Modern machine learning methods for new

physics searches

Sapienta ex machina?

-

| —
- -

| ——

—

Midjourney Al

. —
ew

=
O
>
-
O
—
O
-
_
-
Q
O
O
=
-
)
e
=
-
O
&
©
o




Plan of attack

1. Introduction to Machine Learning
« Classification and Regression Lecture | (60min)
 Example: MadMiner, Top Tagging

-------------------- COFFEE BREAK === === mmmmcmcm oo oo cm oo oo ccmccm oo ccm oo e

2. Generative Models for the LHC

 Diffusion Models, Normalizing flows Lecture Il (60min)
. Example: MadNIS, MEM-ML

Today

3. Anomaly detection
e Autoencoders and CWoLA Lecture Il (60min)
« Examples: CWoLA-Hunting, ANODE, CATHODE,...

Tomorrow



Plan of attack

3. Anomaly detection
e Autoencoders and CWoLA Lecture Il (60min)
« Examples: CWoLA-Hunting, ANODE, CATHODE,...

Tomorrow



Reminder — LHC analysis

This lecture

Anomaly
detection

Detector-level
observables



Simulation or data-driven searches

® @
Q O
- -
O O . .
= autoencoders 2 t_D'rf_Ct Dg'ndsétgand
estimation, Si
§- S(Hne. segrchles LDA §.
f= rain Signa ANODE <
5 versusdata)  CWola = ABCD
S SALAD 3
E = Control
= (’% region
= Most searches  \usic (CMS), > method
5 (train with General Search 5
O . . O
o) simulations) (ATLAS) =4 Pure MC
S ° prediction
© ©
= O
signal model independence signal model independence
(a) Signal sensitivity (b) Background specificity

*Taken from [Nachman et al: 2001.04990]



Simulation or data-driven searches
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Precision Generation
[2110.13632] MEM

[2210.00019] Point Clouds

MADNIS [2102.05073] PELICAN
[21 (ﬂT(l)J8S944] [2212.06172,.] CaloFlow I-IV [2211.00454]
' [2106.05285,...]
ELSA Energy Flow Networks Landscape of

Top tagger
[1902.09914]

Jet Simulation
[2203.00520]

[2305.07696] [1810.05165]

PC-JeDi Bayesian Tagger
[2303.05376] FPCD [1904.10004]
G " [2304.01266]
enerative _
EPIC-GAN Models Supervised MadMiner
[2301.08128] Learning [1907.10621,...]

NNPDF
[2109.02653]

How to GAN
[1907.03764]

DDPM & CFM
[2305.10475]

Matrix Elements

[2206.14831] Symbolic regression

[2109.10414]

CaloGAN
[1712.10321]

Unsupervised
Learning

JetGPT

[2305.10475] Flavor structure

[2304.14176]

Jet Clustering
[2008.06064]

Simplifying Polylogs String vacua & landscape

[2206.04115] [1903.11616, 2111.11466]
3D Pixel Clustering
[2007.03083] Normalized AE CATHODE
[2206.14225] [2109.00546]
Model Building Analytic continuation
[2103.04759] [2112.13011]
CWOoLA Hunting (R-)ANODE
[1902.02634] [2001.04990,...]



Unsupervised
Learning

Normalized AE CATHODE
[2206.14225] [2109.00546]
CWoLA Hunting (R-JANODE
[1902.02634] [2001.04990,...]



Anomaly Detection



Community interest in AD

LHC Olympics

[Kasieczka et al: 2107.02821,
2101.08320]

Detector . High-LLevel
collisions L1 trigger Trigger
[Govorkova et al: 2107.02157] @ ‘
40,000,000 100,000
events/sec events/sec
-

Number
of events

Dark Machines

[Ostdiek et al: 2105.14027]

Signal Region

anomaly score

...and many papers:

B Anomaly detection.

