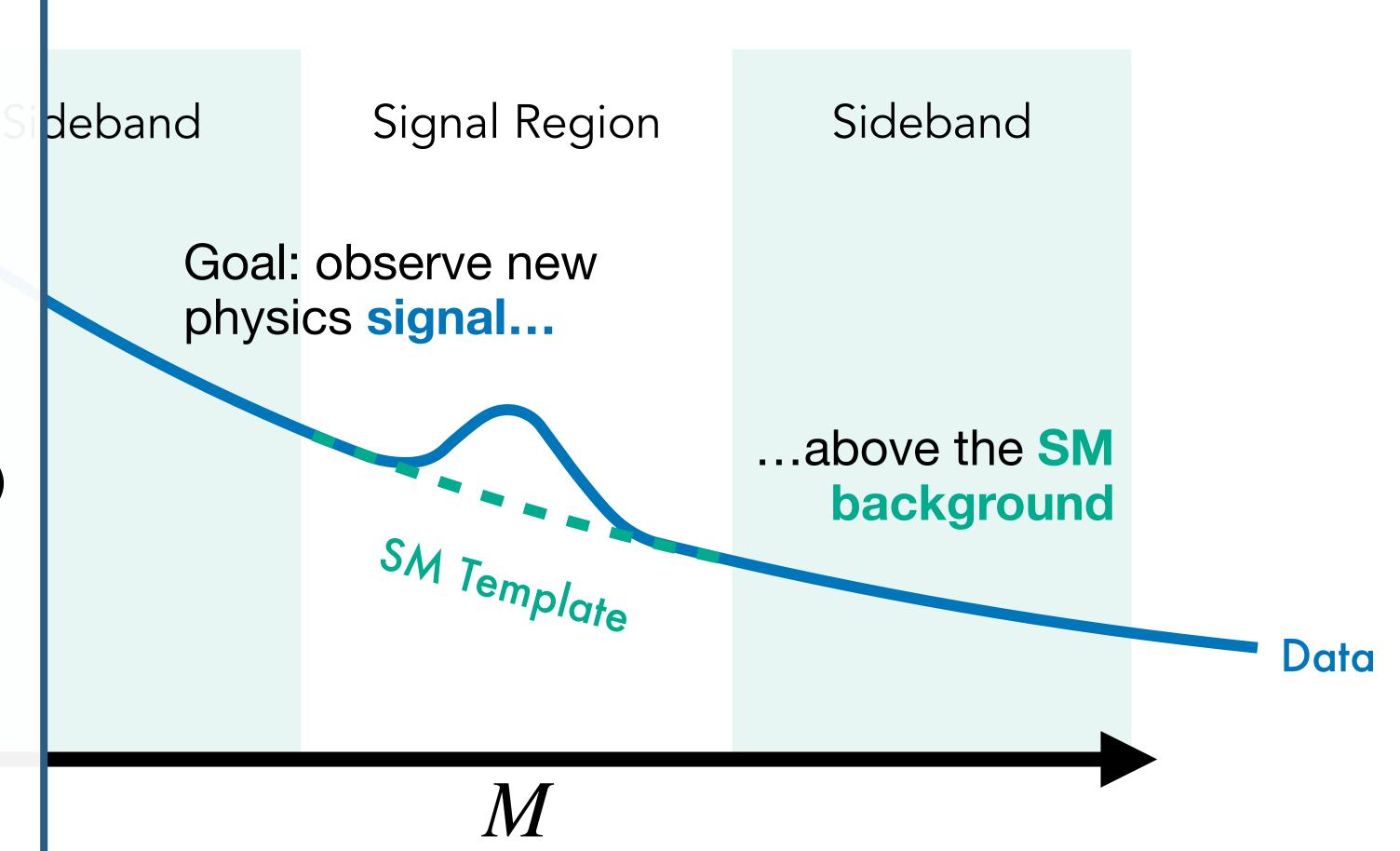


Neyman-Pearson Lemma

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

$$\uparrow$$
Optimal hypothesis test

Idealized anomaly detector (IAD)

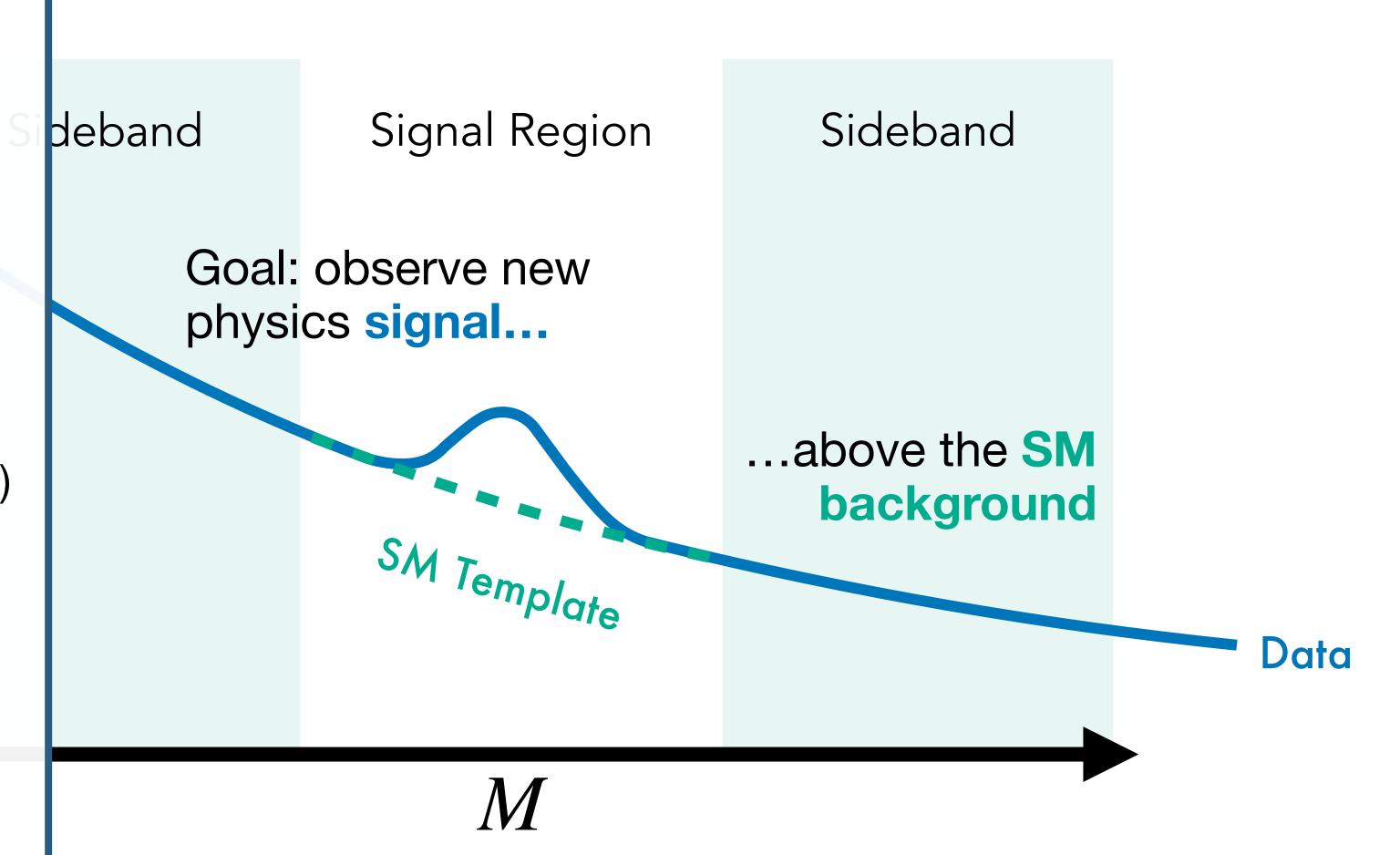


Neyman-Pearson Lemma

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

$$\uparrow$$
Optimal hypothesis test

- Idealized anomaly detector (IAD)
- Best you can do if... ... you know $p_{\rm data}$ and $p_{\rm bg}$



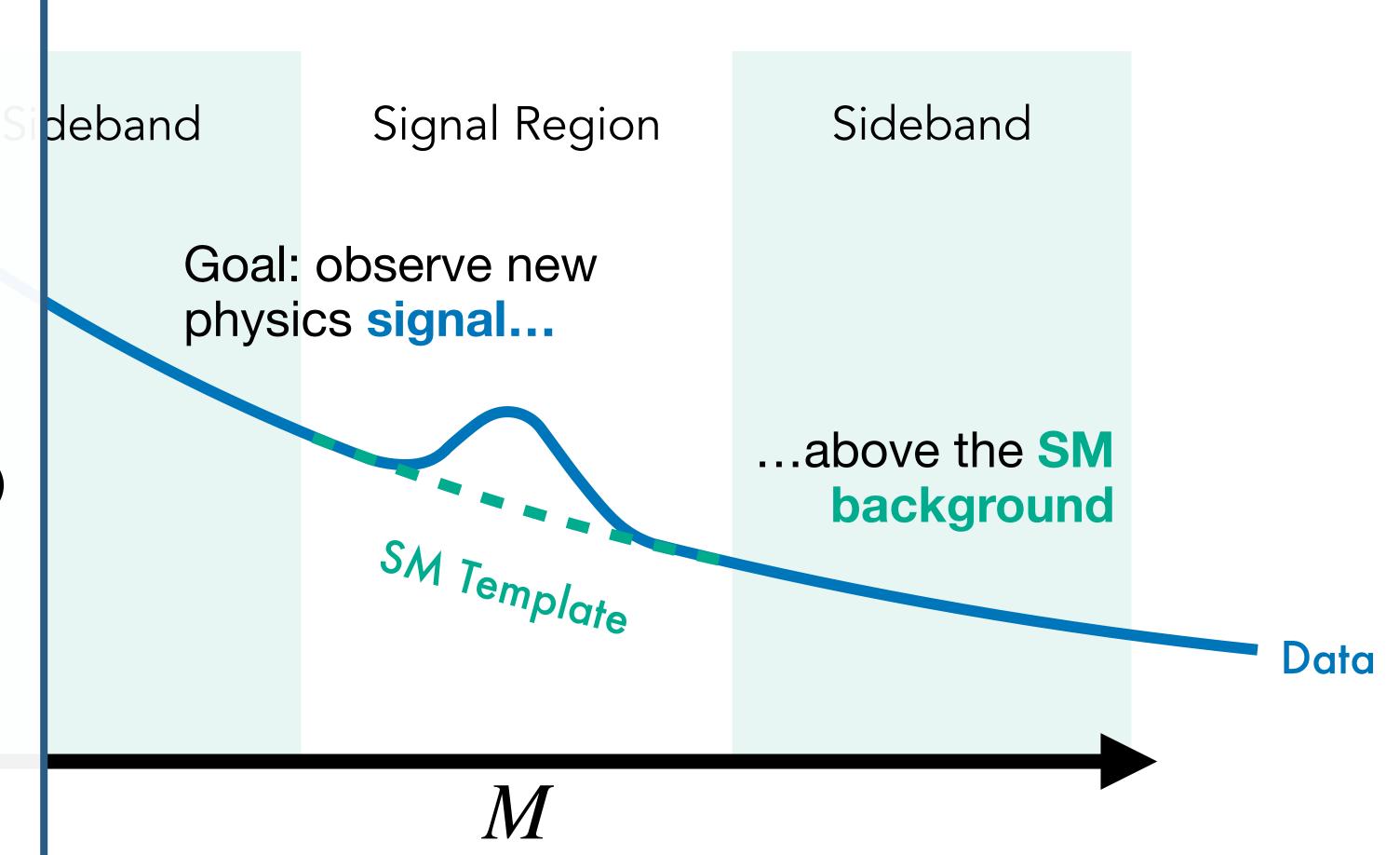
Neyman-Pearson Lemma

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

$$\uparrow$$
Optimal hypothesis test

- Idealized anomaly detector (IAD)
- Best you can do if... ... you know p_{data} and p_{bg}

ML



Neyman-Pearson Lemma

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

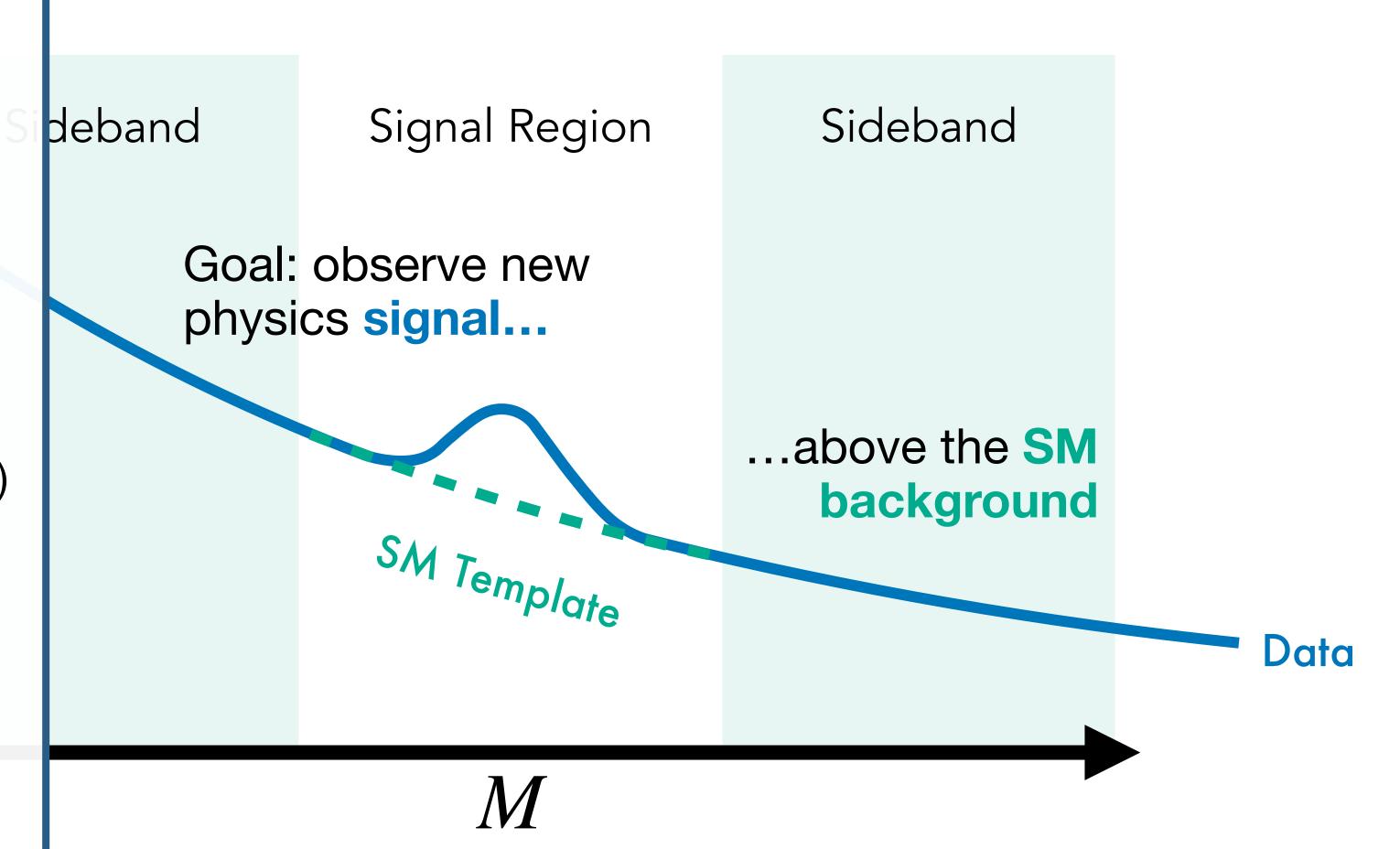
$$\uparrow$$
Optimal hypothesis test

- Idealized anomaly detector (IAD)
- Best you can do if... ... you know p_{data} and p_{bg}

M

 \diamond Use R as cut discriminant

$$\rightarrow R > R_c$$



$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

Classifier

If we have samples from data and SM background...

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

Classifier

If we have samples from data and SM background....

...an optimal classifier yields

$$f(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{bg}}(x)}$$

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

Classifier

If we have samples from data and SM background....

...an optimal classifier yields

$$f(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{bg}}(x)}$$

 \Leftrightarrow Get $x \sim p_{\text{data}}$ and $x \sim p_{\text{bg}}$ from MC simulations

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

Classifier

If we have samples from data and SM background....

...an optimal classifier yields

$$f(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{bg}}(x)}$$

- \Leftrightarrow Get $x \sim p_{\text{data}}$ and $x \sim p_{\text{bg}}$ from MC simulations
- Estimate samples from data:

$$x \sim p_{\text{data}}(x \mid \text{SR})$$

 $x \sim p_{\text{data}}(x \mid \text{SB}) \approx p_{\text{bg}}(x)$

$$R = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$

Classifier

If we have samples from data and SM background....

...an optimal classifier yields

$$f(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{bg}}(x)}$$

- \Leftrightarrow Get $x \sim p_{\text{data}}$ and $x \sim p_{\text{bg}}$ from MC simulations
- Estimate samples from data:

$$x \sim p_{\text{data}}(x \mid \text{SR})$$

 $x \sim p_{\text{data}}(x \mid \text{SB}) \approx p_{\text{bg}}(x)$

Density estimator

Instead of learning the likelihood ratio directly...

Classifier

If we have samples from data and SM background...

...an optimal classifier yields

$$f(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{bg}}(x)}$$

- \Leftrightarrow Get $x \sim p_{\text{data}}$ and $x \sim p_{\text{bg}}$ from MC simulations
- Estimate samples from data:

$$x \sim p_{\text{data}}(x \mid \text{SR})$$

 $x \sim p_{\text{data}}(x \mid \text{SB}) \approx p_{\text{bg}}(x)$

Density estimator

Instead of learning the likelihood ratio directly...

...use a density estimator to learn

$$p_{\omega}(x \mid SR) \simeq p_{\text{data}}(x \mid SR)$$

$$p_{\omega}(x \mid SB) \simeq p_{bg}(x)$$

Classifier

If we have samples from data and SM background....

...an optimal classifier yields

$$f(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{bg}}(x)}$$

- \Leftrightarrow Get $x \sim p_{\text{data}}$ and $x \sim p_{\text{bg}}$ from MC simulations
- Estimate samples from data:

$$x \sim p_{\text{data}}(x \mid \text{SR})$$

 $x \sim p_{\text{data}}(x \mid \text{SB}) \approx p_{\text{bg}}(x)$

Density estimator

Instead of learning the likelihood ratio directly...

...use a density estimator to learn

$$p_{\omega}(x \mid SR) \simeq p_{\text{data}}(x \mid SR)$$

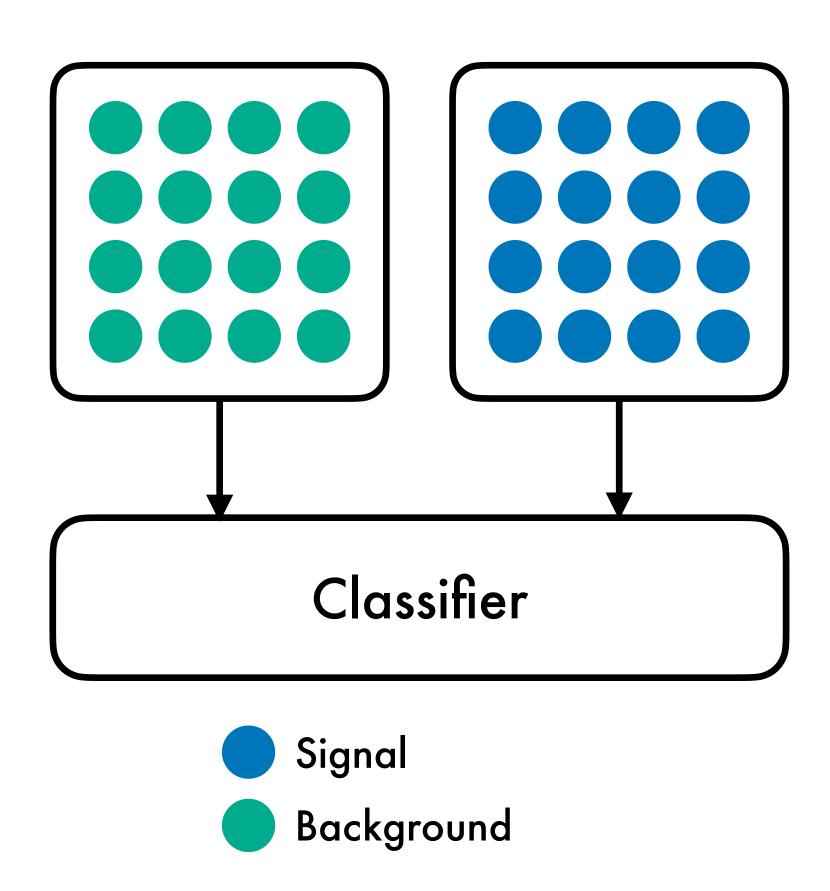
 $p_{\omega}(x \mid SB) \simeq p_{\text{bg}}(x)$

Then calculate *R* directly from the individual likelihoods

Example

CWoLa Hunting

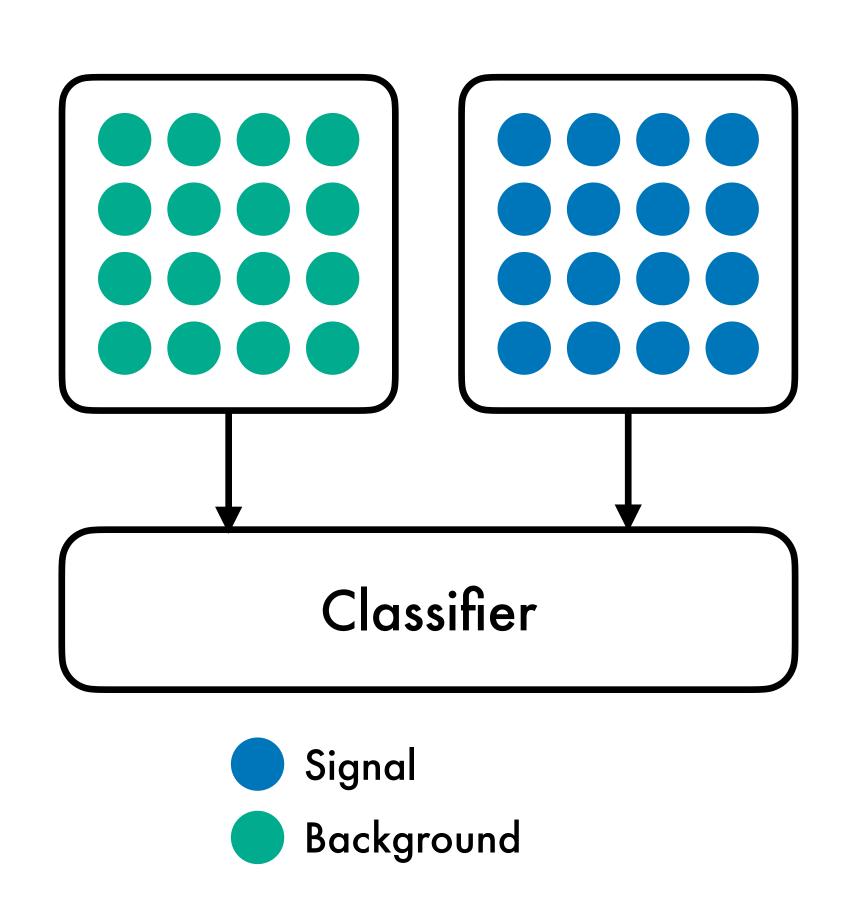
Goal: learn the signal to background ratio



Goal: learn the signal to background ratio

An optimal classifier yields the likelihood ratio

$$R_{\text{optimal}} = \frac{f(x)}{1 - f(x)} = \frac{p_{\text{sig}}(x)}{p_{\text{bg}}(x)}$$

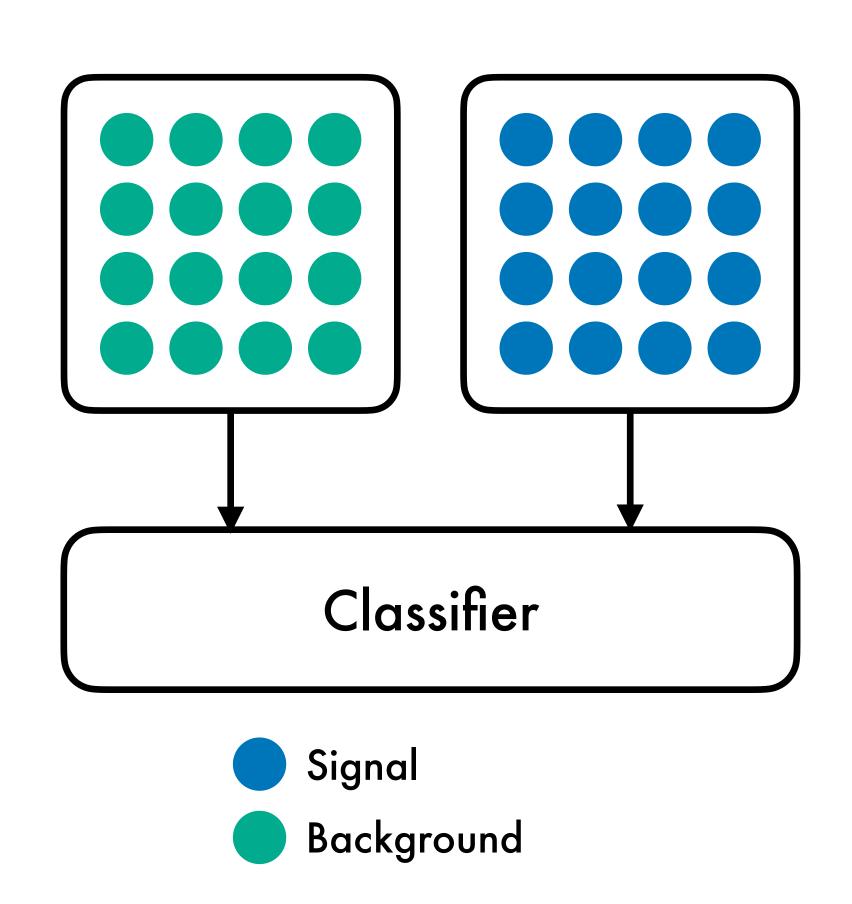


Goal: learn the signal to background ratio

An optimal classifier yields the likelihood ratio

$$R_{\text{optimal}} = \frac{f(x)}{1 - f(x)} = \frac{p_{\text{sig}}(x)}{p_{\text{bg}}(x)}$$