 Learning New Physics from a Machine [DOI]

« Anomaly Detection for Resonant New Physics with Machine Learning [DOI]

» Extending the search for new resonances with machine learning [DOI]

e Learning Multivariate New Physics [DOI]

 Searching for New Physics with Deep Autoencoders [DOI]

e QCD or What? [DOI]

e Arobust anomaly finder based on autoencoder

 Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI]

o Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI]
» Novelty Detection Meets Collider Physics [DOI]

o Guiding New Physics Searches with Unsupervised Learning [DOI]

e Does SUSY have friends? A new approach for LHC event analysis [DOI]

* Nonparametric semisupervised classification for signal detection in high energy physics
e Uncovering latent jet substructure [DOI]

e Simulation Assisted Likelihood-free Anomaly Detection [DOI]

« Anomaly Detection with Density Estimation [DOI]

» A generic anti-QCD jet tagger [DOI]

« Transferability of Deep Learning Models in Searches for New Physics at Colliders [DOI]

e Use of a Generalized Energy Mover's Distance in the Search for Rare Phenomena at Colliders [DOI]

o Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]

« Dijet resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector [DOI]

https://iml-wg.github.io/HEPML-LivingReview [m] 3



https://iml-wg.github.io/HEPML-LivingReview/

Community interest in AD

Available on the CERN CDS information server CMS PAS EXO-22-026

Machine Learning for Anomaly Detection in Particle CMS Physics Analysis Summary
Physics

Vasilis Belis!*, Patrick Odagiu!*, and Thea Klseeboe Aarrestad'”

Contact: cms-pag-conveners-exotica@cern.ch 2024/03/20
lnstitute for Particle Physics and Astrophysics, ETH Zirich, 8093 Zrich, Switzerland
“e-mail: vbelis@ethz.ch, podagiu@ethz.ch, thea.aarrestad@cern.ch
ABSTRACT Model-agnostic search for dijet resonances with anomalous

jet substructure in proton-proton collisions at /s = 13 TeV
The detection of out-of-distribution data points is a common task in particle physics. It is used for monitoring complex particle
detectors or for identifying rare and unexpected events that may be indicative of new phenomena or physics beyond the
Standard Model. Recent advances in Machine Learning for anomaly detection have encouraged the utilization of such .
techniques on particle physics problems. This review article provides an overview of the state-of-the-art techniques for anomaly The CMS Collaboration
detection in particle physics using machine learning. We discuss the challenges associated with anomaly detection in large and
complex data sets, such as those produced by high-energy particle colliders, and highlight some of the successful applications
of anomaly detection in particle physics experiments.

in] 20 Dec 2023

[2312.14190] Abstract

This note introduces a model-agnostic search for new physics in the dijet final state.
Other than the requirement of a narrow dijet resonance with a mass in the range of
1800-6000 GeV, minimal additional assumptions are placed on the signal hypothesis.
Search regions are obtained by utilizing multivariate machine learning methods to
select jets with anomalous substructure. A collection of complementary anomaly de-
tection methods — based on unsupervised, weakly-supervised and semi-supervised
algorithms — are used in order to maximize the sensitivity to unknown new physics
signatures. These algorithms are applied to data corresponding to an integrated lu-
minosity of 138 fb !, recorded in the years 2016 to 2018 by the CMS experiment at the
LHC, at a centre-of-mass energy of 13 TeV. No significant excesses above background
expectation are seen, and exclusion limits are derived on the production cross section
of benchmark signal models varying in resonance mass, jet mass and jet substructure.
Many of these signatures have not previously been searched for at the LHC, making
the limits reported on the corresponding benchmark models the first ever and the
most stringent to date.

[CMS-PAS-EXO-22-026]



https://iml-wg.github.io/HEPML-LivingReview/

Two lypes of Anomaly Detection @

Outlier Detection Overdensities

(hon-resonant) (resonant)
- Searching for unique and unexpected events - Analagous to traditional bump hunt
- In HEP, this (might) appear in the tails of dist.
[2109.00546]
[2404.07258] . 2y o
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Two lypes of Anomaly Detection @

Outlier Detection

(hon-resonant)

- Searching for unigue and unexpected events

- In HEP, this (might) appear in the tails of dist.

[2404.07258]

>0 = Signal
= Background

2.5 C | A (Signal Region)

--------------------------------------------------------------------
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Autoencoder for non-resonant AD
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» AE trained on bg.
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Autoencoder for non-resonant AD | @
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» AE trained on bg.

[ = % Z (AE(x) — x,)°



Autoencoder for non-resonant AD
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© Fully unsupervised

* AE trained on bg. @ Complexity bias [Finke et al: 2104.09051}

I ® not invariant under coordinate
_ N2 |
L= N Z (AE(xi) xi) transformations [Kasieczka et al: 2209.06225]
l



Autoencoder for non-resonant AD
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SciPost Physics Submission

A Normalized Autoencoder for LHC Triggers

Barry M. Dillon!, Luigi Favaro!, Tilman Plehn?, Peter Sorrenson?, and Michael Kramer?