Can be approximated with a supervised classifier (ML)

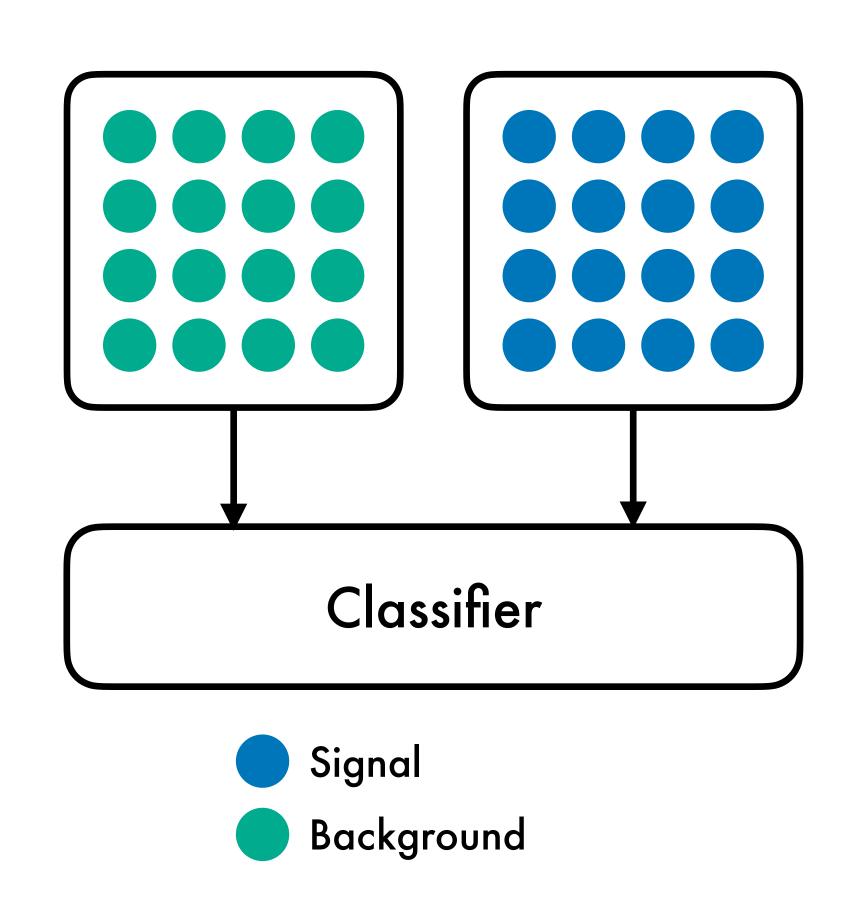


Goal: learn the signal to background ratio

An optimal classifier yields the likelihood ratio

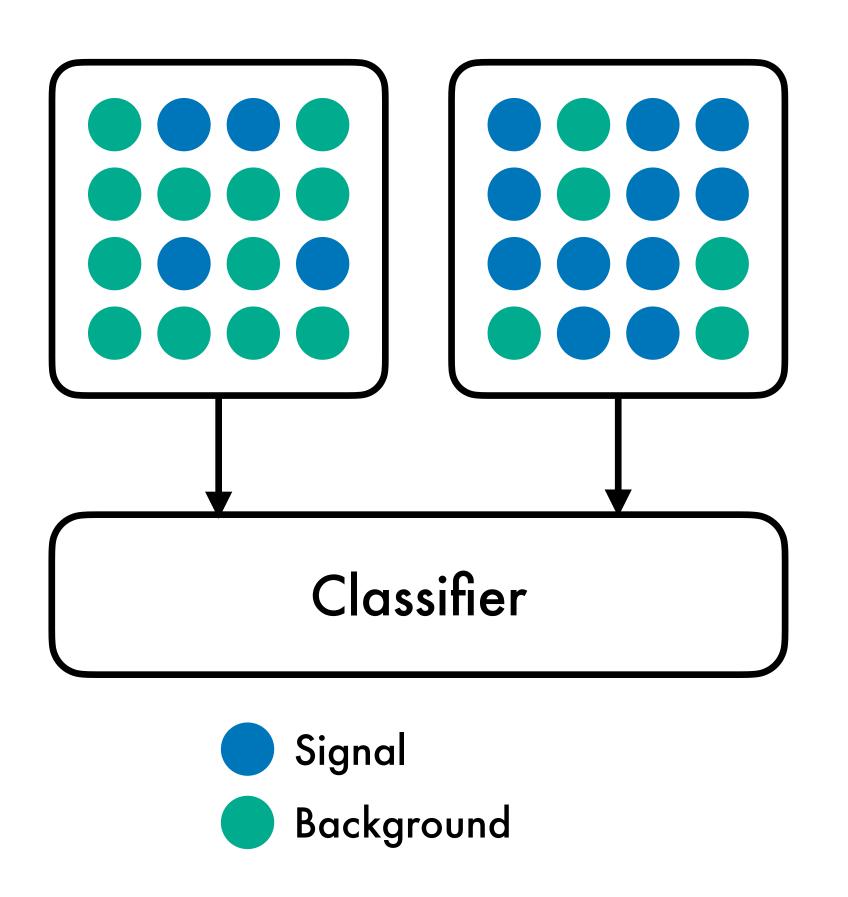
$$R_{\text{optimal}} = \frac{f(x)}{1 - f(x)} = \frac{p_{\text{sig}}(x)}{p_{\text{bg}}(x)}$$

- Can be approximated with a supervised classifier (ML)
- Labels are not available in experimental data



Two mixed datasets with signal fractions w_i

$$p_i(x) = w_i p_{sig}(x) + (1 - w_i) p_{bg}(x)$$

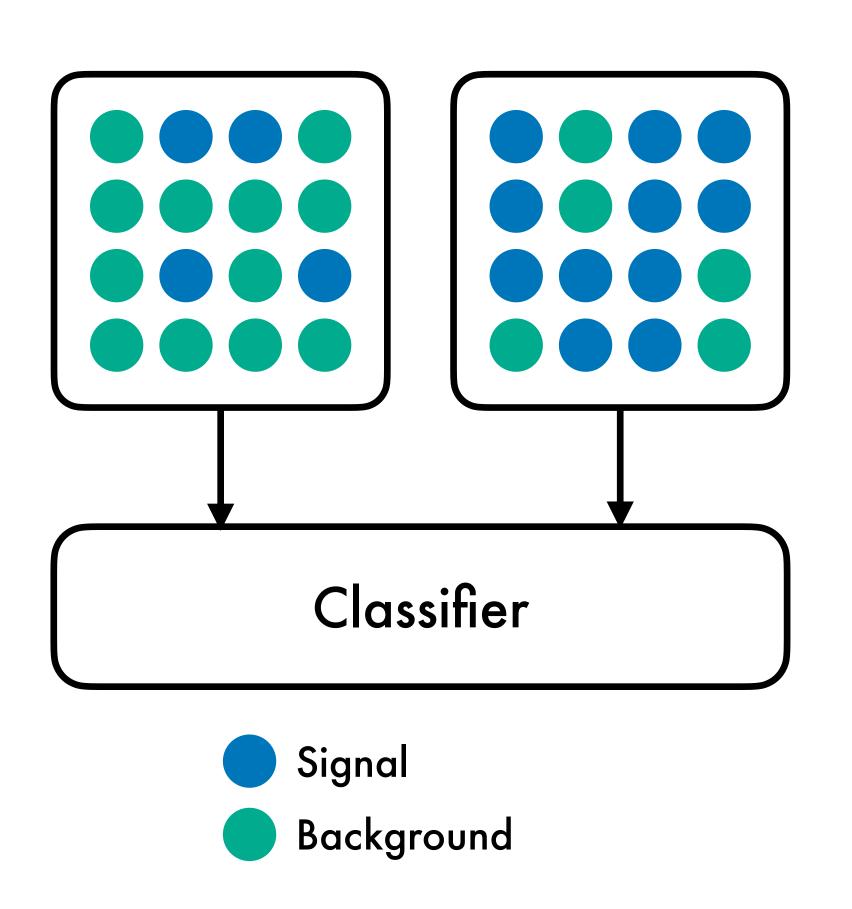


Two mixed datasets with signal fractions w_i

$$p_i(x) = w_i p_{sig}(x) + (1 - w_i) p_{bg}(x)$$

Classifier gives likelihood ratio

$$R_{\text{mixed}} = \frac{w_1 R_{\text{optimal}}(x) + (1 - w_1)}{w_2 R_{\text{optimal}}(x) + (1 - w_2)}$$



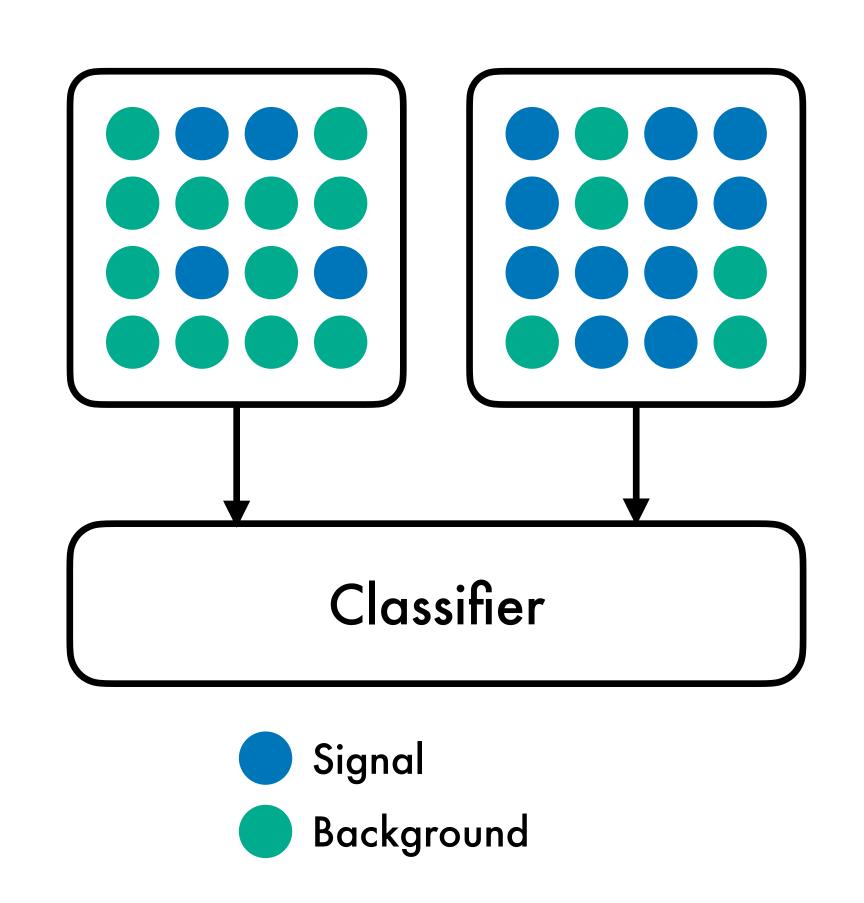
Two mixed datasets with signal fractions w_i

$$p_i(x) = w_i p_{sig}(x) + (1 - w_i) p_{bg}(x)$$

Classifier gives likelihood ratio

$$R_{\text{mixed}} = \frac{w_1 R_{\text{optimal}}(x) + (1 - w_1)}{w_2 R_{\text{optimal}}(x) + (1 - w_2)}$$

- Monotonic function
 - → optimal on mixed = optimal on pure sample



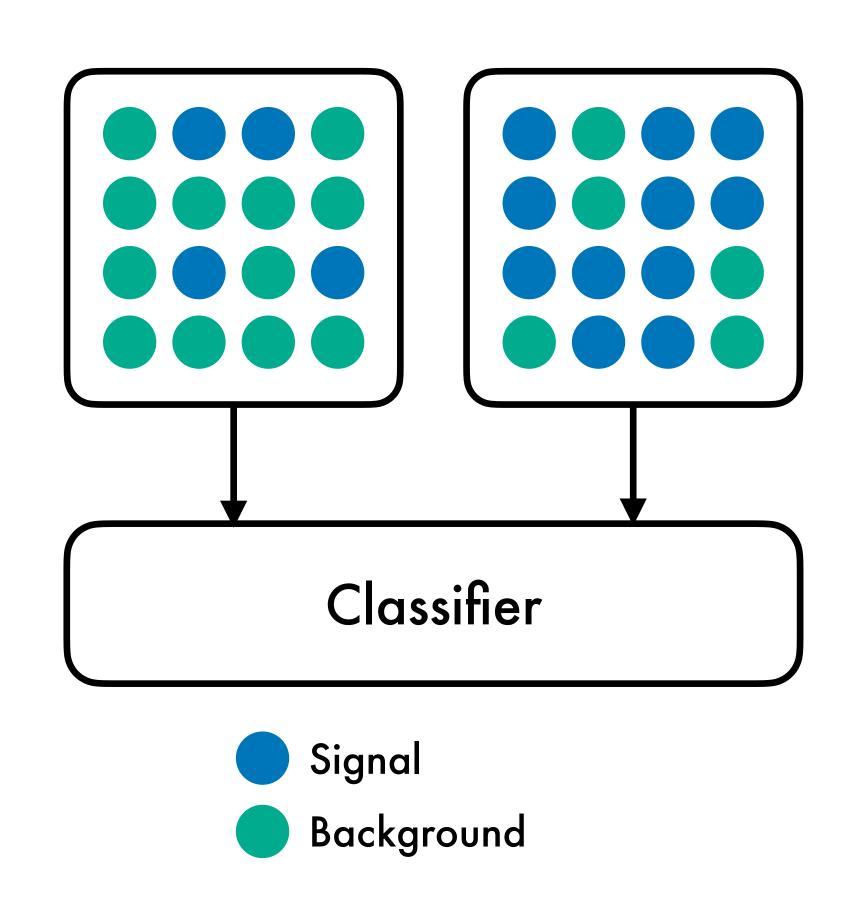
Two mixed datasets with signal fractions w_i

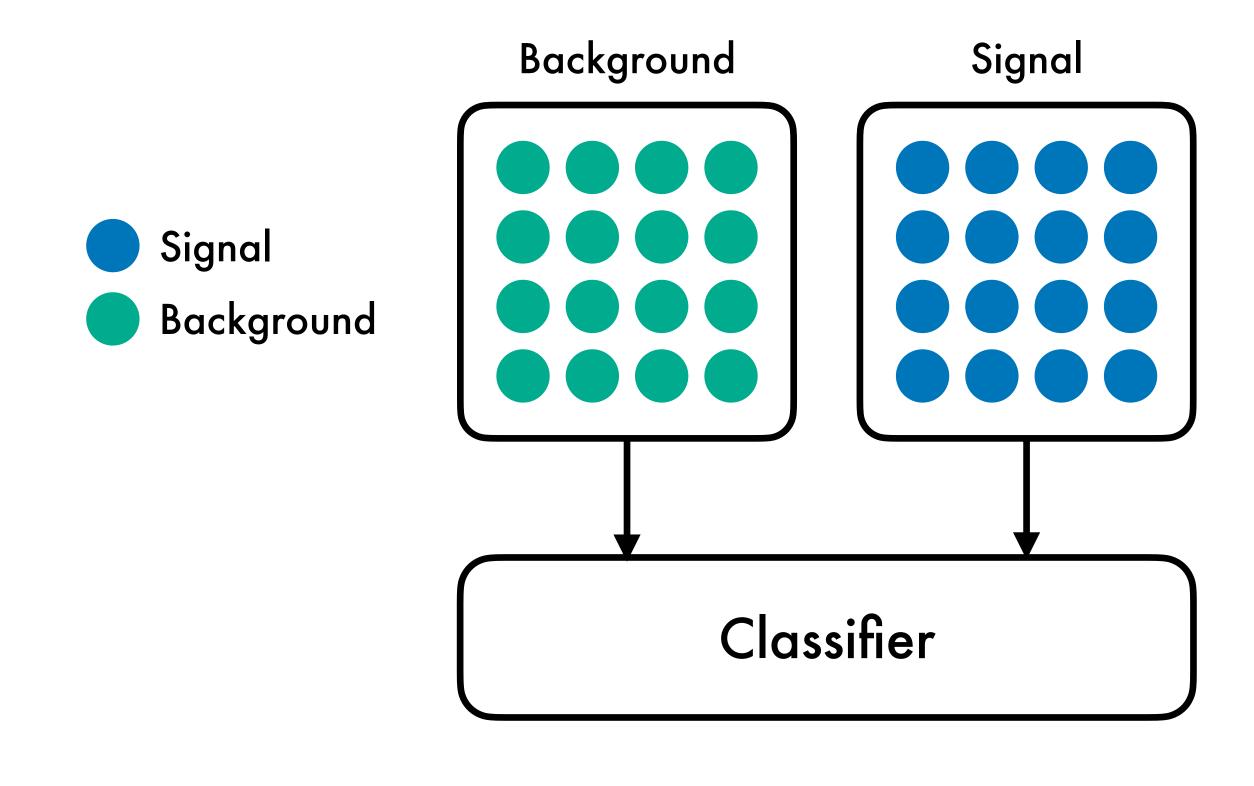
$$p_i(x) = w_i p_{sig}(x) + (1 - w_i) p_{bg}(x)$$

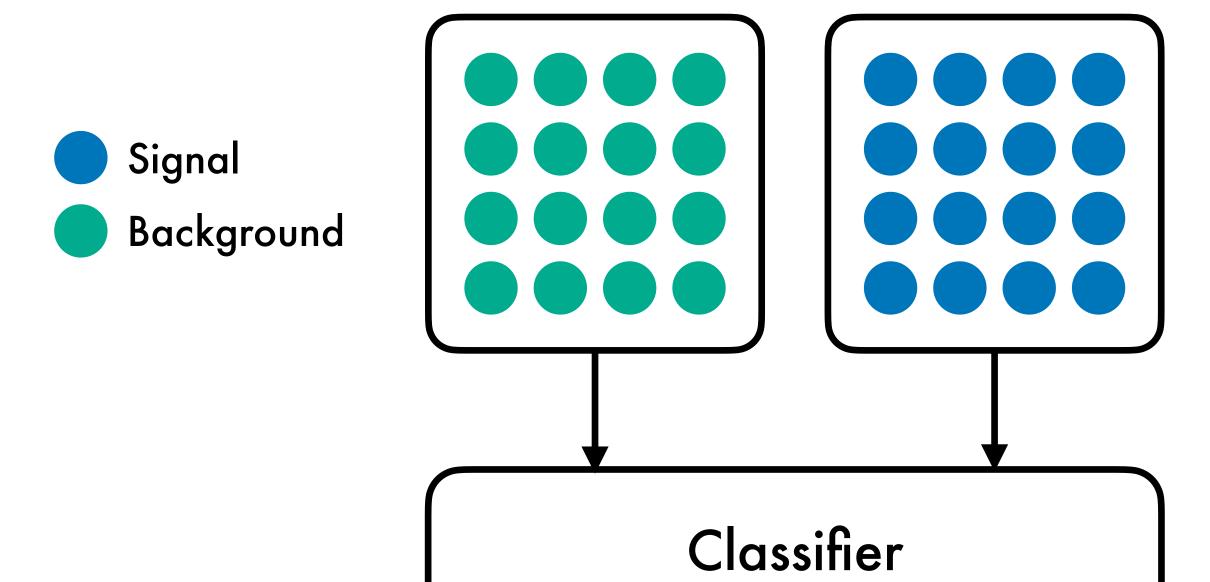
Classifier gives likelihood ratio

$$R_{\text{mixed}} = \frac{w_1 R_{\text{optimal}}(x) + (1 - w_1)}{w_2 R_{\text{optimal}}(x) + (1 - w_2)}$$

- Monotonic function
 - → optimal on mixed = optimal on pure sample
- → Basis of weak supervised classification



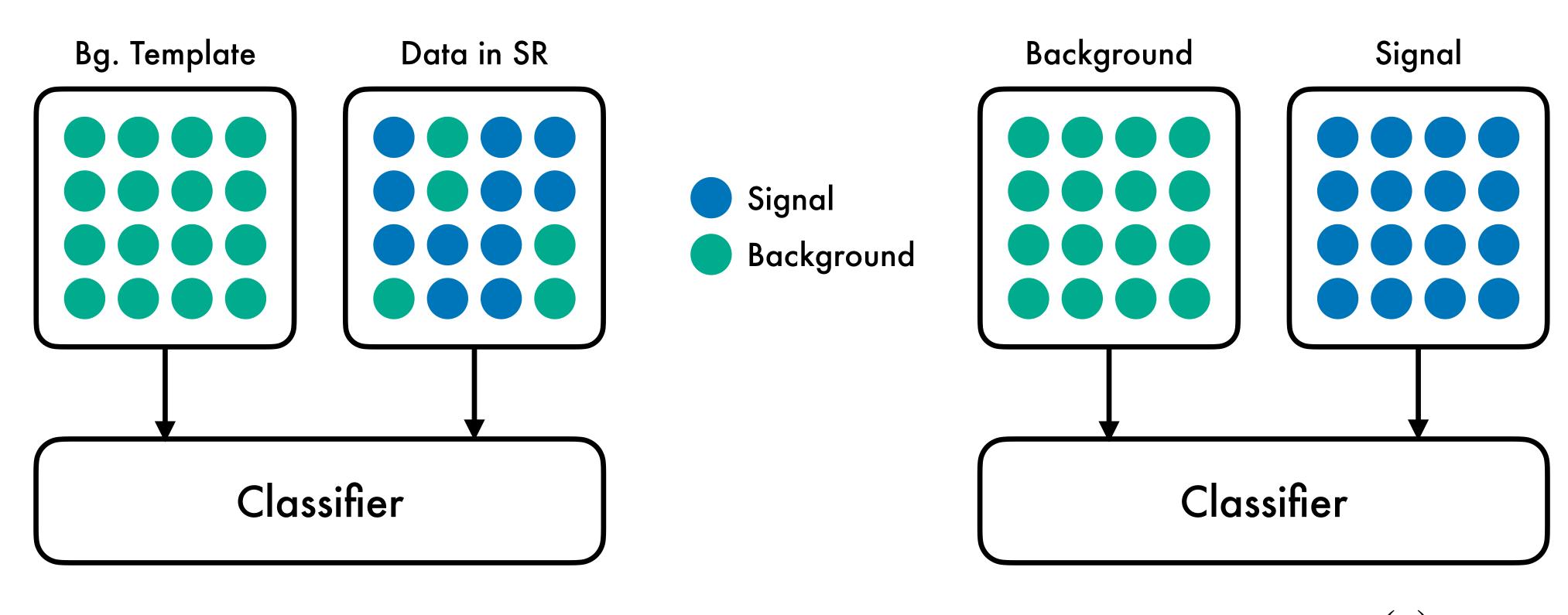




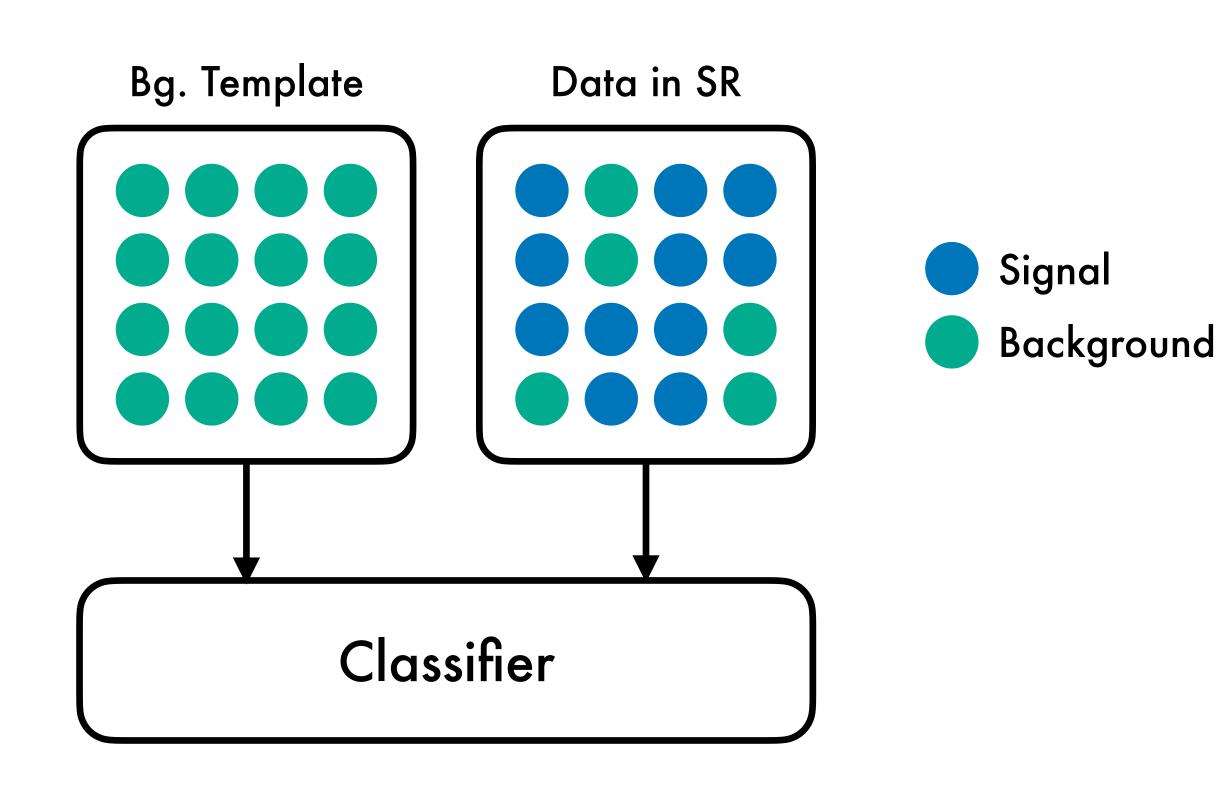
Background

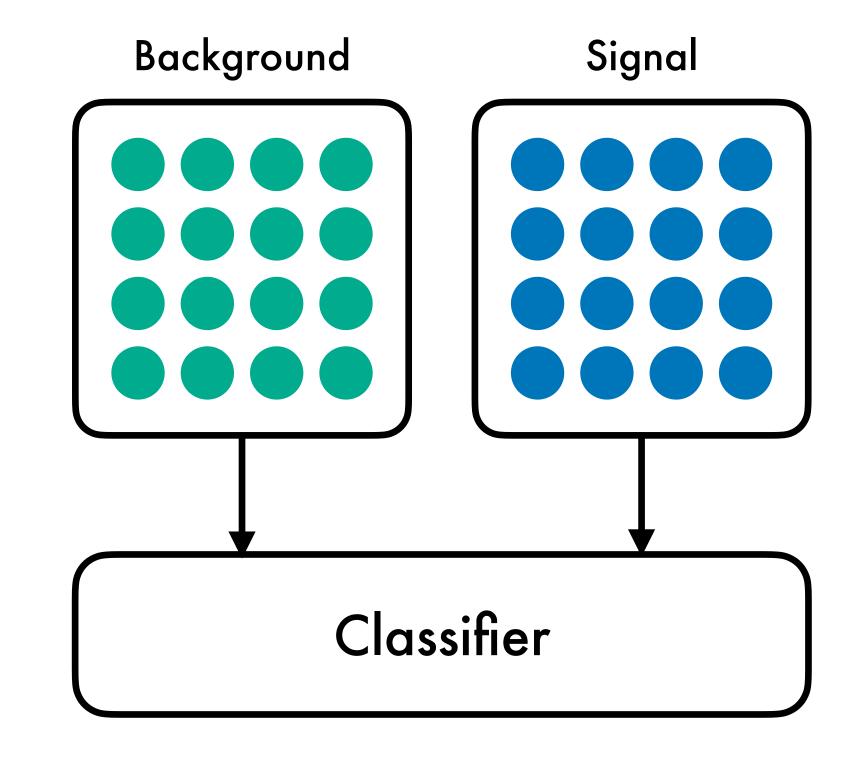
$$R_{\text{supervised}} = \frac{p_{\text{sig}}(x)}{p_{\text{bg}}(x)}$$

Signal



$$R_{\text{supervised}} = \frac{p_{\text{sig}}(x)}{p_{\text{bg}}(x)}$$



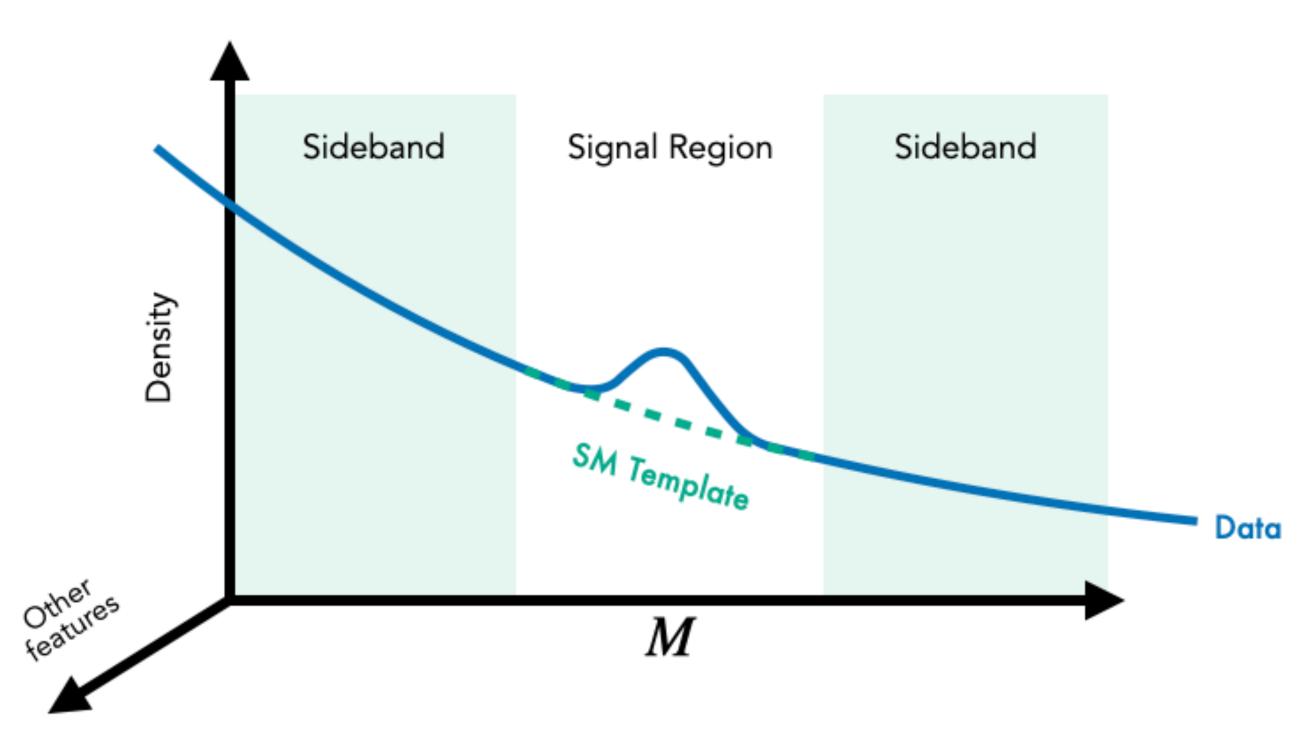


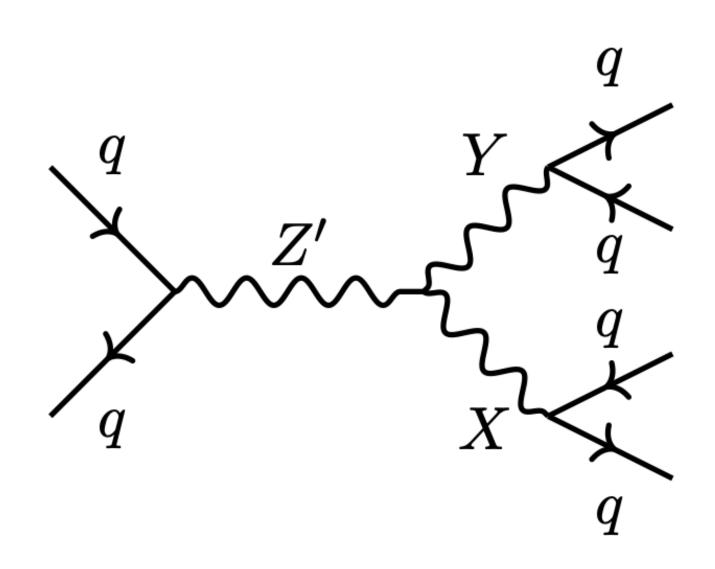
$$R_{\text{IAD}} = \frac{p_{\text{data}}(x)}{p_{\text{bg}}(x)}$$
$$= \epsilon R_{\text{supervised}} + (1 - \epsilon)$$

$$R_{\text{supervised}} = \frac{p_{\text{sig}}(x)}{p_{\text{bg}}(x)}$$



LHC Olympics

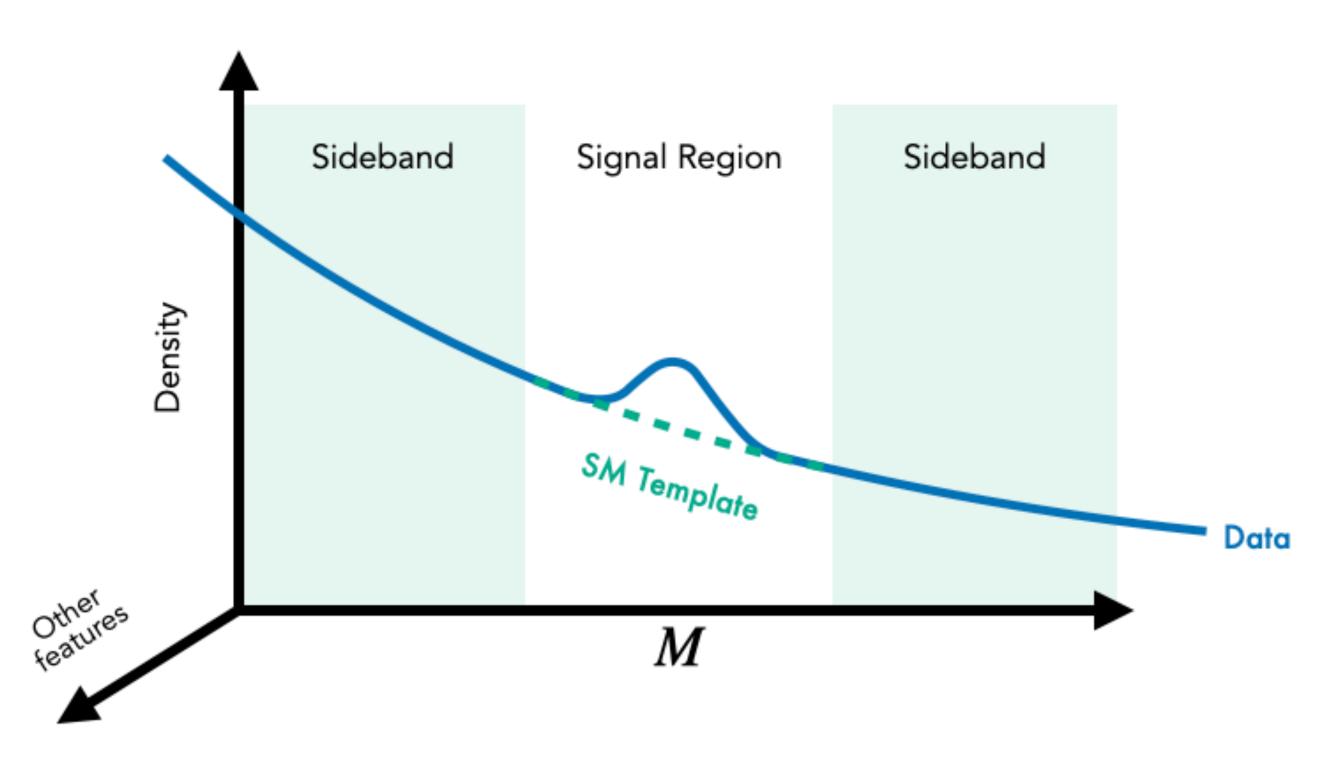


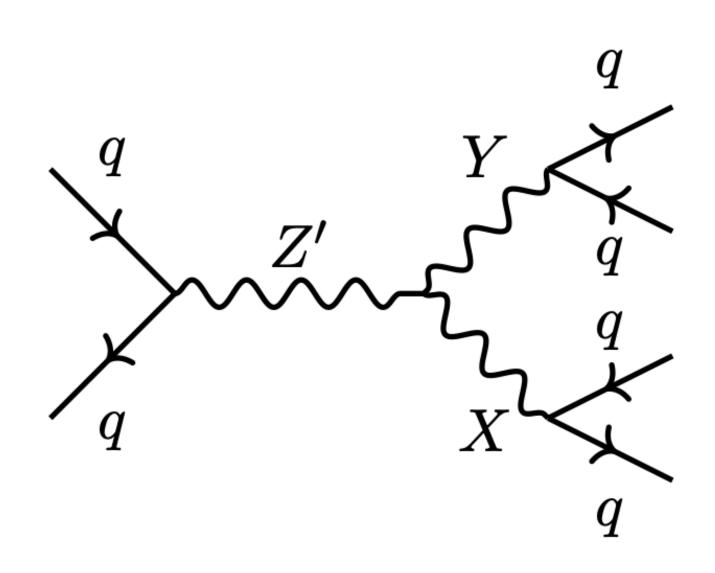


Resonant observable

$$m_{jj}=m_{Z'}>m_X,m_Y$$

LHC Olympics





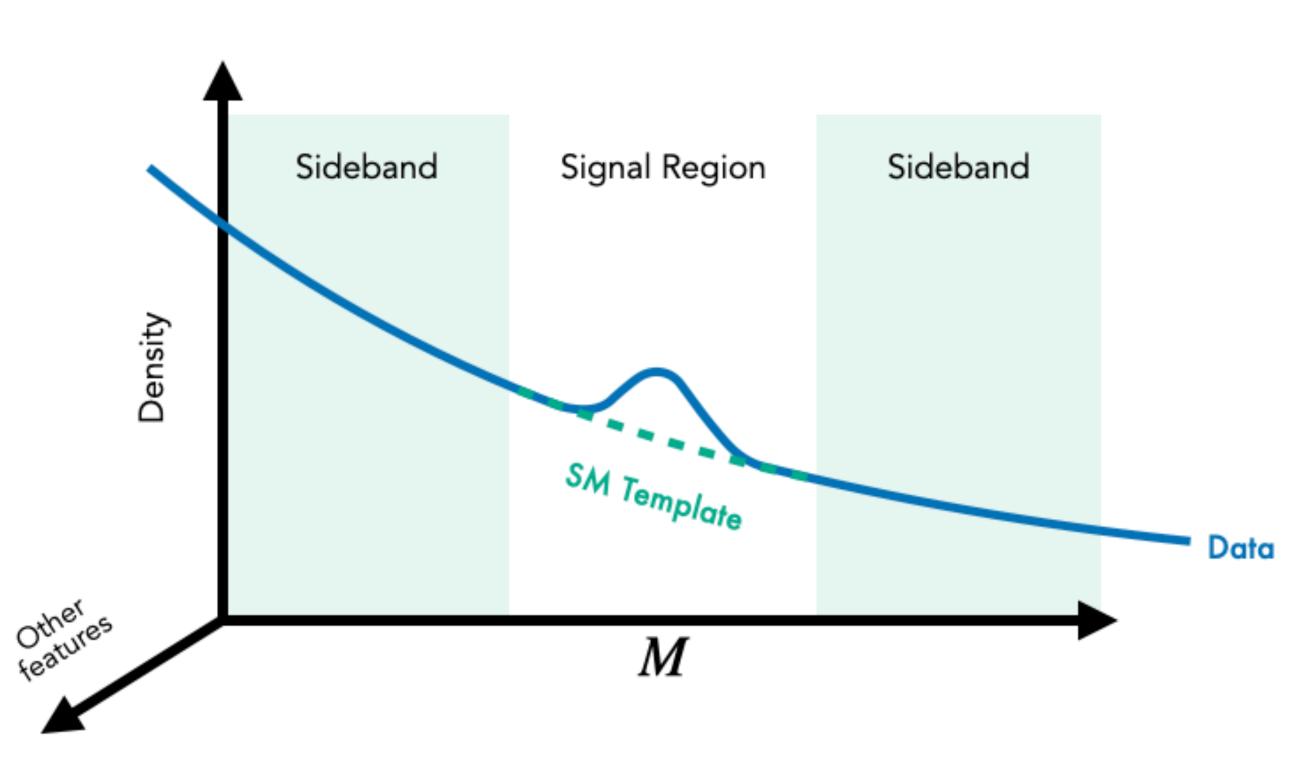
Resonant observable

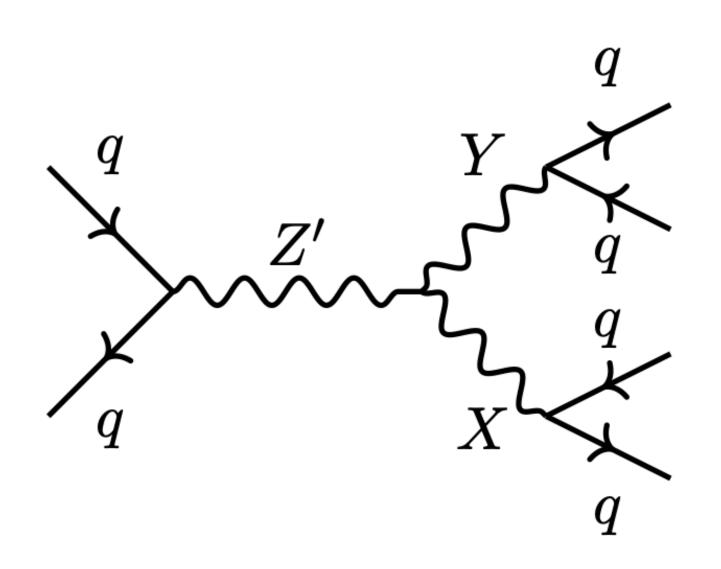
$$m_{jj} = m_{Z'} > m_X, m_Y$$

Other

features
$$x = \{m_X, m_Y, \Delta m_j, \tau_{21}^{(1)}, \tau_{21}^{(2)}\}\$$

LHC Olympics





Resonant observable

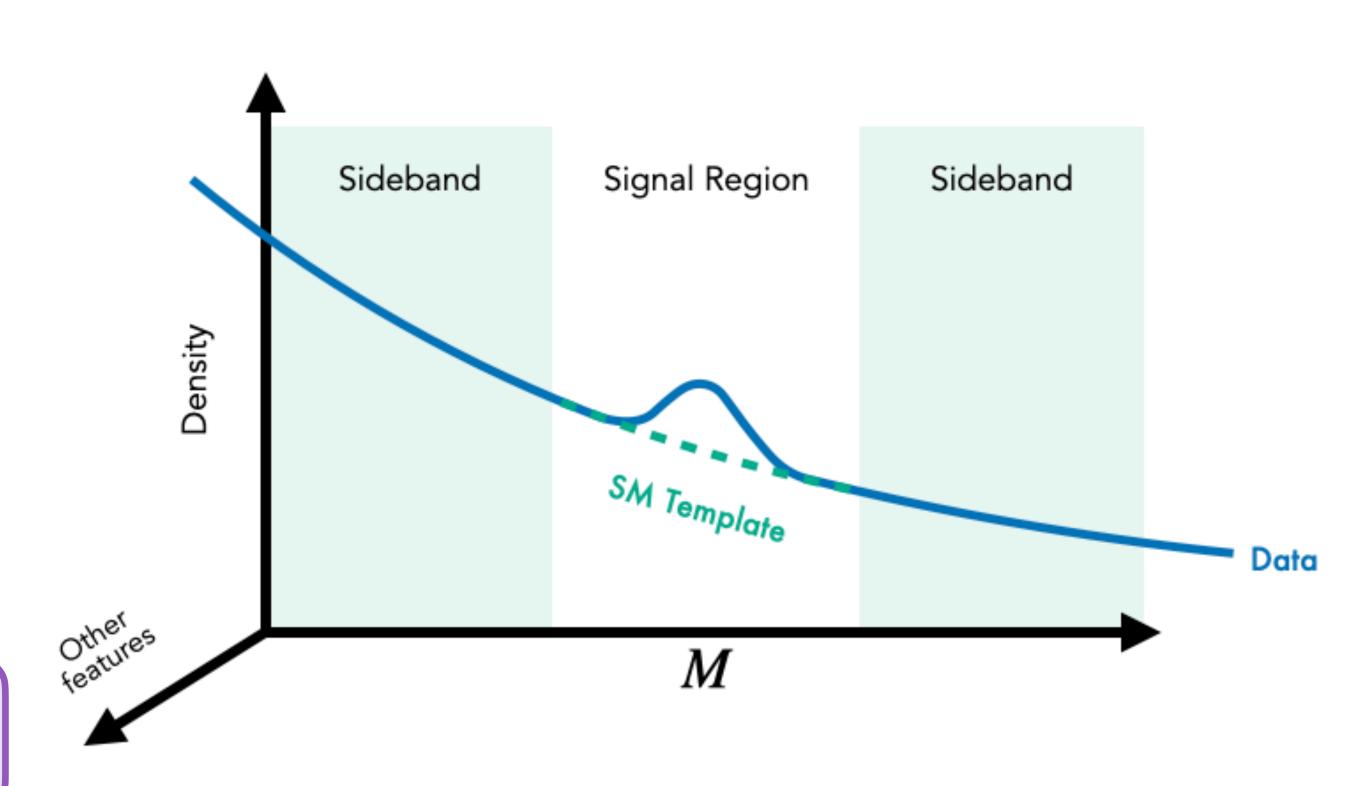
$$m_{jj} = m_{Z'} > m_X, m_Y$$

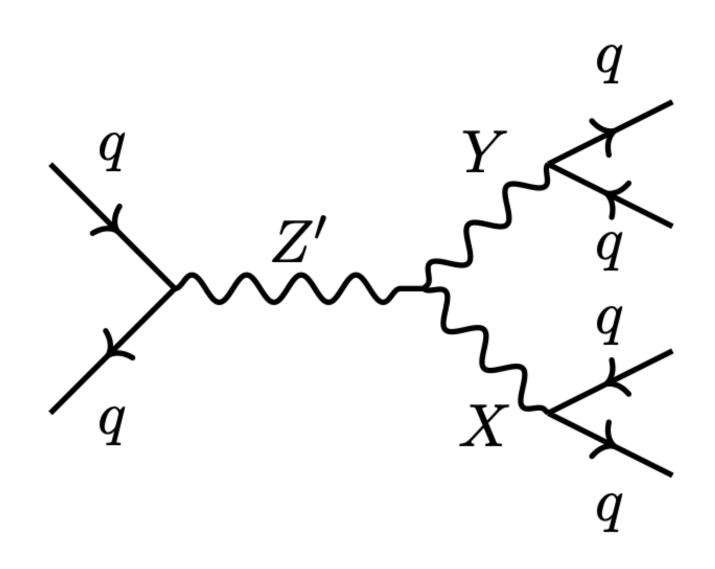
Other

features
$$x = \{m_X, m_Y, \Delta m_j, \tau_{21}^{(1)}, \tau_{21}^{(2)}\}\$$

$$p_{\text{bg}}(x \mid m_{jj} \in \text{SR}) \approx p_{\text{bg}}(x \mid m_{jj} \in \text{SB}) \approx p_{\text{bg}}(x)$$