1 Institut fiir Theoretische Physik, Universitat Heidelberg, Germany L > LC Freco IOSS

2 Heidelberg Collaboratory for Image Processing, Universitat Heidelberg, Germany
3 Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University,
Germany

June 23, 2023 [2206.14225] - Use L > L to cut interesting events
[Heimel et al: 1808.08979] [Farina et al: 1808.08992]

© Fully unsupervised
@ Complexity bias [Finke et al: 2104.09051]

@ not invariant under coordinate
transformations [Kasieczka et al: 2209.06225]



Autoencoder for non-resonant AD
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Submissio ©
A Normalized Autoencoder for LHC Triggers o ‘
Barry M. Dillon!, Luigi Favaro!, Tilman Plehn?, Peter Sorrenson?, and Michael Kramer? =
1 Institut fiir Theoretische Physik, Universitat Heidelberg, Germany L > LC reco IOSS
2 Heidelberg Collaboratory for Image Processing, Universitat Heidelberg, Germany
3 Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University,
Germany
o
June 23, 2023 [2206.14225] Use L > L~ to cut interesting events

[Heimel et al: 1808.08979] [Farina et al: 1808.08992]

Submission ® Fully unsupervised

Anomalies, Representations, and Self-Supervision @ CO m p | exity b | as [Finke et al: 2104.09051]
Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn
_ u u .
Institut fiir Theoretische Physik, Universitit Heidelberg, Germany ® n Ot | n Va rl a nt u n d e r COO rd | n ate

January 13, 2023 [2301.04660] transformations [Kasieczka et al: 2209.06225]




Two lypes of Anomaly Detection @

Overdensities

(resonant)

- Analagous to traditional bump hunt

[2109.00546]

a.u. 4

SB § SR | SB m

Pdata(x|m € SB)
= Ppg(z|m € SB)

Pdata(x|m € SB)

atalxlm € SR
Pdat ( | ) =pbg(:1:|m€SB)




Resonant AD as a search strategy
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Resonant AD as a search strategy @

Sideband Signal Region Sideband

Goal: observe new
physics signal...
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Resonant AD as a search strategy @

Sideband Signal Region Sideband

Goal: observe new
physics signal...

Density

...above the SM
background

Data



Resonant AD as a search strategy @

Neyman-Pearson Lemma

_ P data(x)
P bg(x)

R Jeband Signal Region Sideband

Goal: observe new
physics signal...

...above the SM
background

Data




Resonant AD as a search strategy @

Neyman-Pearson Lemma

_ pdata(x)
R = Jeband Signal Region Sideband
pbg(x)
T Goal: observe new
Optimal physics signal...
hypothesis test
...above the SM
R background
SM
Temp/QI'e

Data




Resonant AD as a search strategy @

Neyman-Pearson Lemma

R — pdata(x) .
— Jeband Signal Region Sideband

pbg(x)

T Goal: observe new

Optimal physics signal...
hypothesis test
. , ...above the SM
*%* Idealized anomaly detector (IAD) el background
SM
Temp/QI'e

Data




Resonant AD as a search strategy @

Neyman-Pearson Lemma

R — pdata(x) | | |
— Jebana Signal Region Sideband
pbg(x)
T Goal: observe new
Optimal physics signal...
hypothesis test
** |dealized anomaly detector (IAD) ~a. ---agg\éig;(e) uSnI\éII
Ny
** Best you can do if... SM 7.
...you know p.., and p,, Mplqtq

Data




Resonant AD as a search strategy @

Neyman-Pearson Lemma

R — pdata(x) : : :
— Jeband Signal Region Sideband
pbg(x)
T Goal: observe new
Optimal physics signal...
hypothesis test
. ...above the SM
D
+* |ldealized anomaly detector (IAD) oo \ background
% Best you can do if... SM T,
...you know and MPlate
y Pdata pbg Dat
_V_I ara
ML




Resonant AD as a search strategy @

Neyman-Pearson Lemma

pdata(x)

R = Jeband Signal Region Sidebana
pbg(x)
T Goal: observe new

Optimal physics signal...

hypothesis test

...above the SM

. .
%* ldealized anomaly detector (IAD) - background

+%* Best you can do if... SM
Tem /
...you know p,., and p, Plate
_V_I
ML

** Use R as cut discriminant M
~R>R

Data




How to get the optimal test statistic? @

_ P data(x)

pbg(x)



How to get the optimal test statistic? @

Classifier

If we have samples from
data and SM background...