LHC Olympics





Resonant observable

$$m_{jj} = m_{Z'} > m_X, m_Y$$

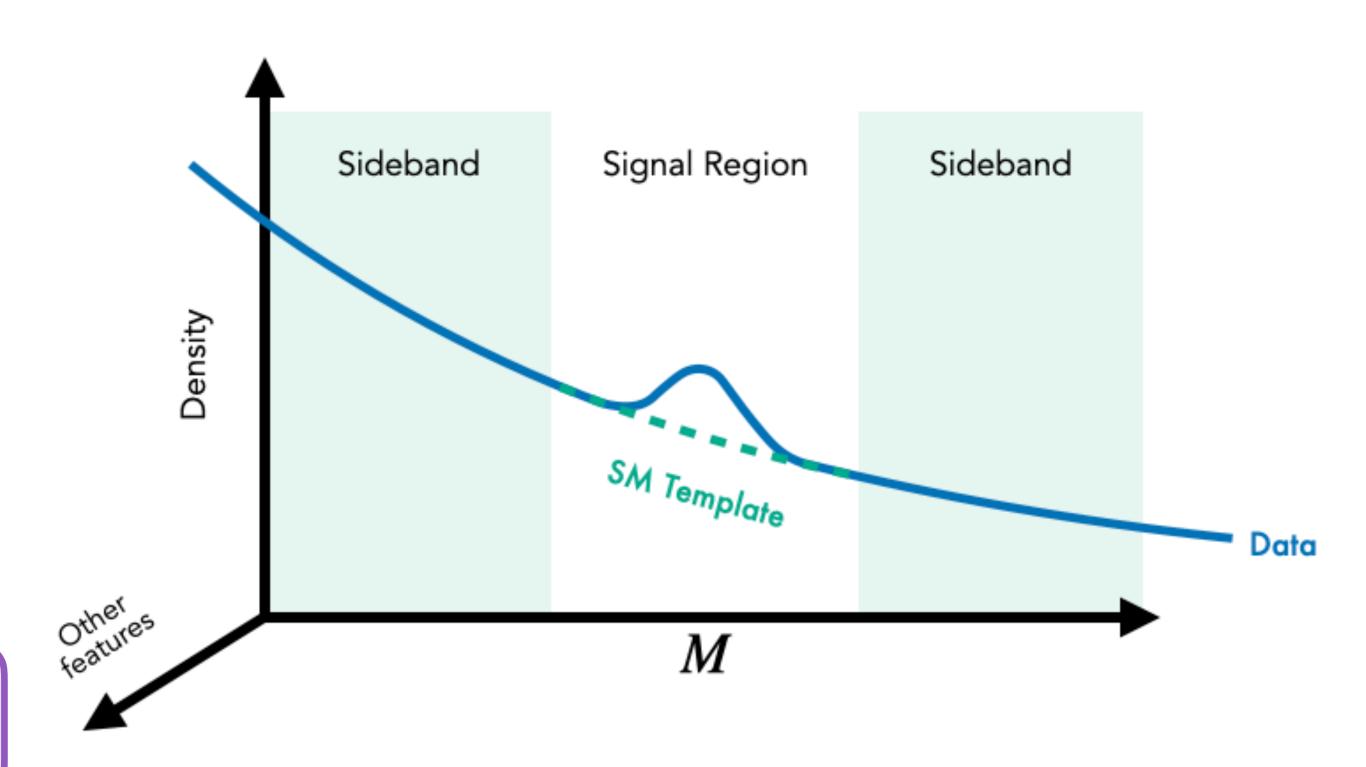
Other

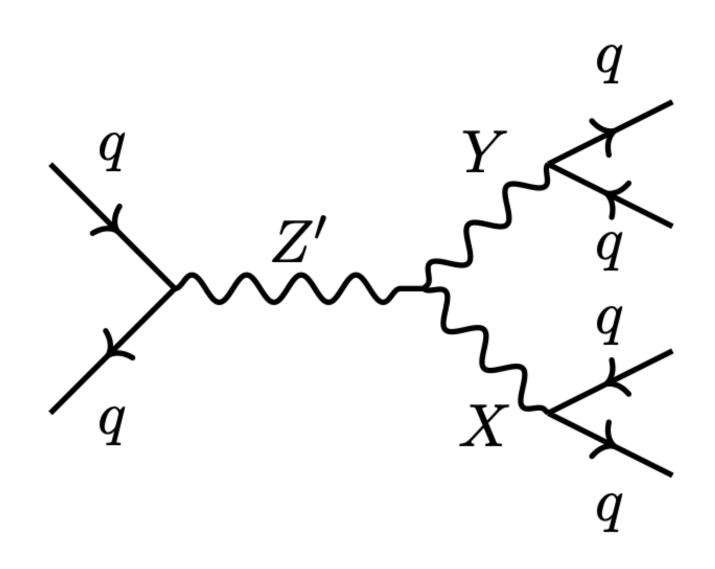
features
$$x = \{m_X, m_Y, \Delta m_j, \tau_{21}^{(1)}, \tau_{21}^{(2)}\}\$$

$$p_{\mathrm{bg}}(x \mid m_{jj} \in \mathrm{SR}) \approx p_{\mathrm{bg}}(x \mid m_{jj} \in \mathrm{SB}) \approx p_{\mathrm{bg}}(x)$$

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$





Resonant observable

$$m_{jj} = m_{Z'} > m_X, m_Y$$

Other

features
$$x = \{m_X, m_Y, \Delta m_j, \tau_{21}^{(1)}, \tau_{21}^{(2)}\}\$$

$$p_{\mathrm{bg}}(x \mid m_{jj} \in \mathrm{SR}) \approx p_{\mathrm{bg}}(x \mid m_{jj} \in \mathrm{SB}) \approx p_{\mathrm{bg}}(x)$$

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})} \approx \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SR})}$$
Sideband Signal Region Sideband

Date

M

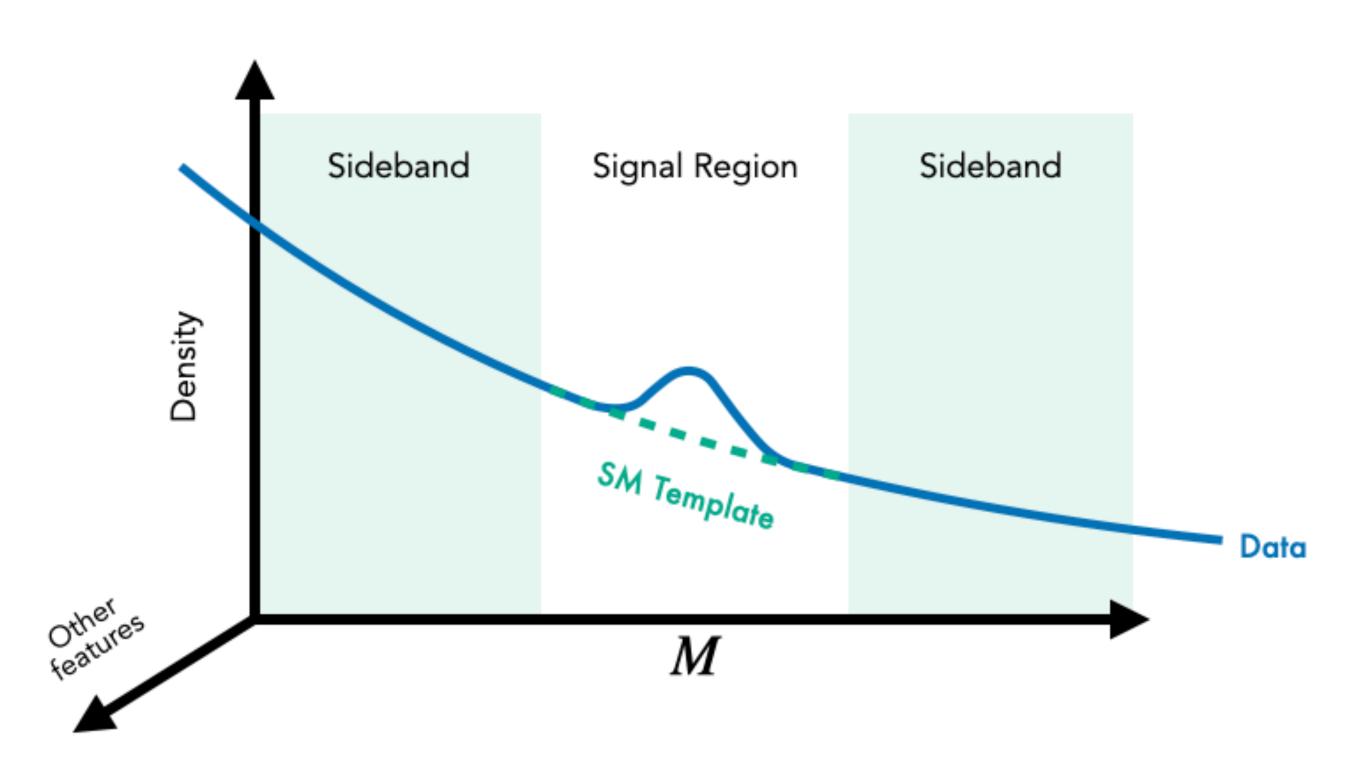
Can we do better?

Example II

Anomaly detection with Density Estimation (ANODE)

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

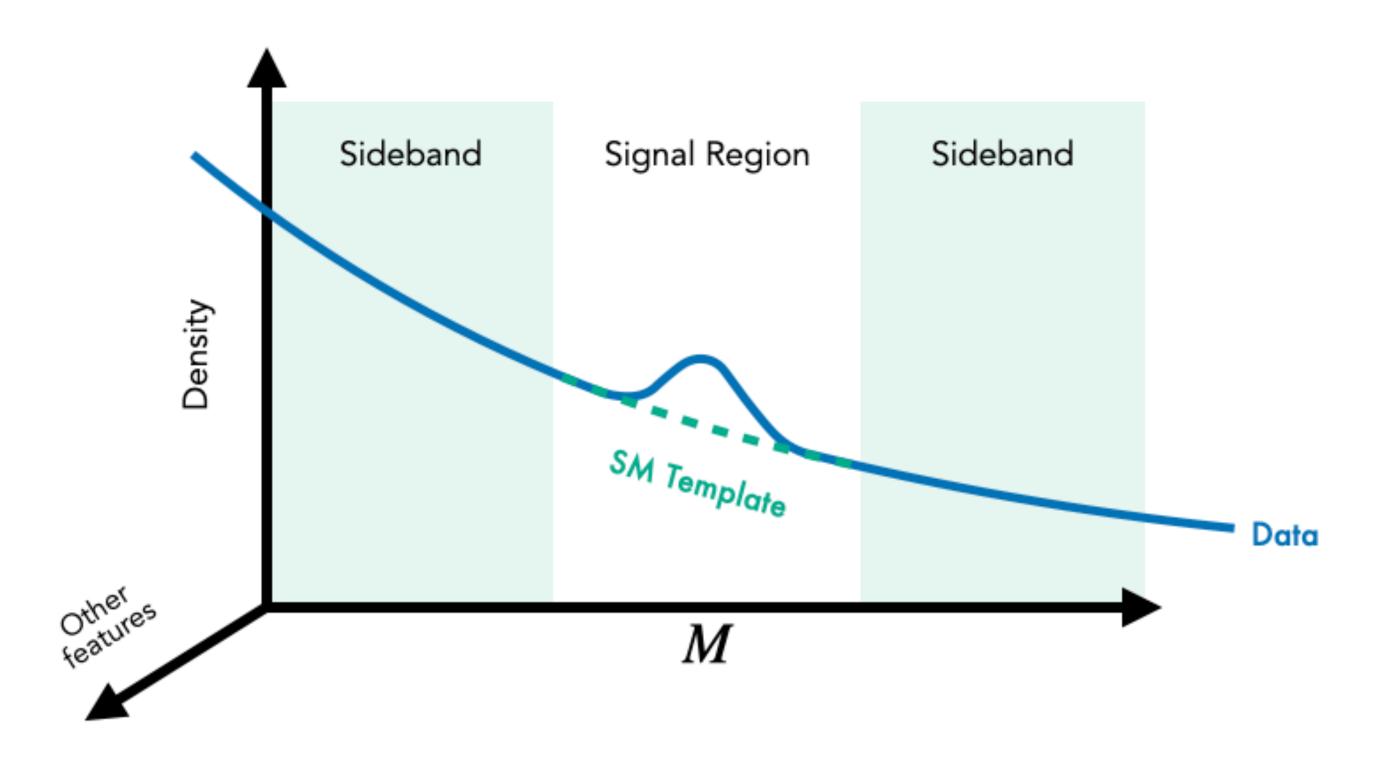


CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$

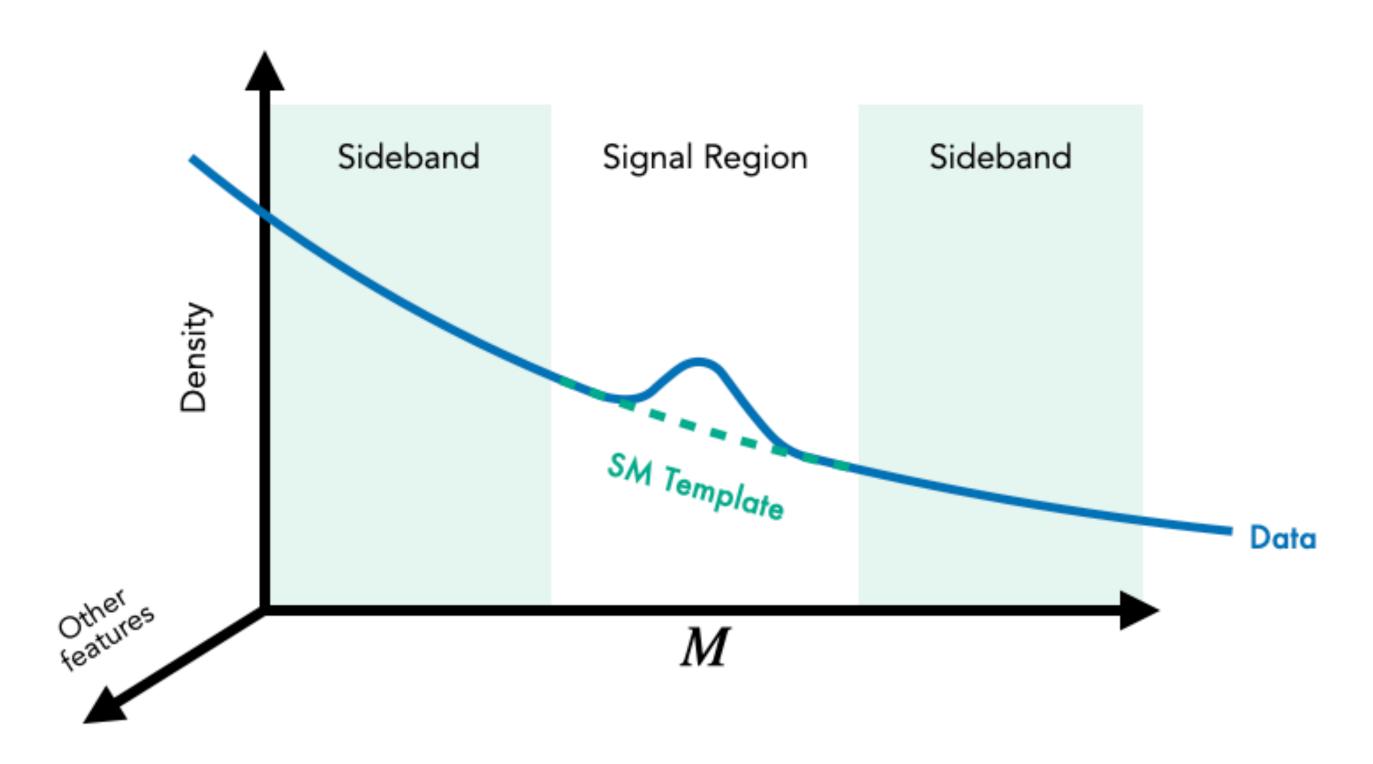


CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x | \text{SR})}{p_{\text{bg}}(x | \text{SB})}$$

NF
$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$

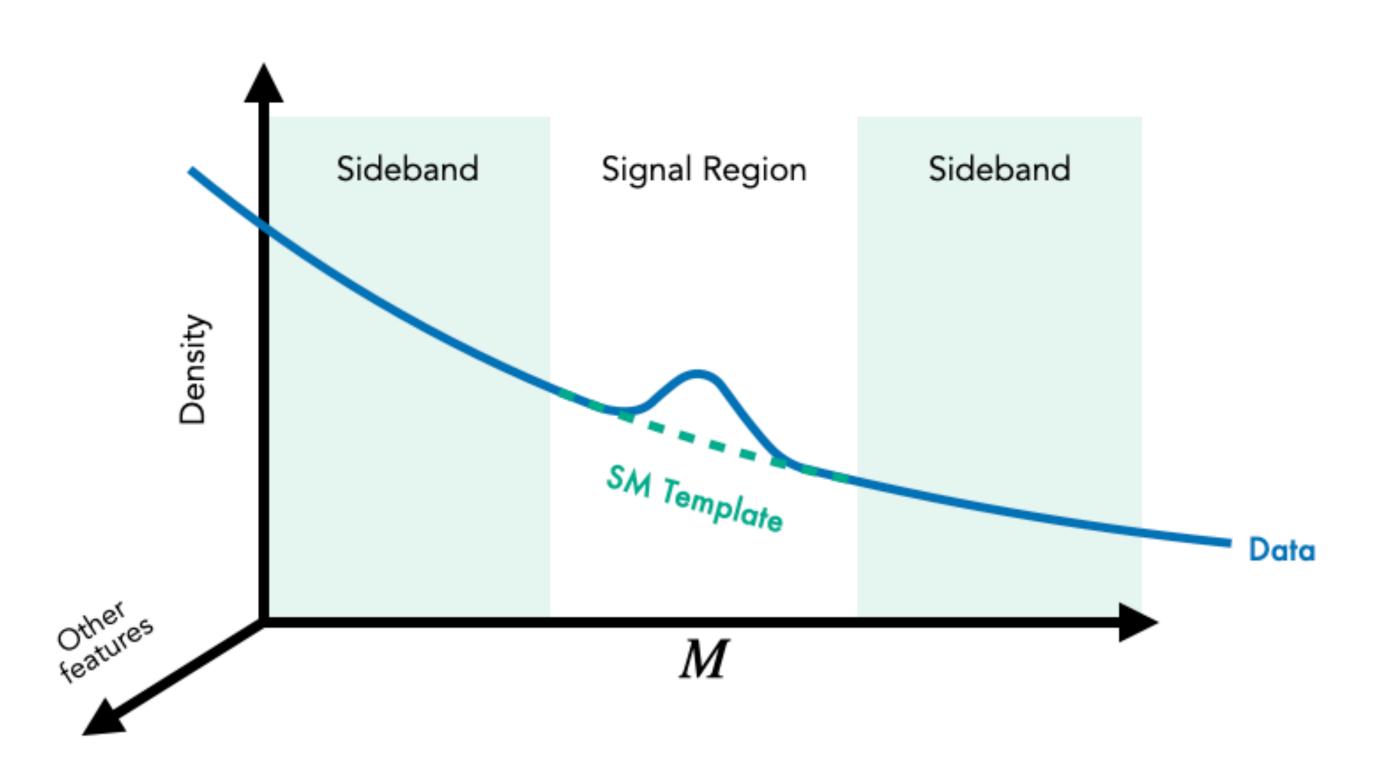


CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

$$p_{\omega_0}(x \mid m) \simeq p_{\mathrm{bg}}(x \mid m) \quad \text{Trained in } m \in \mathrm{SB}$$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$
 Trained in $m \in SR$

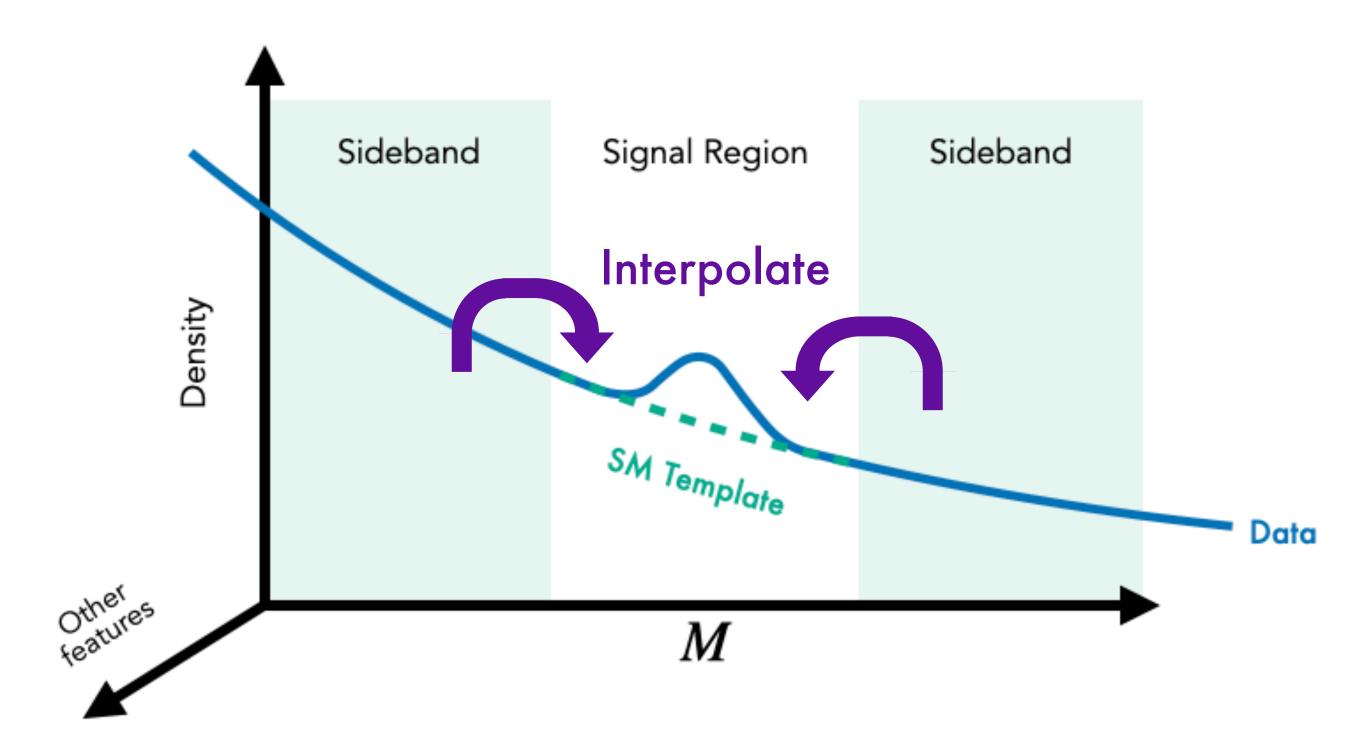


CWoLa Likelihood estimate

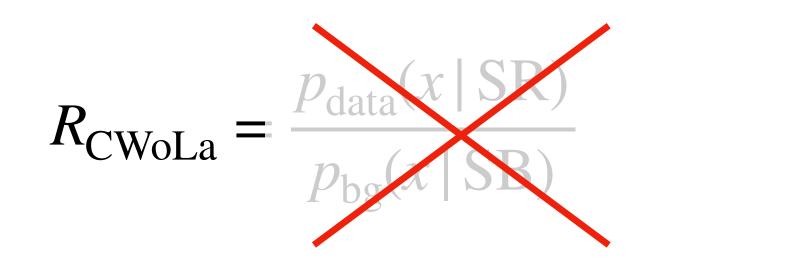
$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

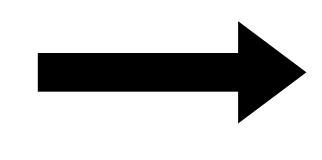
$$p_{\omega_0}(x \mid m) \simeq p_{\mathrm{bg}}(x \mid m) \quad \text{Trained in } m \in \mathrm{SB}$$

$$p_{\omega_1}(x \mid m) \simeq p_{\mathrm{data}}(x \mid m) \quad \text{Trained in } m \in \mathrm{SR}$$



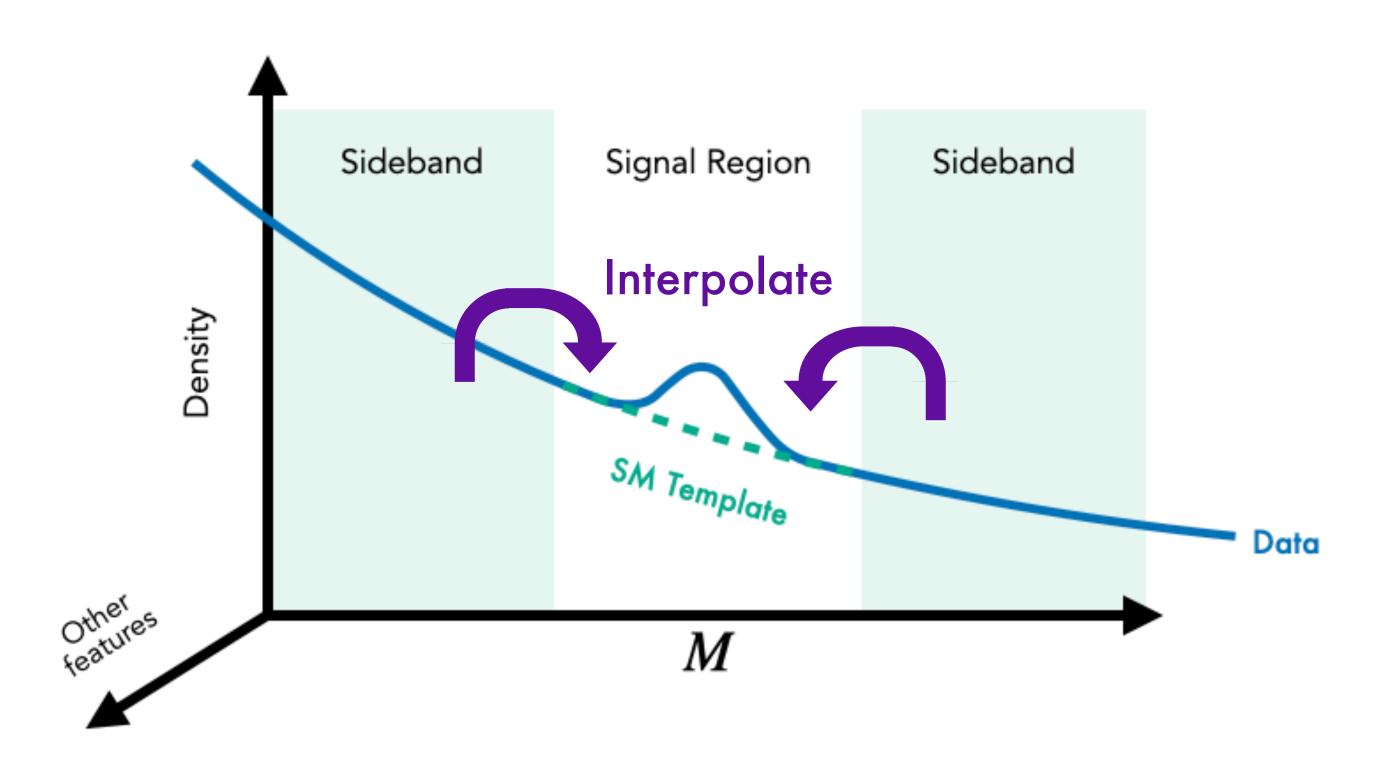
CWoLa Likelihood estimate



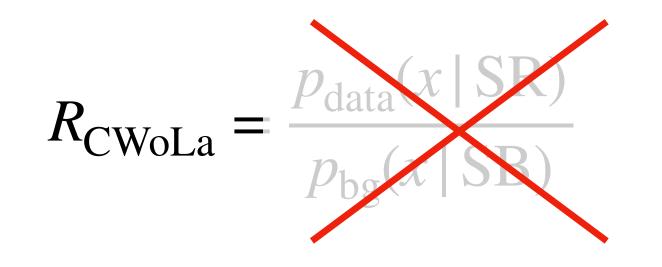


$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

$$p_{\omega_1}(x \mid m) \simeq p_{\mathrm{data}}(x \mid m)$$
 Trained in $m \in \mathrm{SR}$



CWoLa Likelihood estimate



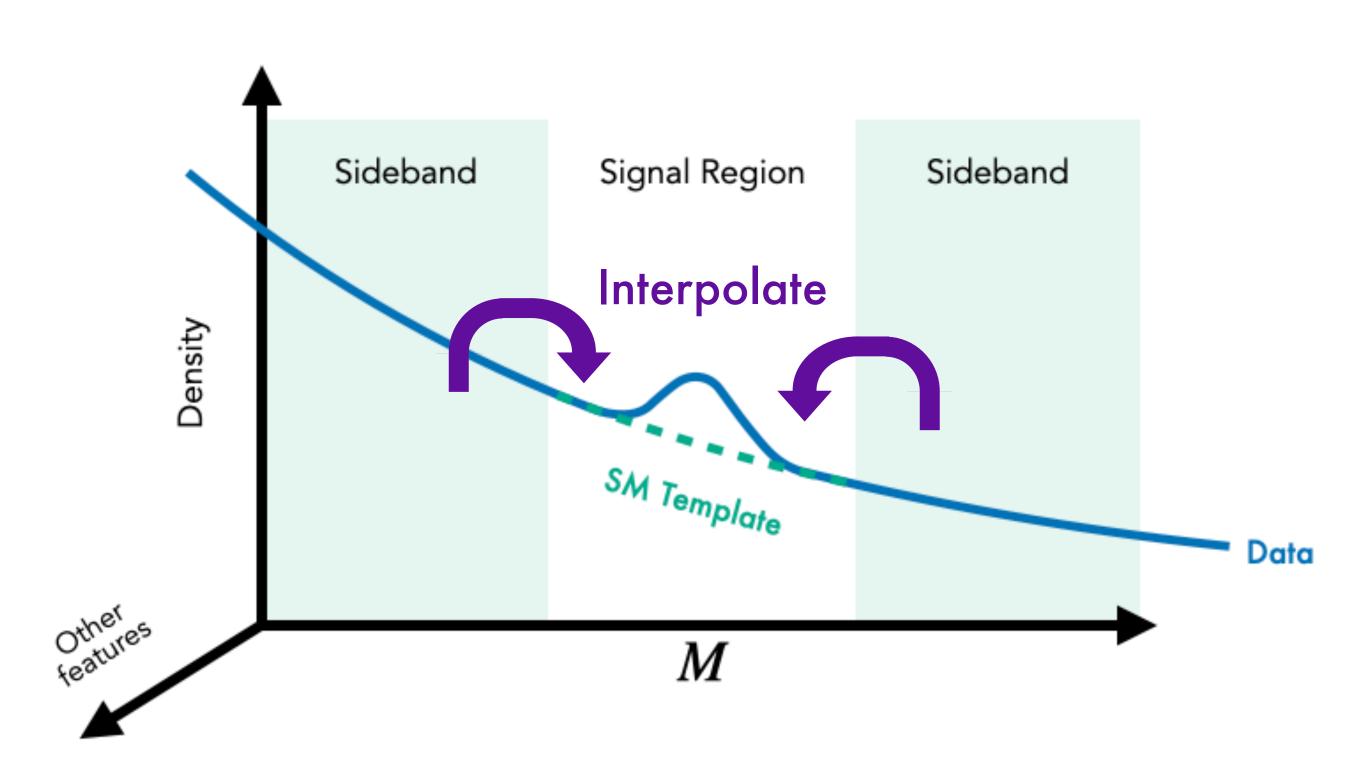
The ANODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$
 Trained in $m \in SR$

ANODE Likelihood estimate

$$R_{\text{ANODE}} = \frac{p_{\omega_1}(x \mid \text{SR})}{p_{\omega_0}(x \mid \text{SR})} \simeq \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SR})}$$



Are we already happy?

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

[1902.02634]

Pros and cons:

ANODE Likelihood estimate

$$R_{\text{ANODE}} = \frac{p_{\omega_1}(x \mid \text{SR})}{p_{\omega_0}(x \mid \text{SR})}$$

Pros and cons:

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

Pros and cons:

Classification is easy and precise

ANODE Likelihood estimate

$$R_{\text{ANODE}} = \frac{p_{\omega_1}(x \mid \text{SR})}{p_{\omega_0}(x \mid \text{SR})}$$

Pros and cons:

[1902.02634]

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

Pros and cons:

- Classification is easy and precise
- $igorup Sensitive to correlations between <math>m_{jj}$ and other features x

[1902.02634]

ANODE Likelihood estimate

$$R_{\text{ANODE}} = \frac{p_{\omega_1}(x \mid \text{SR})}{p_{\omega_0}(x \mid \text{SR})}$$

Pros and cons:

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

Pros and cons:

- Classification is easy and precise
- $igoplus Sensitive to correlations between <math>m_{jj}$ and other features x

[1902.02634]

ANODE Likelihood estimate

$$R_{\text{ANODE}} = \frac{p_{\omega_1}(x \mid \text{SR})}{p_{\omega_0}(x \mid \text{SR})}$$

Pros and cons:

Robust against correlations

CWoLa Likelihood estimate

$$R_{\text{CWoLa}} = \frac{p_{\text{data}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SB})}$$

Pros and cons:

- Classification is easy and precise
- $igorup Sensitive to correlations between <math>m_{jj}$ and other features x

[1902.02634]

ANODE Likelihood estimate

$$R_{\text{ANODE}} = \frac{p_{\omega_1}(x \mid \text{SR})}{p_{\omega_0}(x \mid \text{SR})}$$

Pros and cons:

- Robust against correlations
- Less powerful and sensitive than classification

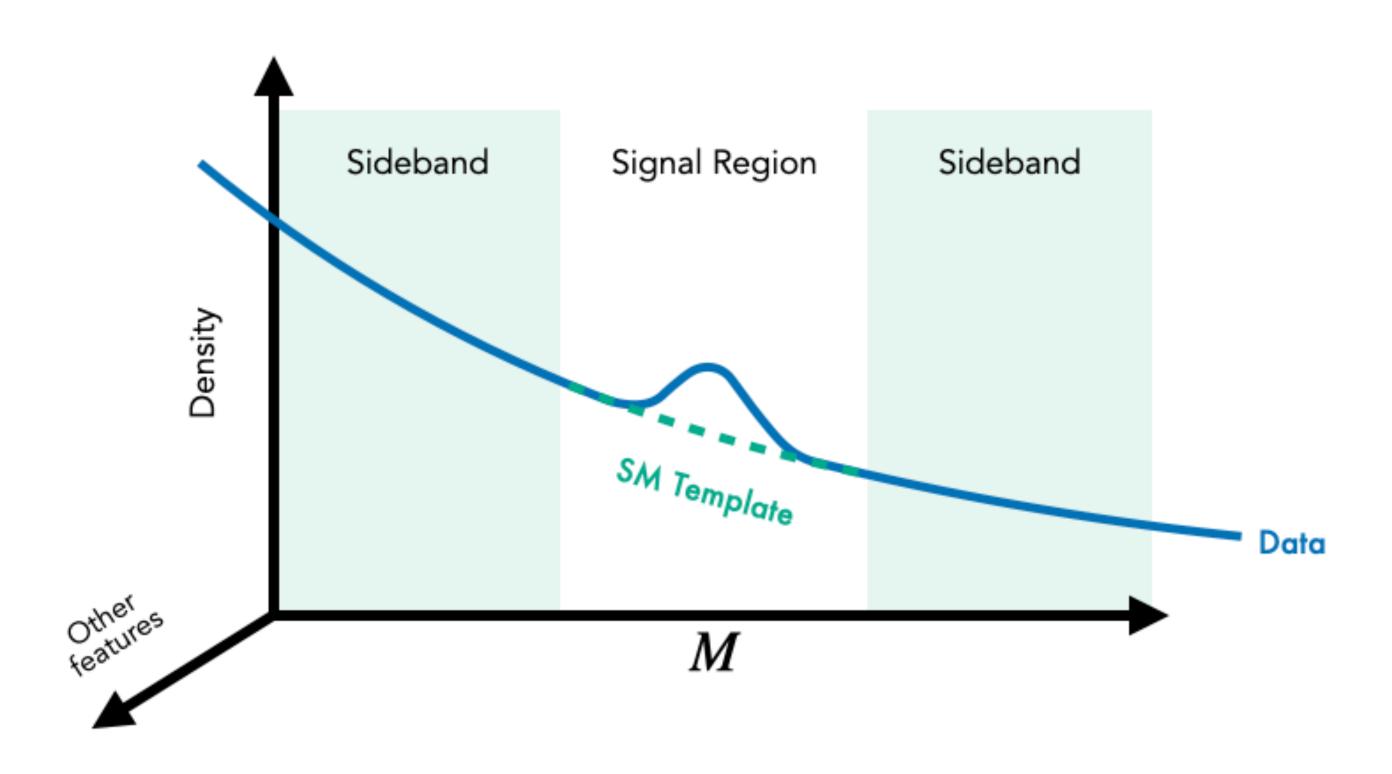
Can we get the best of both worlds?

Example III

Classifying Anomalies Through Outer Density Estimation (CATHODE)

The CATHODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

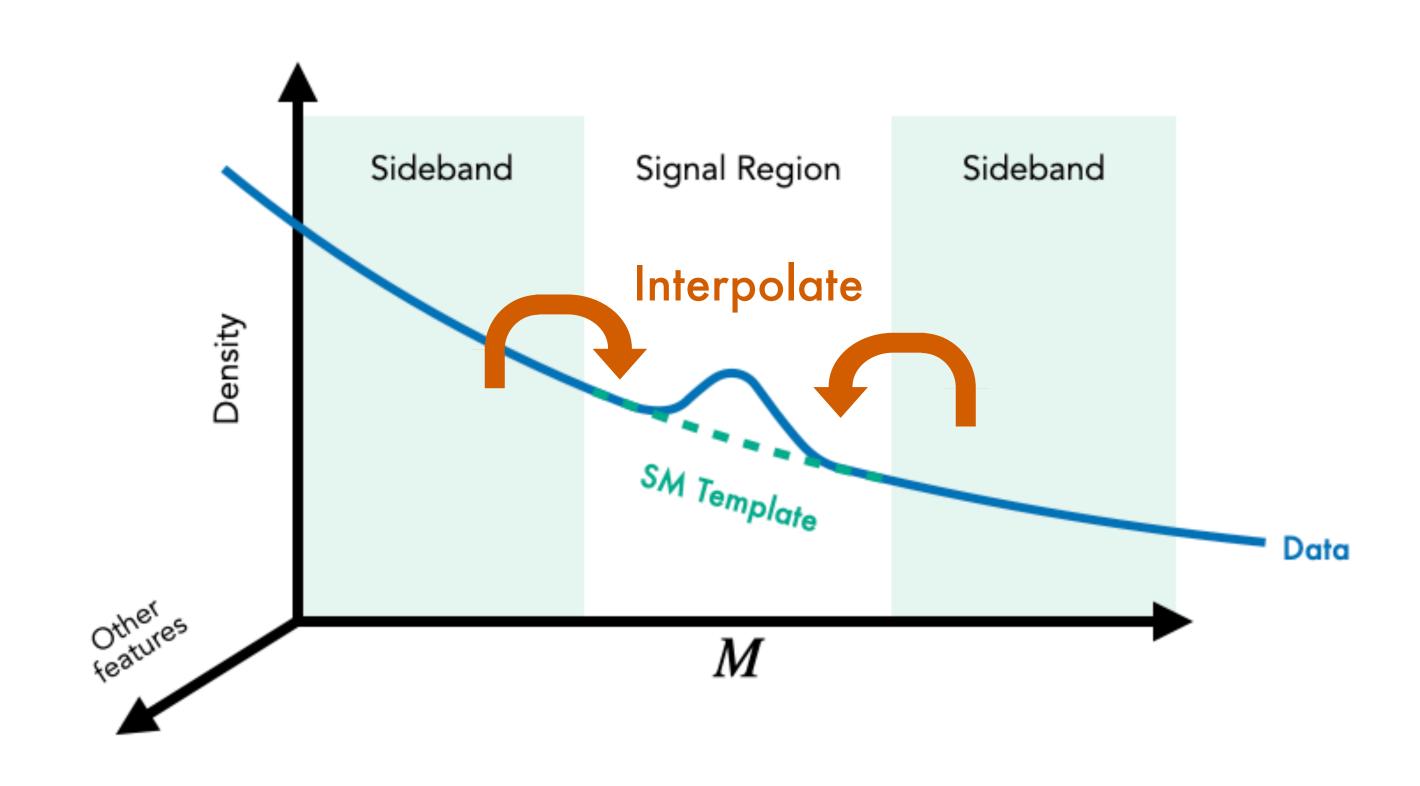


The CATHODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

1. Interpolate SM background template to SR and sample:

$$\hat{x}_{\text{bg}} \sim p_{\omega_0}(x \mid m \in \text{SR}) \simeq p_{\text{bg}}(x \mid \text{SR})$$



The CATHODE method

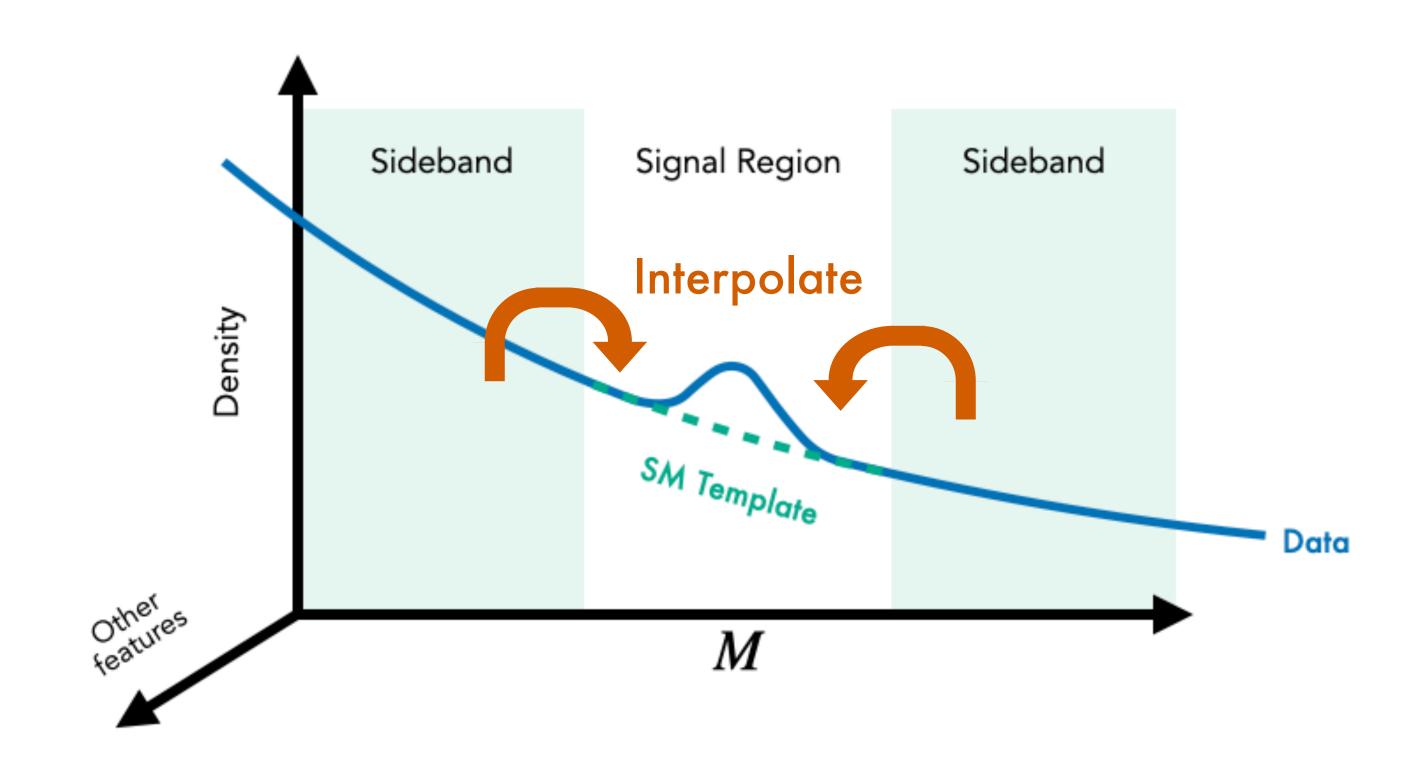
$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$

1. Interpolate SM background template to SR and sample:

$$\hat{x}_{\text{bg}} \sim p_{\omega_0}(x \mid m \in \text{SR}) \simeq p_{\text{bg}}(x \mid \text{SR})$$

2. Then train classifier between $\hat{x}_{\rm bg}$ and $x \sim p_{\rm data}(x \,|\, {\rm SR})$ as in CWoLA



The CATHODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

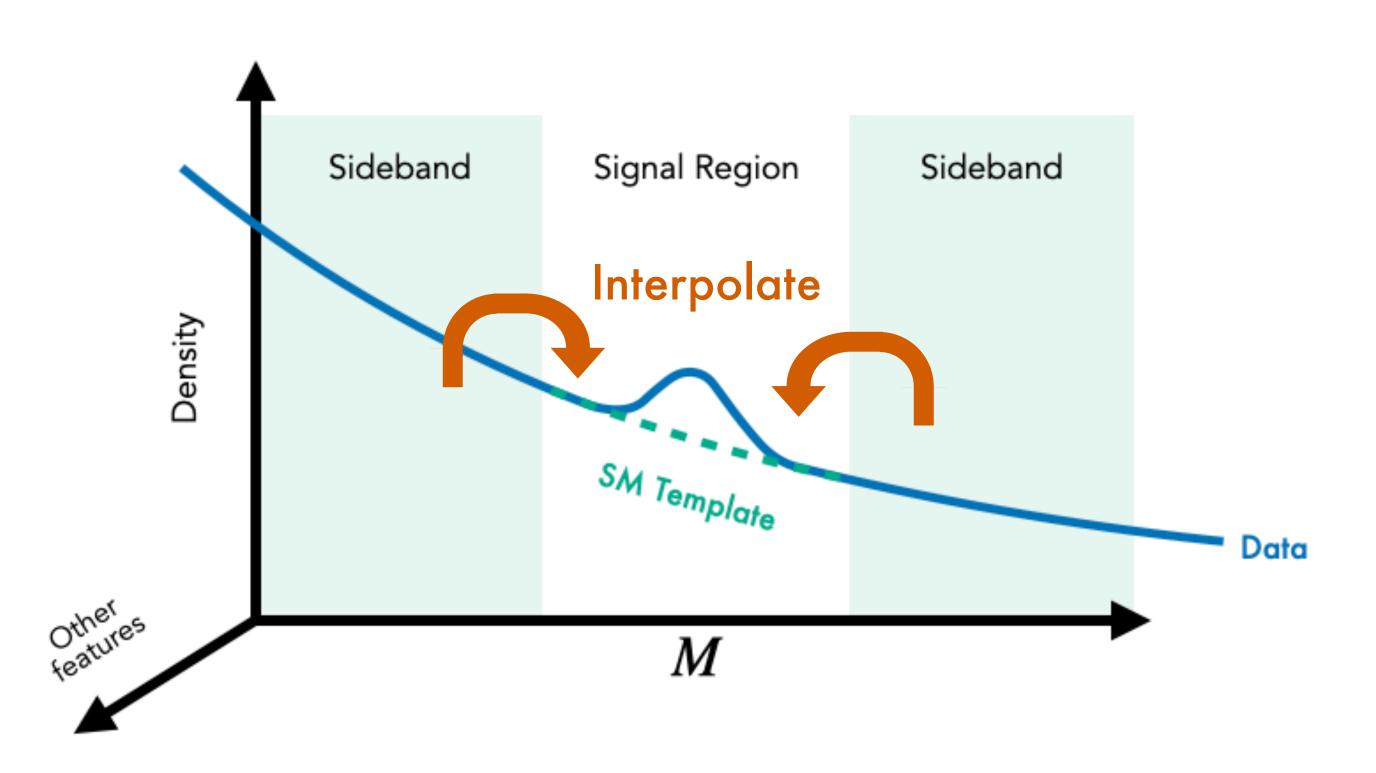
1. Interpolate SM background template to SR and sample:

$$\hat{x}_{\text{bg}} \sim p_{\omega_0}(x \mid m \in \text{SR}) \simeq p_{\text{bg}}(x \mid \text{SR})$$

2. Then train classifier between $\hat{x}_{\rm bg}$ and $x \sim p_{\rm data}(x \,|\, {\rm SR})$ as in CWoLA

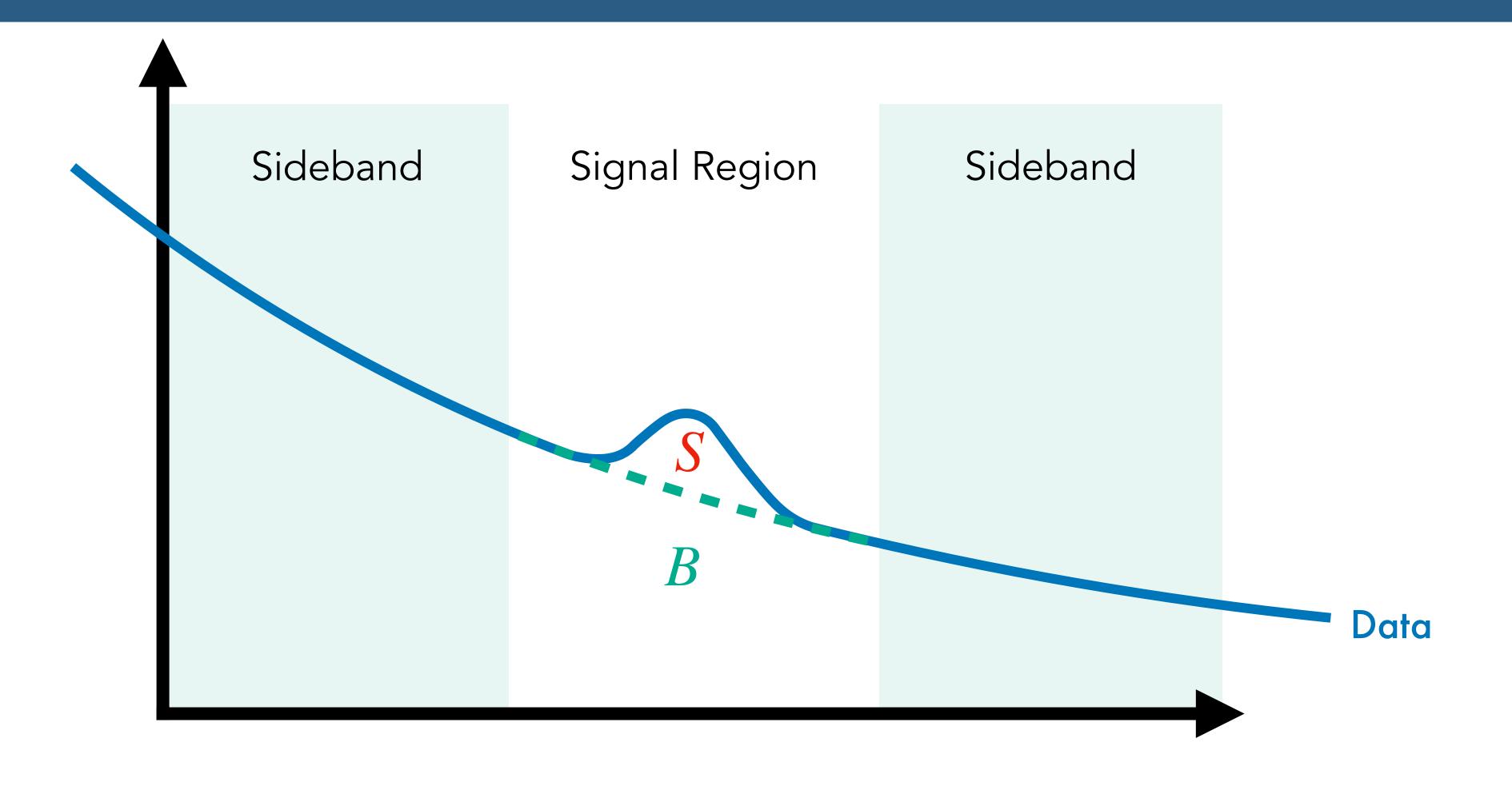
CATHODE Likelihood estimate

$$R_{\text{CATHODE}} = \frac{p_{\text{data}}(x | \text{SR})}{p_{\omega_0}(x | \text{SR})} \simeq \frac{p_{\text{data}}(x | \text{SR})}{p_{\text{bg}}(x | \text{SR})}$$