How to get the optimal test statistic? @

Classifier

If we have samples from
data and SM background...

...an optimal classifier yields

P data(x )
Pdata(X) + Ppg(X)

J(x) =




How to get the optimal test statistic? @

Classifier

If we have samples from
data and SM background...

...an optimal classifier yields

P data(x )
Pdata(X) + Ppg(X)

J(x) =

o Getx ~ py,, and x ~ py, from

MC simulations




How to get the optimal test statistic? @

Classifier

If we have samples from
data and SM background...

...an optimal classifier yields

P data(x )

/00 = Pdata(¥) + Ppg(X)

o Getx ~ py,, and x ~ py, from
MC simulations

** Estimate samples from data:

X ~ Paata(X | SR)

X ~ Paaca | SB) % ppy(x)




How to get the optimal test statistic?

Classifier

If we have samples from
data and SM background...

...an optimal classifier yields

P data(x )
Pdata(X) + Ppg(X)

J(x) =

o Getx ~ py,, and x ~ py, from
MC simulations

** Estimate samples from data:
X ~ Paata(X | SR)
X ~ Paaa(X| SB) % ppg(x)

Density estimator

Instead of learning the
likelihood ratio directly...




How to get the optimal test statistic?

Classifier

If we have samples from
data and SM background...

...an optimal classifier yields

P data(x )
Pdata(X) + Ppg(X)

J(x) =

o Getx ~ py,, and x ~ py, from
MC simulations

** Estimate samples from data:

X ~ Paata(X | SR)

X ~ Paaca | SB) % ppy(x)

Density estimator

Instead of learning the
likelihood ratio directly...

...use a density estimator to learn

PoXISR) = paa(x| SR)
po(x|SB) = py (x)

©



How to get the optimal test statistic?

Classifier

If we have samples from
data and SM background...

...an optimal classifier yields

P data(x )
Pdata(X) + Ppg(X)

J(x) =

o Getx ~ py,, and x ~ py, from
MC simulations

** Estimate samples from data:

X ~ Paata(X | SR)

X ~ Paaca | SB) % ppy(x)

Density estimator

Instead of learning the
likelihood ratio directly...

...use a density estimator to learn

PoXISR) = paa(x| SR)
po(x|SB) = py (x)

** Then calculate R directly from
the individual likelihoods

©



CWolLa Hunting



Reminder — Classification Problem @

Goal: learn the signal to
background ratio

@ signdl

@ Background



Reminder — Classification Problem @

Goal: learn the signal to
background ratio

An optimal classifier yields the
likelihood ratio

f(.X) B psig(x)

optimal — 1 — f(x — 3

@ signal

@ Background

R




Reminder — Classification Problem

Goal: learn the signal to
background ratio

An optimal classifier yields the
likelihood ratio

f(.X) B psig(x)

R .. .= =
P10 pre)

@ Can be approximated with a
supervised classifier (ML)

@ signdl

@ Background

D



Reminder — Classification Problem

Goal: learn the signal to
background ratio

An optimal classifier yields the
likelihood ratio

f(.X) B psig(x)

R .. .= =
P10 pre)

@ Can be approximated with a
supervised classifier (ML)

© Labels are not available in
experimental data

@ signdl

@ Background

©



Classification without labels (CWolLa) @

Two mixed datasets with signal fractions w;

Pi(x) = W; Pgio(X) + (1 — W) ppo(X)

@ signdl

@ Background

Metodiev, Nachman, Thaler [1708.02949]



Classification without labels (CWolLa) @

Two mixed datasets with signal fractions w;

Pi(x) = W; Pgio(X) + (1 — W) ppo(X)

Classifier gives likelihood ratio

Wi Roptimal(x) + (1 - Wl)

Wr Roptimal(x) T (1 o W2)

@ signdl

@ Background

R

mixed —

Metodiev, Nachman, Thaler [1708.02949]



Classification without labels (CWolLa) @

Two mixed datasets with signal fractions w;

pi(x) = W; pPgio(x) + (1 — w)) po(x)