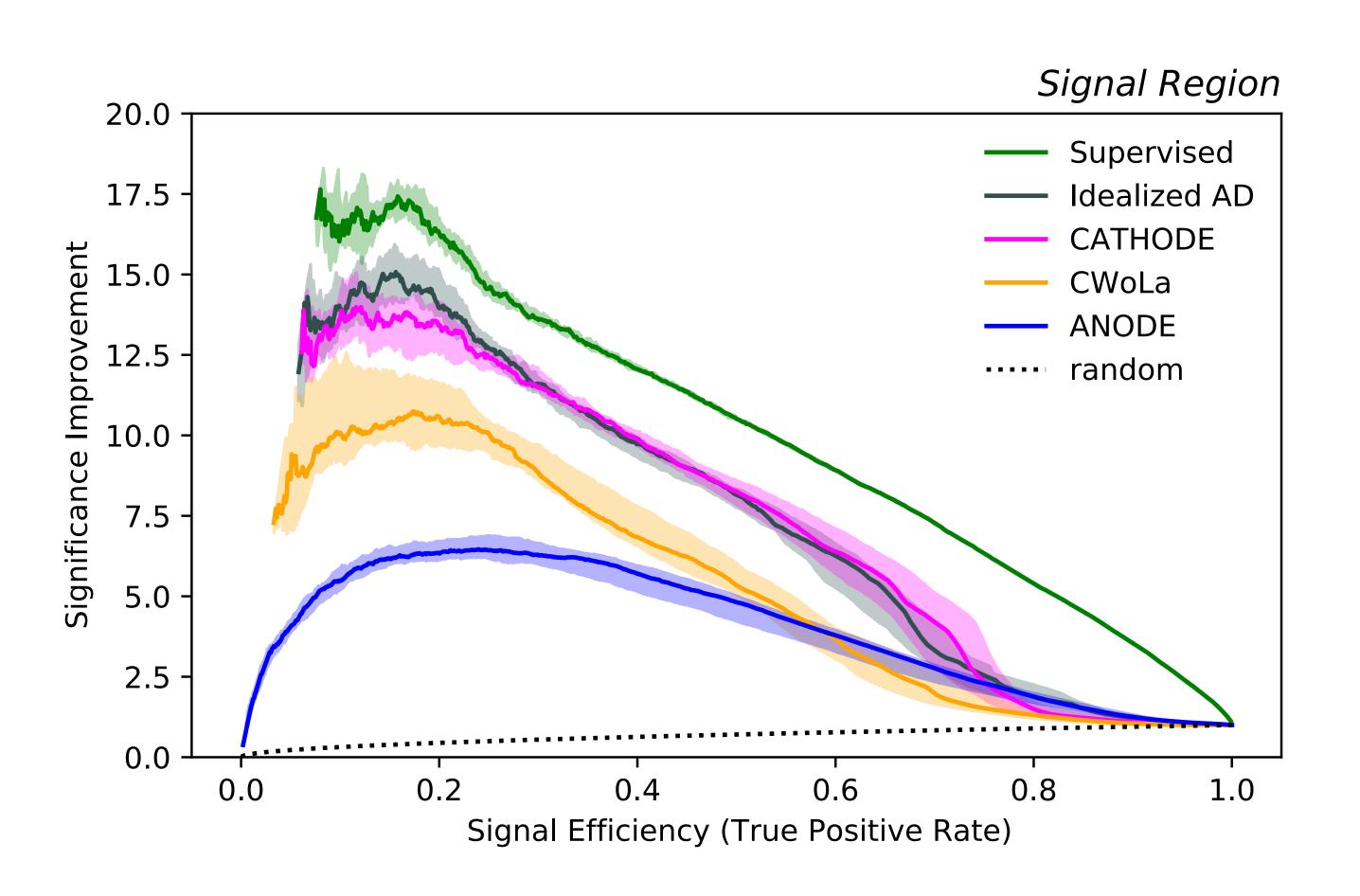
How do they compare?

How to quantify improvement?

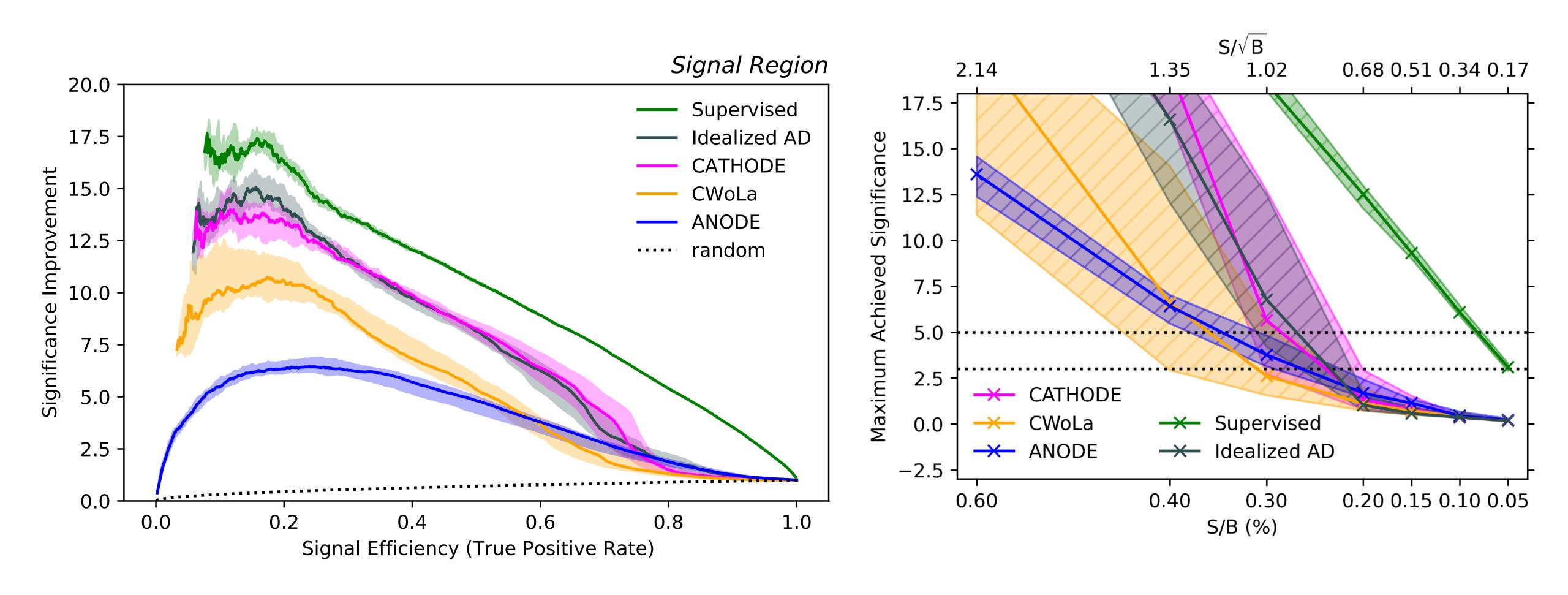


Statistical significance:
$$\frac{S}{\sqrt{B}} = \frac{S \cdot \epsilon_S}{\sqrt{B} \cdot \epsilon_B} = \frac{S}{\sqrt{B}} \cdot \underbrace{\frac{\epsilon_S}{\sqrt{\epsilon_B}}}_{\text{factor}} = \frac{S}{\sqrt{B}} \cdot \underbrace{\frac{\epsilon_S}{\sqrt{\epsilon_B}}}_{\text{factor}}$$

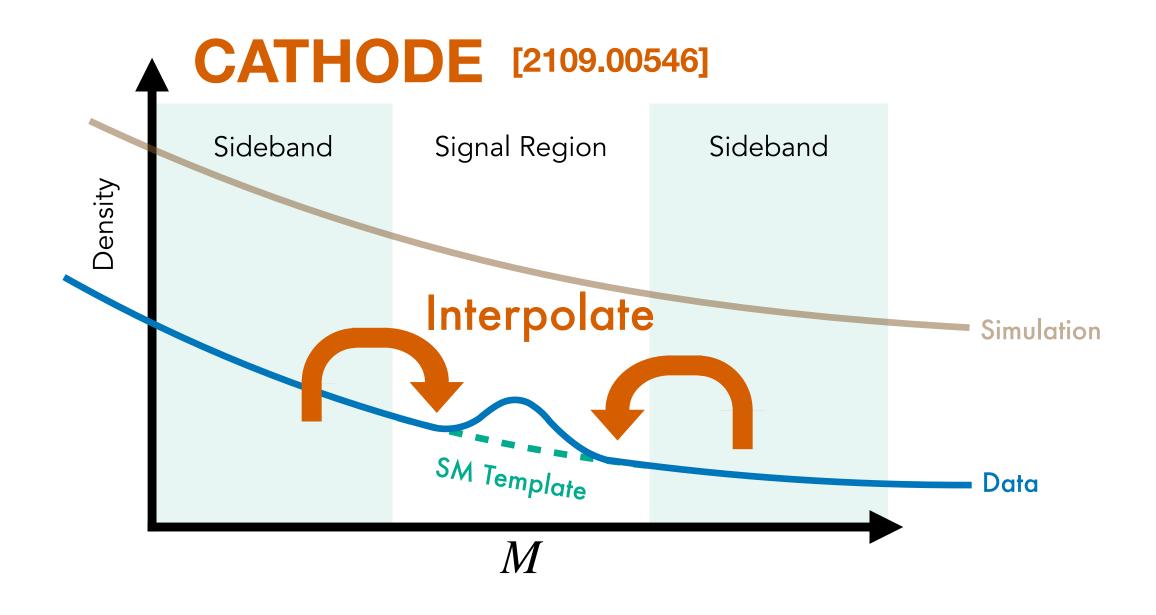
Results — Comparison

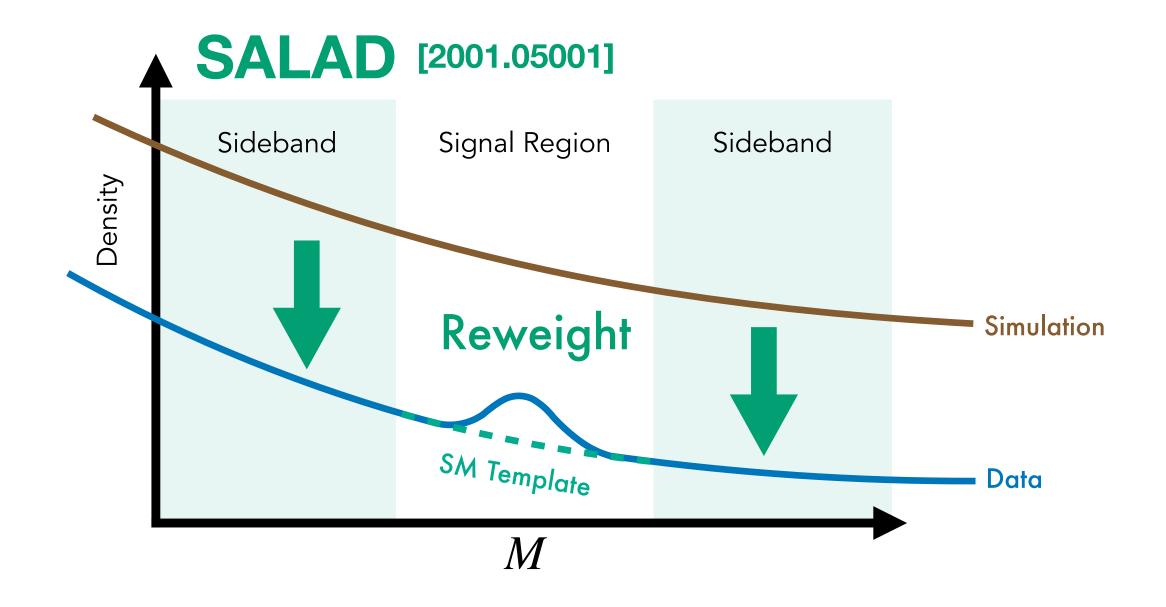


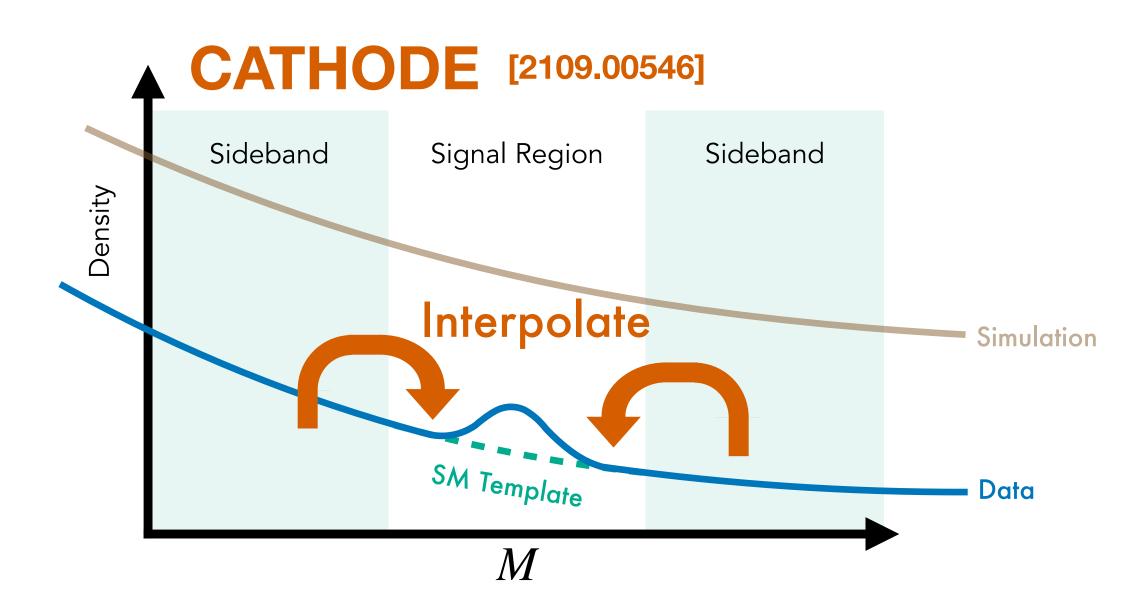
Results — Comparison

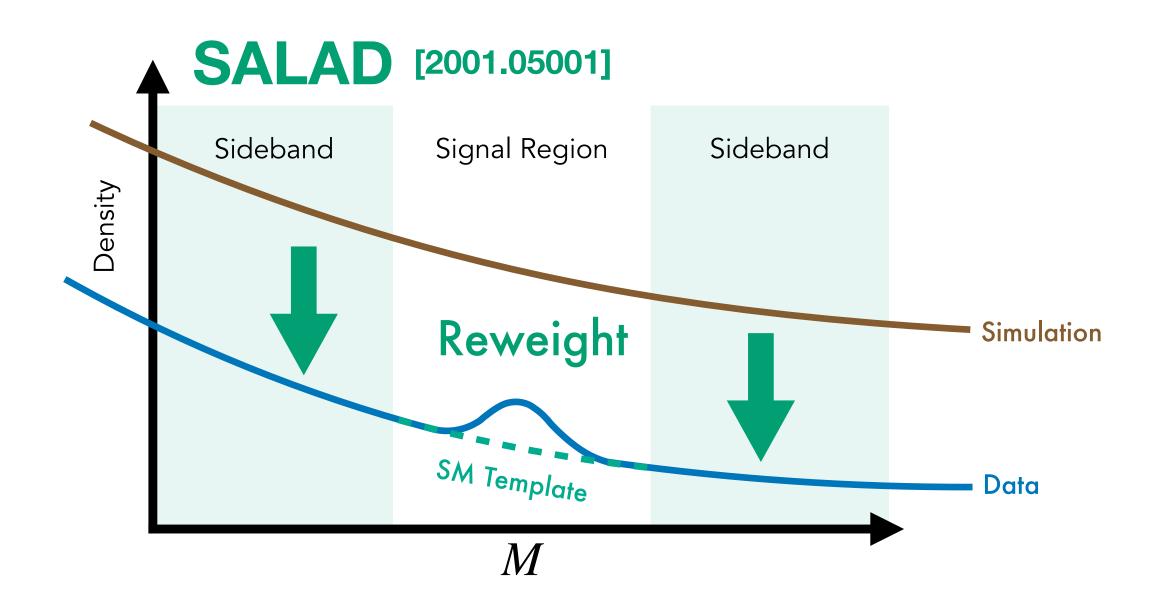


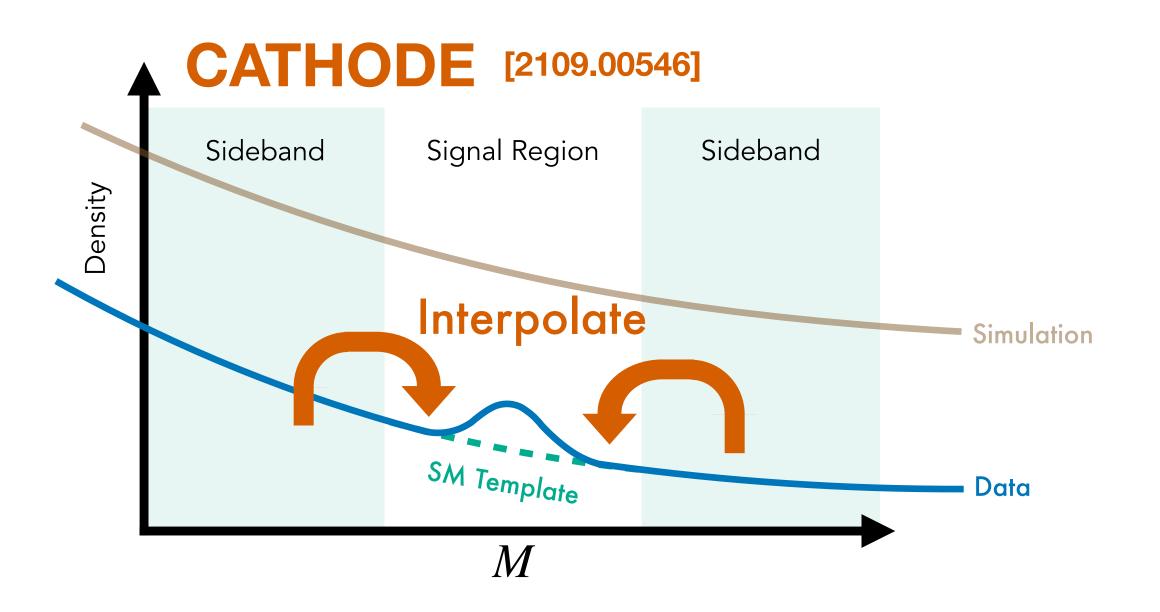
Are there other ways?

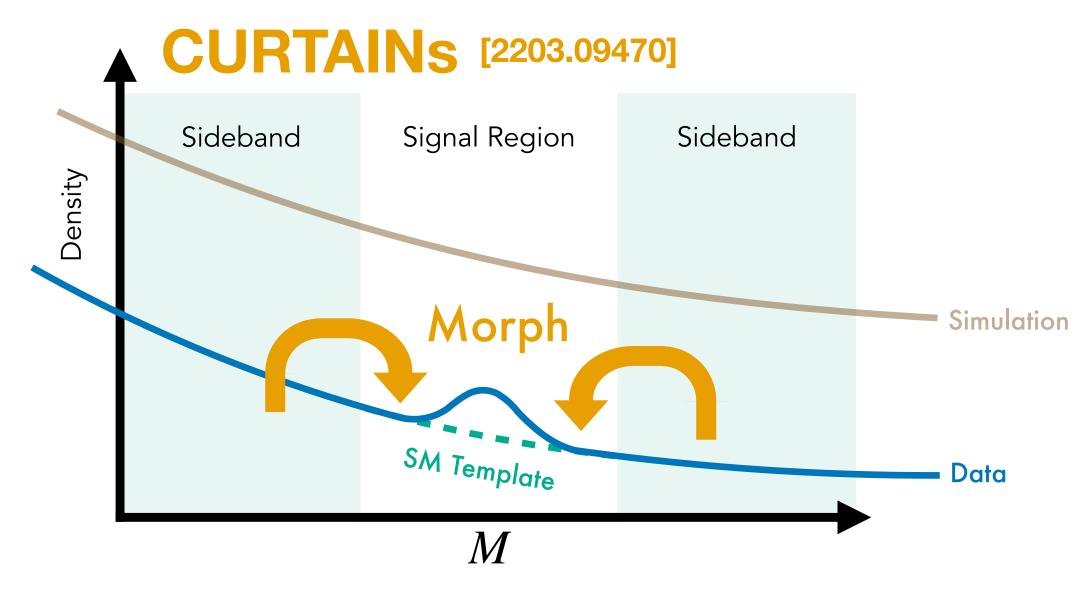


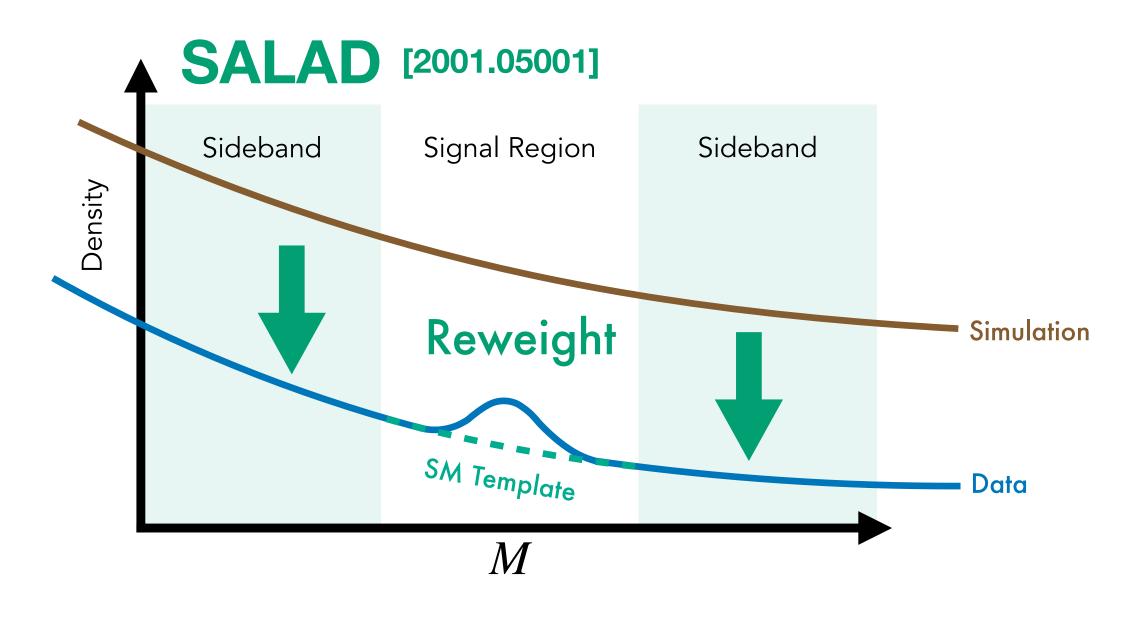


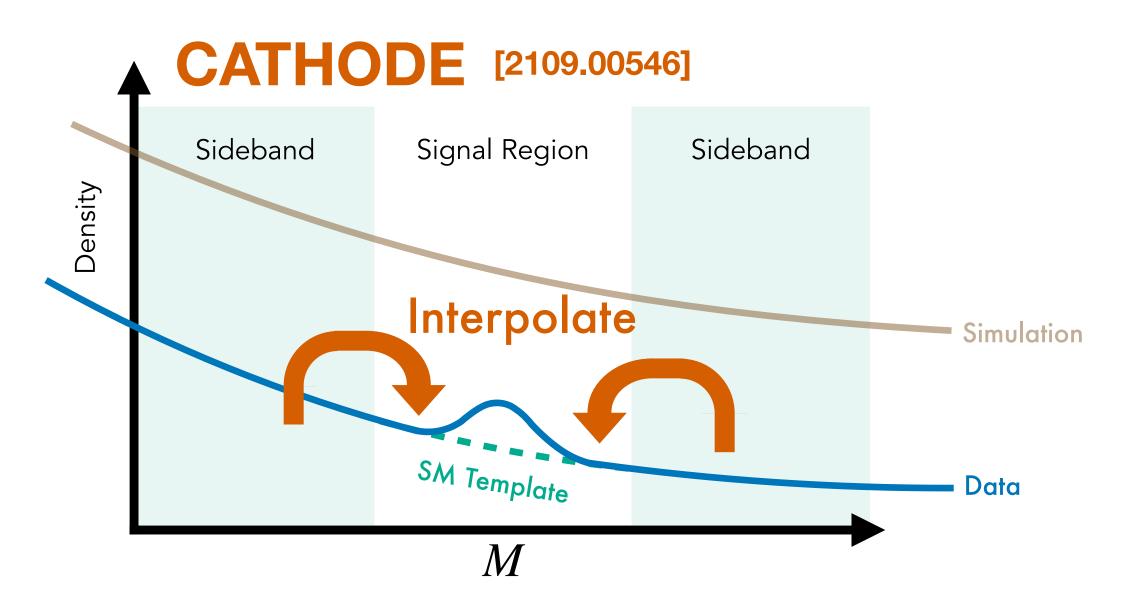


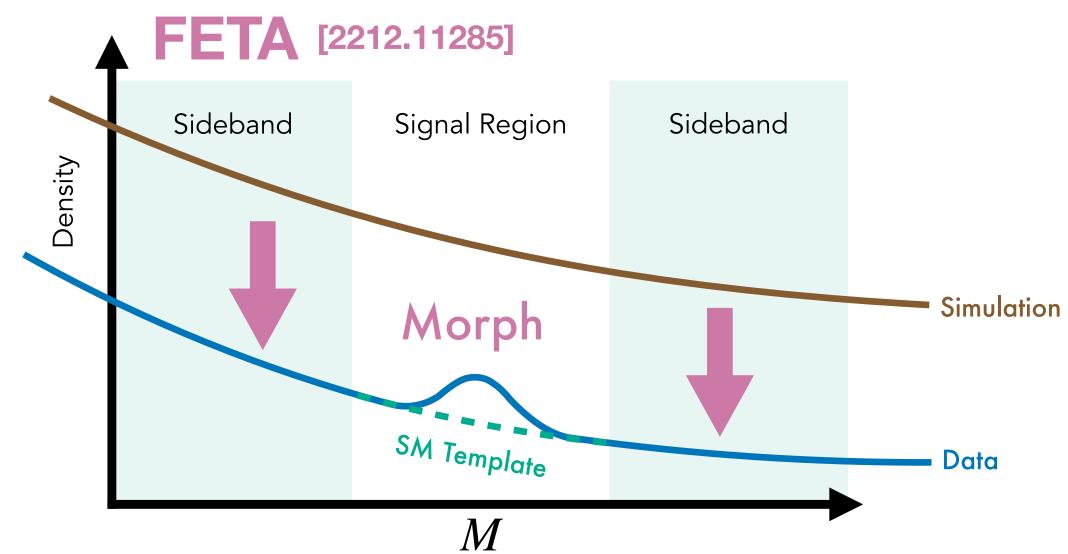


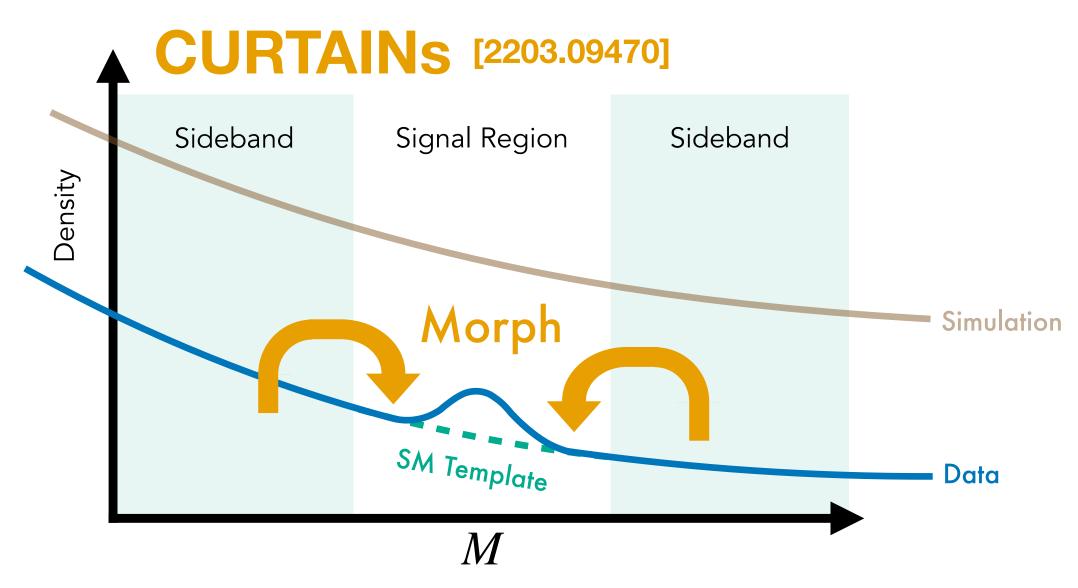


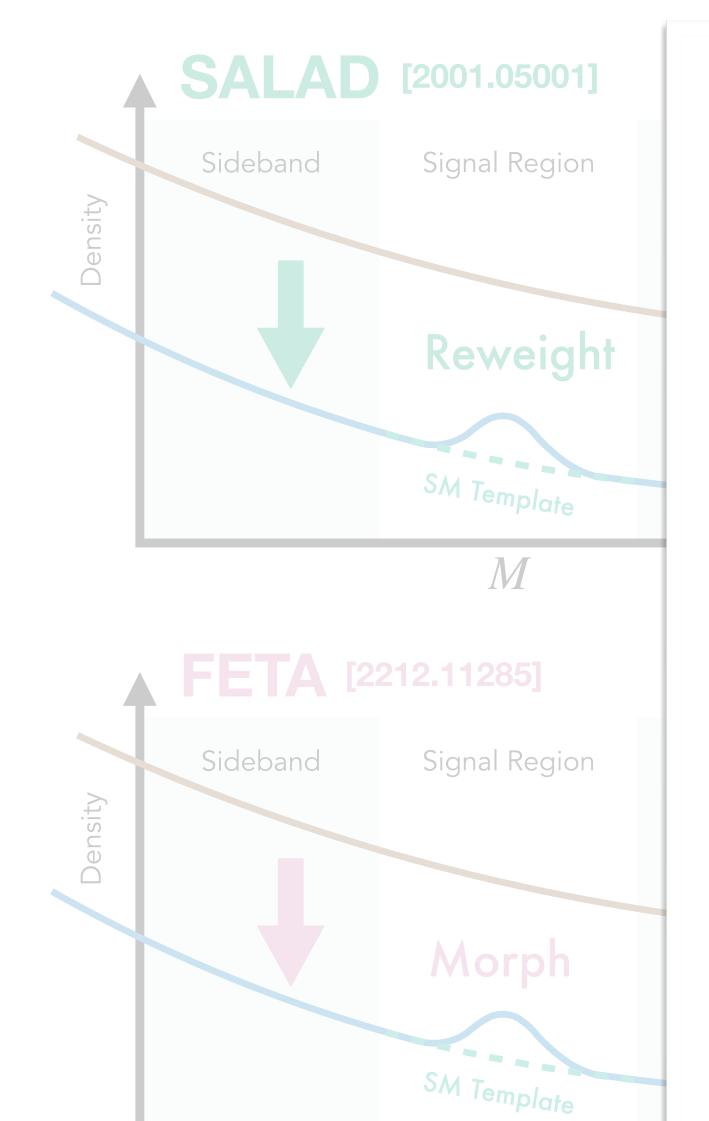












The Interplay of Machine Learning—based Resonant Anomaly Detection Methods

Tobias Golling,^a Gregor Kasieczka,^b Claudius Krause,^c Radha Mastandrea,^{d,e} Benjamin Nachman,^{e,f} John Andrew Raine,^a Debajyoti Sengupta,^a David Shih,^g and Manuel Sommerhalder^b

E-mail: tobias.golling@unige.ch, gregor.kasieczka@uni-hamburg.de, claudius.krause@thphys.uni-heidelberg.de, rmastand@berkeley.edu, bpnachman@lbl.gov, john.raine@unige.ch, debajyoti.sengupta@unige.ch, shih@physics.rutgers.edu, manuel.sommerhalder@uni-hamburg.de

ABSTRACT: Machine learning—based anomaly detection (AD) methods are promising tools for extending the coverage of searches for physics beyond the Standard Model (BSM). One class of AD methods that has received significant attention is resonant anomaly detection, where the BSM physics is assumed to be localized in at least one known variable. While there have been many methods proposed to identify such a BSM signal that make use of simulated or detected data in different ways, there has not yet been a study of the methods' complementarity. To this end, we address two questions. First, in the absence of any signal, do different methods pick the same events as signal-like? If not, then we can significantly reduce the false-positive rate by comparing different methods on the same dataset. Second, if there is a signal, are different methods fully correlated? Even if their maximum performance is the same, since we do not know how much signal is present, it may be beneficial to combine approaches. Using the Large Hadron Collider (LHC) Olympics dataset, we provide quantitative answers to these questions. We find that there are significant gains possible by combining multiple methods, which will strengthen the search program at the LHC and beyond.

polate Data Region Sideband Data

Sideband

[2109.00546]

Region

[2307.11157]

^aDépartement de physique nucléaire et corpusculaire, Université de Genève, 1211 Genève, Switzerland

^bInstitut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany

^cInstitut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany

^dDepartment of Physics, University of California, Berkeley, CA 94720, USA

^ePhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^f Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

^gNHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

Can we do even better?

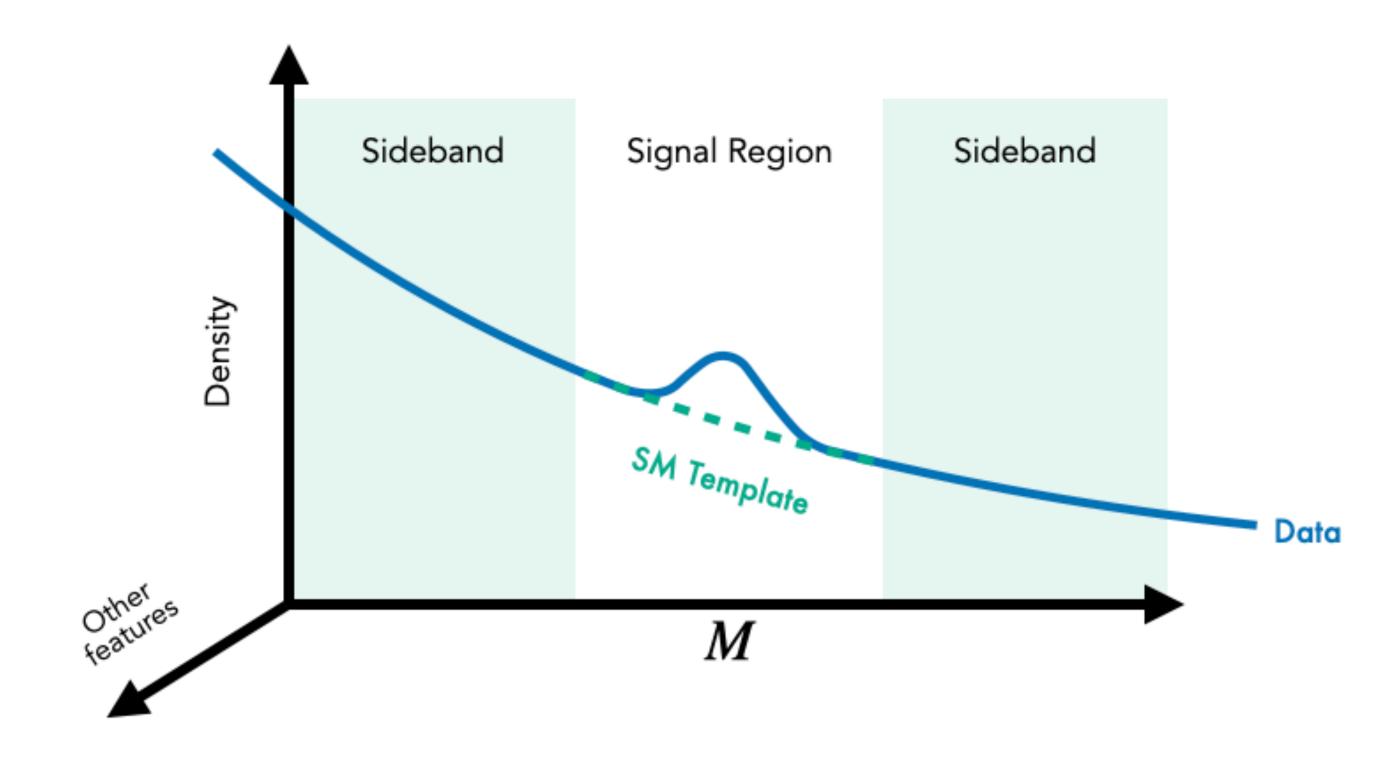
Example IV

Residual ANODE (R-ANODE)

The ANODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$
 Trained in $m \in SR$



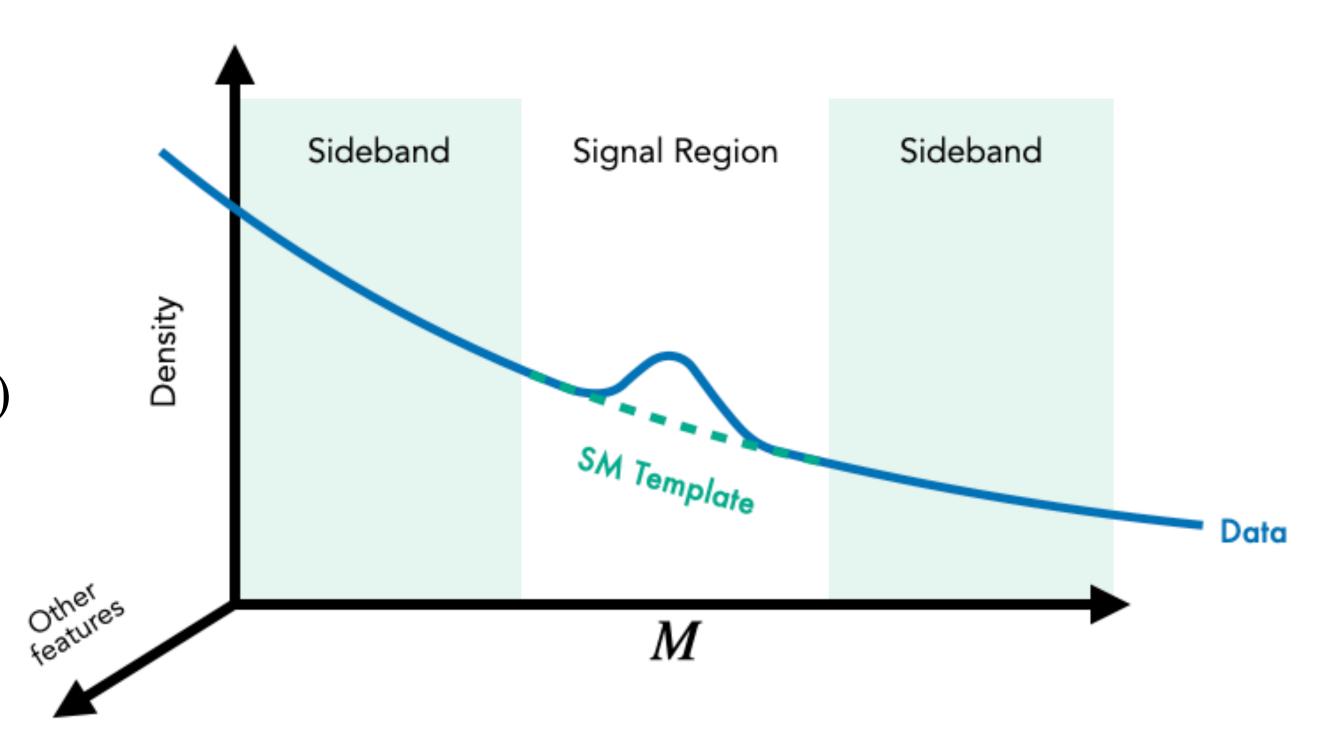
The ANODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

 $p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$ Trained in $m \in SR$

The R-ANODE method

$$p_{\text{data}}(x \mid \text{SR}) = w p_{\text{sig}}(x \mid \text{SR}) + (1 - w) p_{\text{bg}}(x \mid \text{SR})$$



The ANODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

 $p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$ Trained in $m \in SR$

The R-ANODE method

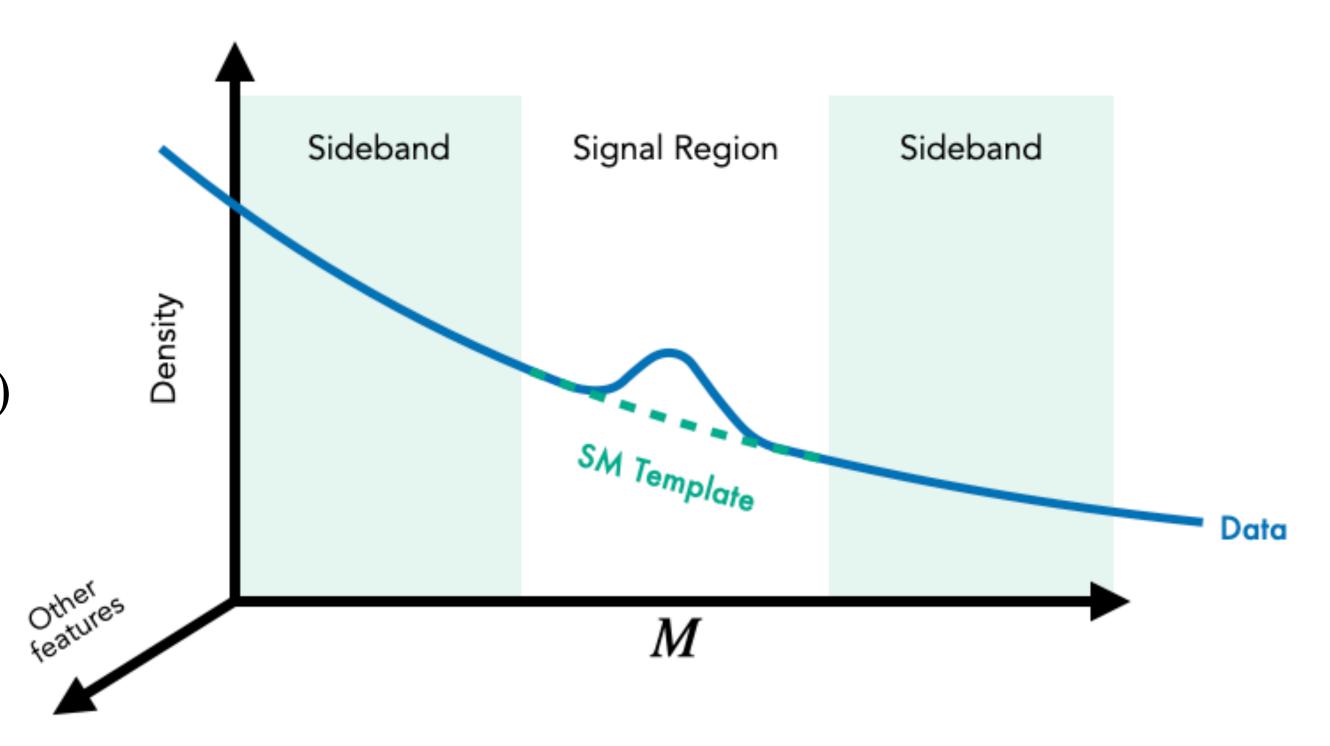
$$p_{\mathrm{data}}(x\,|\,\mathrm{SR}) = w\,p_{\mathrm{sig}}(x\,|\,\mathrm{SR}) + (1-w)\,p_{\mathrm{bg}}(x\,|\,\mathrm{SR})$$

$$\uparrow$$

$$\mathrm{NF}$$

$$p_{\omega_0}(x\,|\,m)$$

$$\mathrm{Trained\ in\ } m \in \mathrm{SB}$$



The ANODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$
 Trained in $m \in SR$

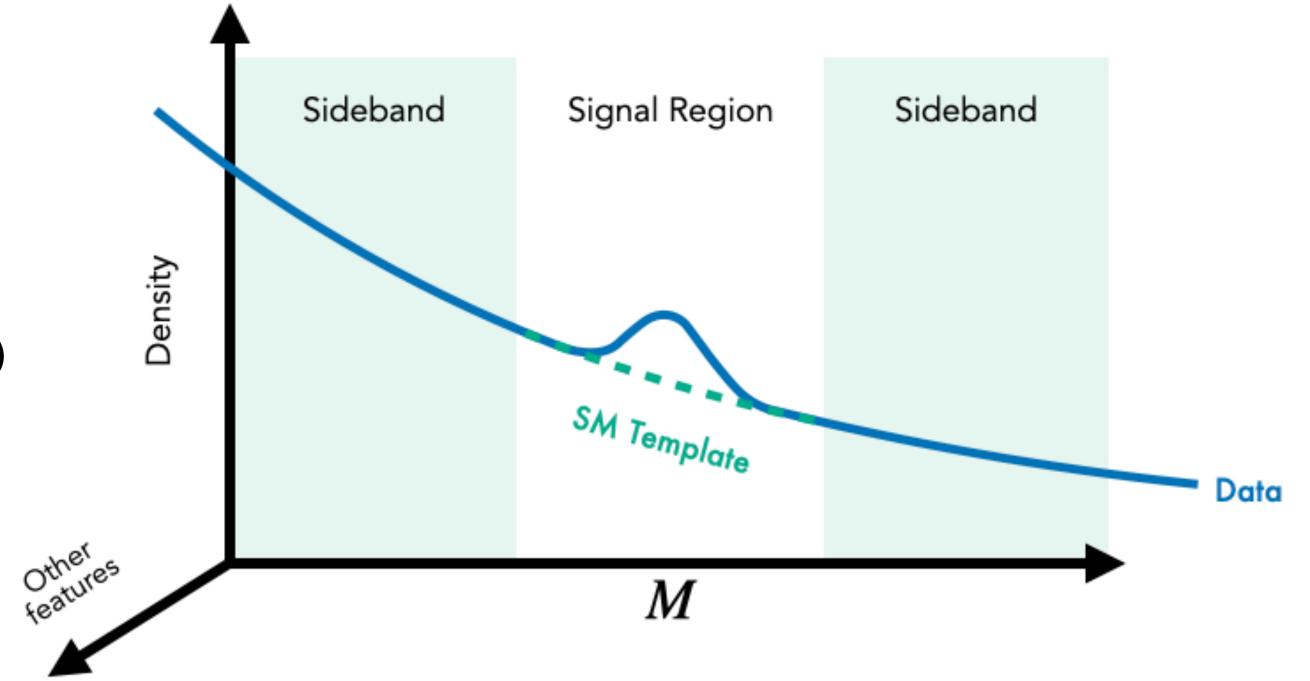
The R-ANODE method

$$p_{\mathrm{data}}(x \mid \mathrm{SR}) = w \, p_{\mathrm{sig}}(x \mid \mathrm{SR}) + (1 - w) \, p_{\mathrm{bg}}(x \mid \mathrm{SR})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathrm{NF} \qquad \qquad \mathrm{NF} \qquad \qquad \mathrm{NF} \qquad \qquad p_{\omega_s}(x \mid m) \qquad \qquad p_{\omega_0}(x \mid m)$$

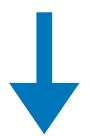
$$\mathrm{Trained in} \, m \in \mathrm{SR} \qquad \mathrm{Trained in} \, m \in \mathrm{SB}$$



The ANODE method

$$p_{\omega_0}(x \mid m) \simeq p_{\text{bg}}(x \mid m)$$
 Trained in $m \in SB$

$$p_{\omega_1}(x \mid m) \simeq p_{\text{data}}(x \mid m)$$
 Trained in $m \in SR$



The R-ANODE method

$$p_{\mathrm{data}}(x \,|\, \mathrm{SR}) = w \, p_{\mathrm{sig}}(x \,|\, \mathrm{SR}) + (1-w) \, p_{\mathrm{bg}}(x \,|\, \mathrm{SR})$$

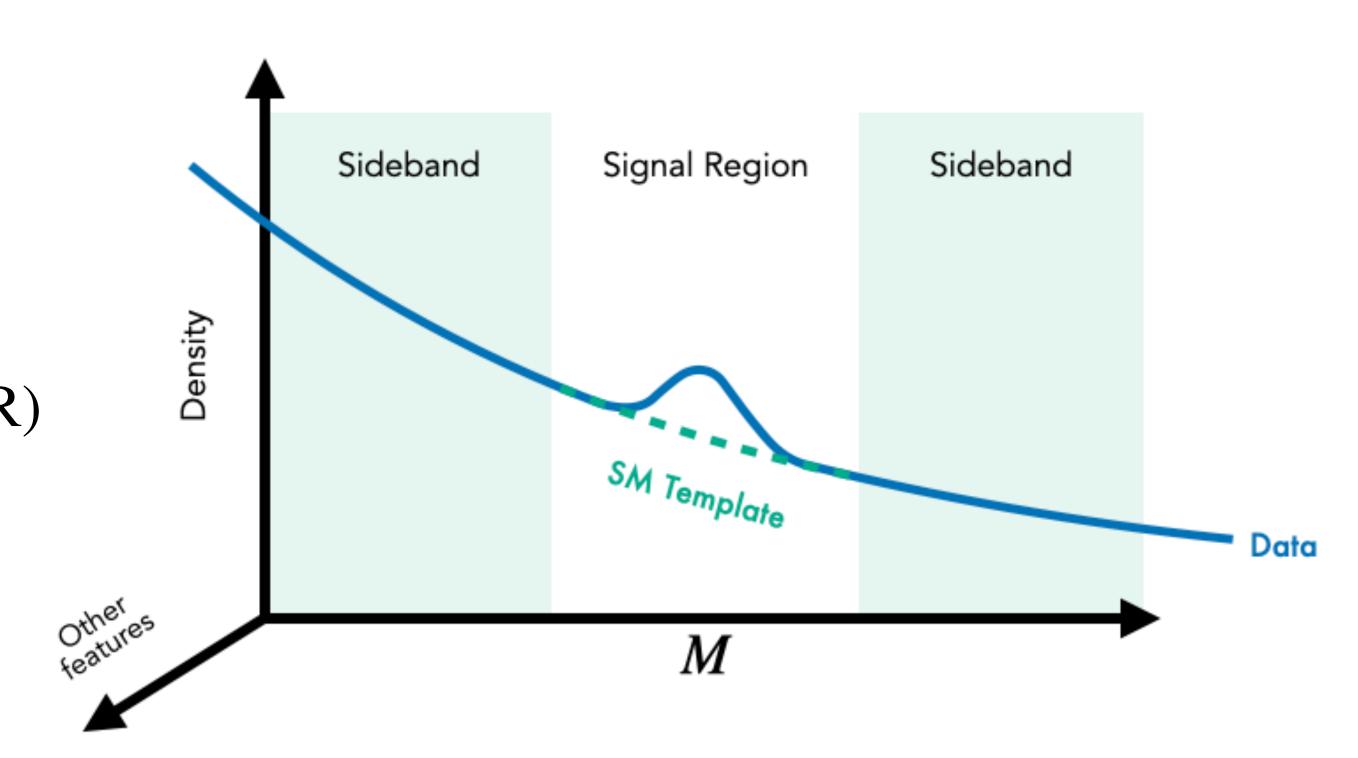
$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathrm{NF} \qquad \qquad \mathrm{NF} \qquad \qquad \mathrm{NF} \qquad \qquad p_{\omega_s}(x \,|\, m) \qquad \qquad p_{\omega_0}(x \,|\, m)$$

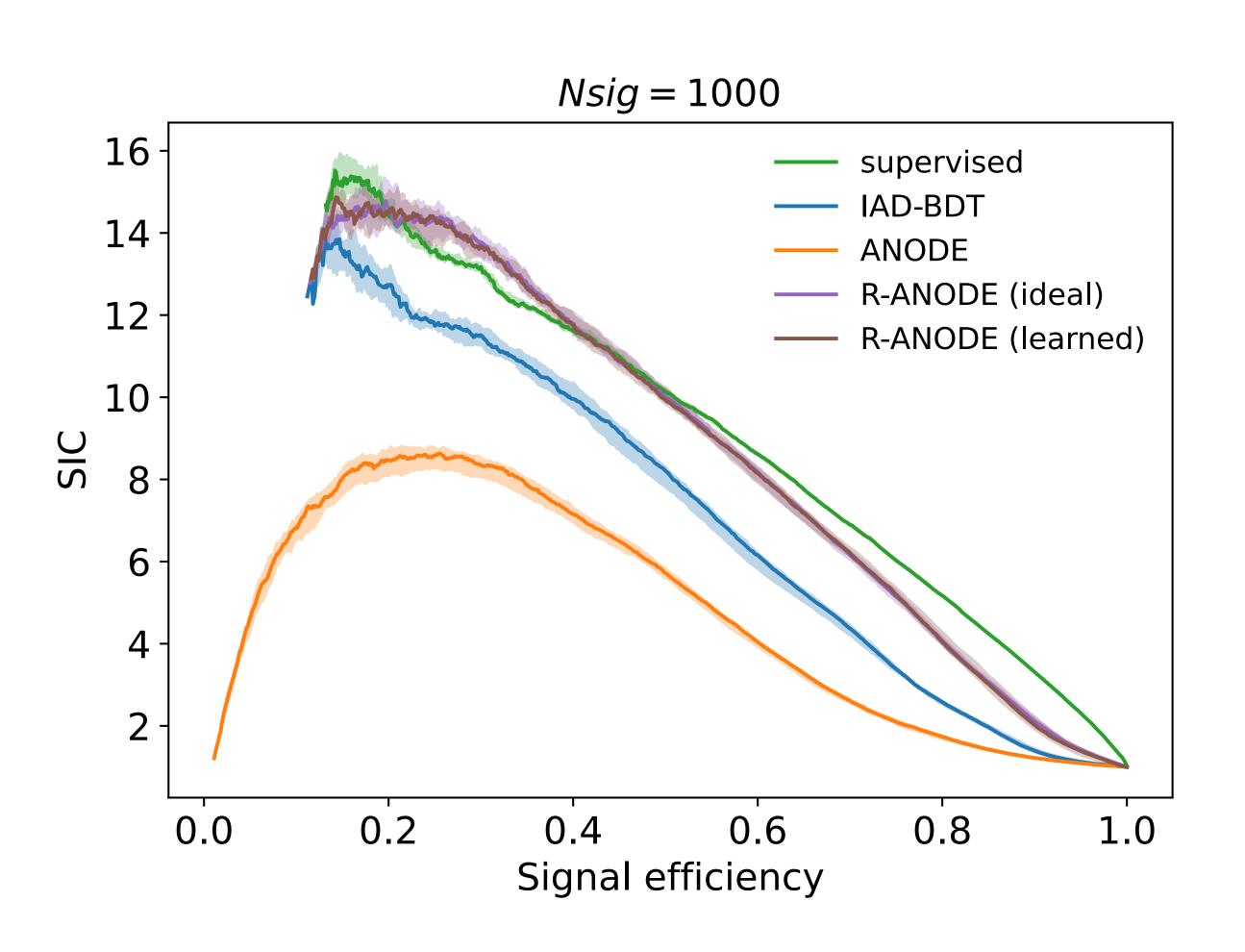
$$\mathrm{Trained in} \, m \in \mathrm{SR} \qquad \mathrm{Trained in} \, m \in \mathrm{SB}$$

R-ANODE Likelihood estimate

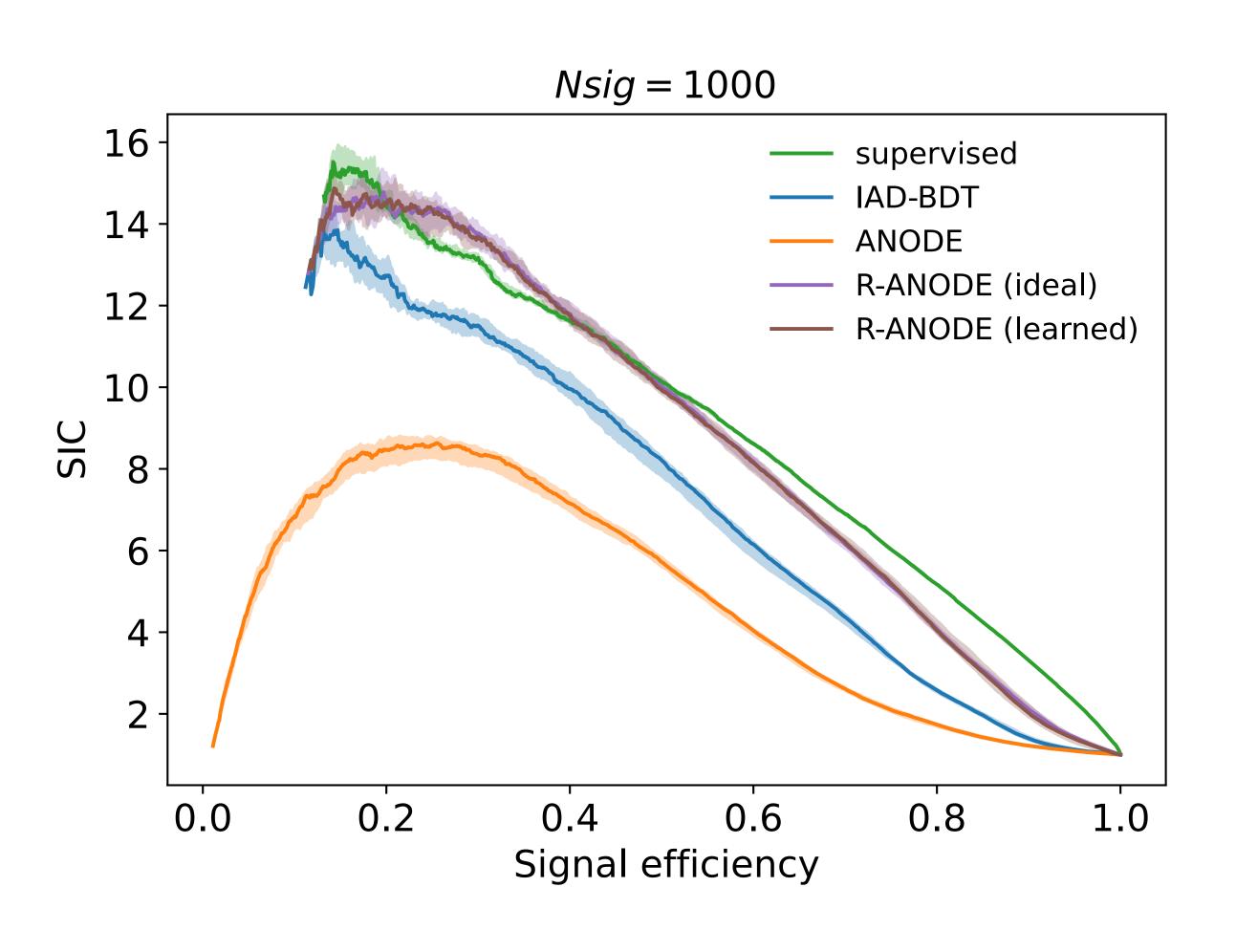
$$R_{\text{R-ANODE}} = \frac{p_{\omega_s}(x \mid \text{SR})}{p_{\omega_0}(x \mid \text{SR})} \simeq \frac{p_{\text{sig}}(x \mid \text{SR})}{p_{\text{bg}}(x \mid \text{SR})}$$

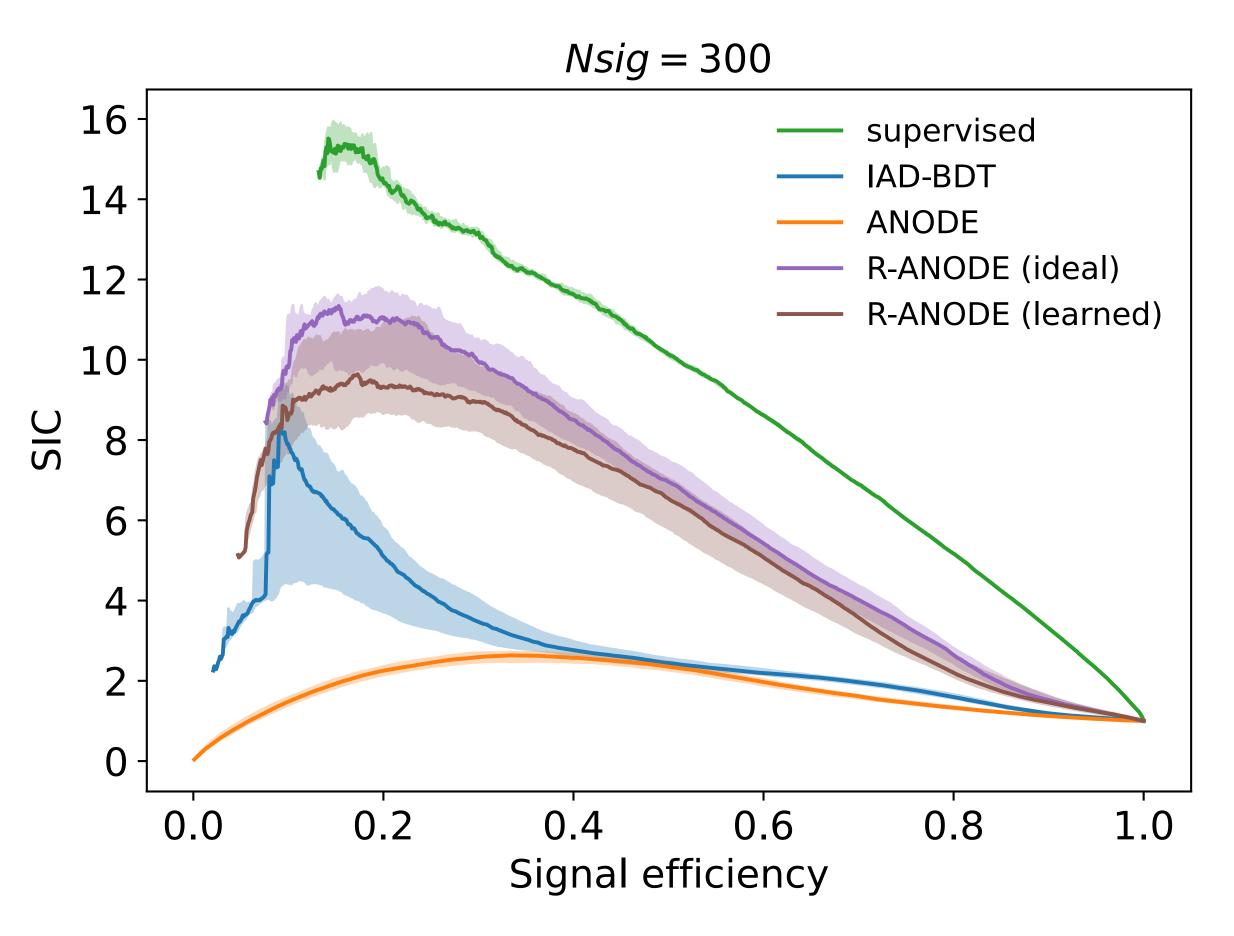


Results — R-ANODE

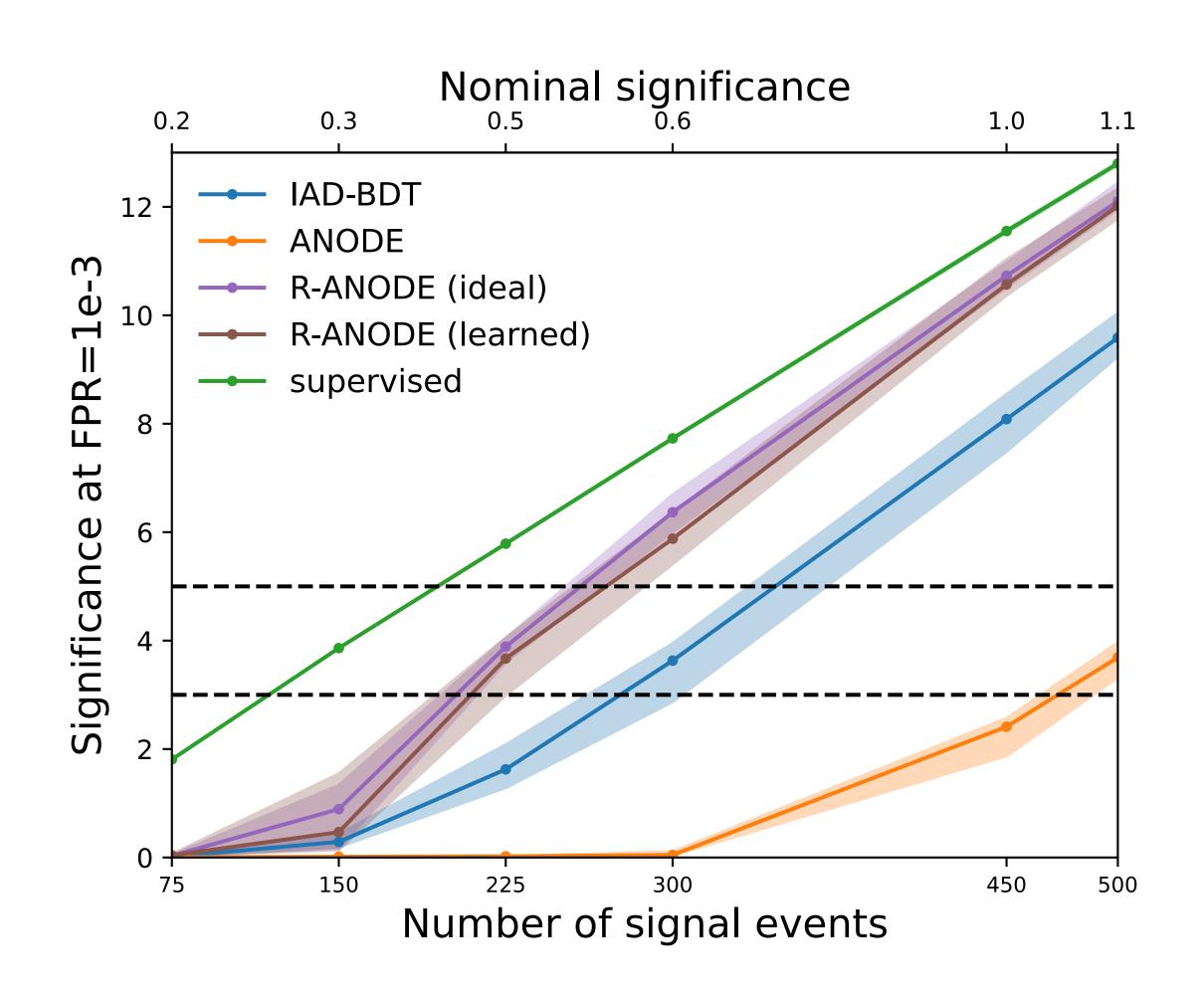


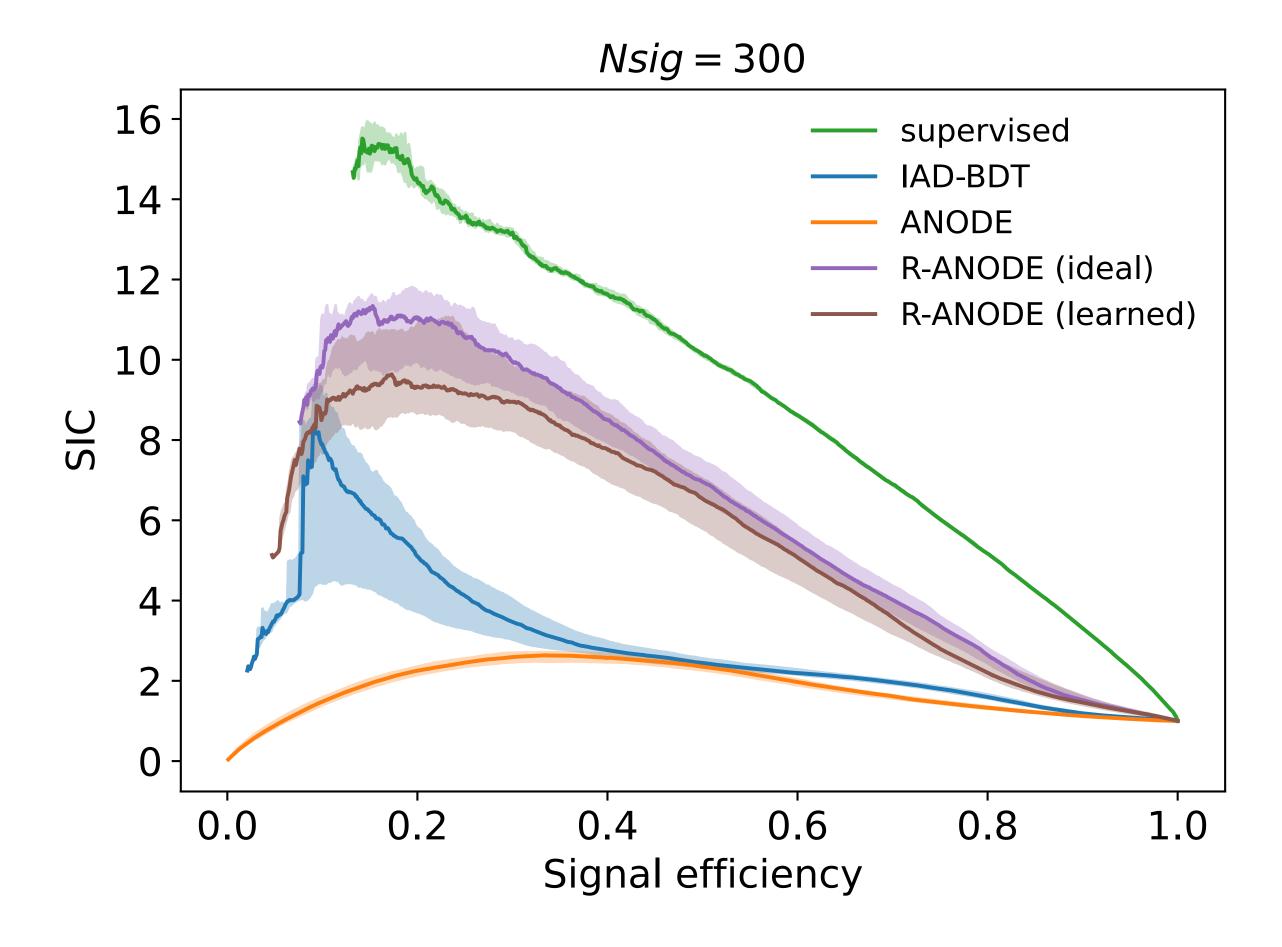
Results — R-ANODE





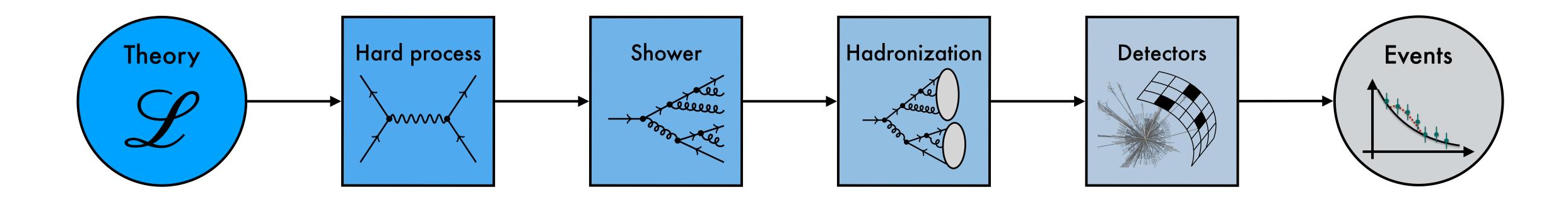
Results — R-ANODE





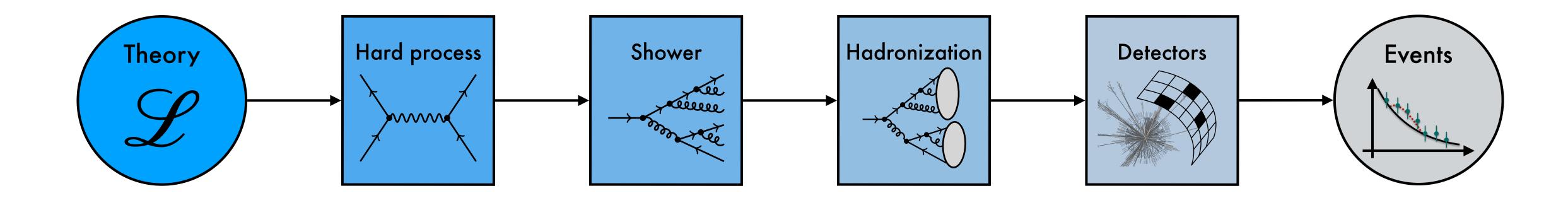
Take-home messages

- ML beneficial in every step of the simulation and analysis chain
- We find both proof-of-concepts as well as established use cases (→ AD, MadNIS,...)
- Interesting interplay between physics and ML



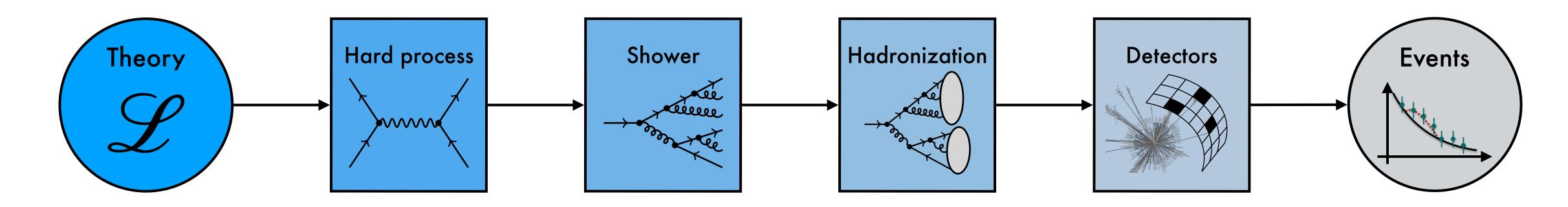
Take-home messages

- ML beneficial in every step of the simulation and analysis chain
- We find both proof-of-concepts as well as established use cases (→ AD, MadNIS,...)
- Interesting interplay between physics and ML
 - → Physics provides ~infinite data for ML



Take-home messages

- ML beneficial in every step of the simulation and analysis chain
- We find both proof-of-concepts as well as established use cases (→ AD, MadNIS,...)
- Interesting interplay between physics and ML
 - → Physics provides ~infinite data for ML
 - → Physics requirements (precision, symmertries,...) different than industry applications



Take-home messages

- ML beneficial in every step of the simulation and analysis chain
- We find both proof-of-concepts as well as established use cases (→ AD, MadNIS,...)
- Interesting interplay between physics and ML
 - → Physics provides ~infinite data for ML
 - → Physics requirements (precision, symmertries,...) different than industry applications

Future exercises

- Full integration of ML-based methods into standard tools → Taggers, MadGraph,....
- Make everything run on GPUs and make it differentiable
- Foster deeper collaboration between theory, experiment, and ML community