Classifier gives likelihood ratio
R

Wi Roptimal(x) + (1 - Wl)
mixed —

Wr Roptimal(x) T (1 o W2)
@ Monotonic function

— optimal on mixed = optimal on pure sample ® signal

@ Background

Metodiev, Nachman, Thaler [1708.02949]



Classification without labels (CWolLa) @

Two mixed datasets with signal fractions w;

pi(x) = W; pPgio(x) + (1 — w)) po(x)

Classifier gives likelihood ratio
R

Wi Roptimal(x) + (1 - Wl)
mixed —

Wr Roptimal(x) T (1 o W2)
@ Monotonic function

— optimal on mixed = optimal on pure sample ® signal

— Basis of weak supervised classification @ Background

Metodiev, Nachman, Thaler [1708.02949]



Supervised versus IAD

Background Signal

® signdl

@ Background




Supervised versus IAD

Background Signal

® signdl

@ Background

B psig(x)

supervised

pbg(x)



Supervised versus IAD

Bg. Template Data in SR Background Signal

P S1 g(x)
supervised — pbg (X)

® signadl

@ Background




Supervised versus IAD

Bg. Template Data in SR Background Signal

R _ pdata(x) R | _ psig(x)
IAD pbg (X) supervised pbg (X)

= €Rsupervised + (1 —¢)

® signadl

@ Background




CWolLa Hunting

LHC Olympics

[Kasieczka et al: 2107.02821,
2101.08320]

Sideband Signal Region Sideband

o)

O ~ .

SM .
T mp/Qfe
Data
’Q(\e(e%
& M

[1902.02634]



CWolLa Hunting

LHC Olympics

[Kasieczka et al: 2107.02821,
2101.08320]

Sideband Signal Region Sideband
Resonant
;
O ~ .
SM .
T mp/Qfe
Data
w00

[1902.02634]



CWolLa Hunting

LHC Olympics

[Kasieczka et al: 2107.02821,
2101.08320]

Sideband Signal Region Sideband

Resonant
observable  m; = my > my, my >

z

Q

0O =
Other 0D o Sty

— : ®mp|
features X = {my, my, Am;, 7, °, 7} e Data
e o

[1902.02634]



CWolLa Hunting

LHC Olympics

[Kasieczka et al: 2107.02821,
2101.08320]

Sideband Signal Region Sideband

Resonant
observable  m; = my > my, my >
Other oo "

_ Am.. 7D 7 M Tomp,
features X = {my, my, Am;, 7,’, 7,7, } Plate

Data
o e

pbg(x‘ € SR) d pbg(x‘ TS SB) i pbg(x)

[1902.02634]




CWola Hunting

CWola Likelihood estimate

R pdata(-x ‘ SR)
CWola — bg (X ‘ SB)

Sideband Signal Region Sideband

Resonant
observable  m; = my > my, my >

5

Q -
Other oo Sty
features X = {mXa My, Am TZ(I)’ 2(1)} “Plate Data

e o

pbg(x‘ € SR) d pbg(x‘ TS SB) i pbg(x)

[1902.02634]



CWolLa Hunting

CWola Likelihood estimate

R pdata(x ‘ SR) pdata(x ‘ SR)
CWola = bg(x ‘ SB) pbg(x ‘ SR)

Resonant

observable  m; = my > my, my

Other
features X = {My, My, Am Tz(}), 2(?}

pbg(x‘ TS SR) ~ pbg(x‘ i € SB) ~ pbg(x)

[1902.02634]



Can we do better?



ANOmaly detection with Density Estimation (ANODE)



CWola Likelihood estimate

. pdata(-x ‘ SR)

RCW La —
- pbg(x ‘ SB)

Density

Sideband

Signal Region

Sideband

Data

[2001.04990]



CWola Likelihood estimate

. pdata(-x ‘ SR)

RCW La —
- pbg(x ‘ SB)

The ANODE method

P (1) = py (x| m)

P, (X | 1) 22 Pyai (X [ 1)

Sideband

Signal Region Sideband

Density

Data

[2001.04990]



CWola Likelihood estimate

. pdata(-x ‘ SR)

RCW La —
- pbg(x ‘ SB)

The ANODE method
e NF
P (61 1m) = o, m)

Py, (X[ M) = pyy(x | m)
Y NEF

Sideband

Signal Region Sideband

Density

Data

[2001.04990]



CWola Likelihood estimate

. pdata(-x ‘ SR)

RCW La —
- pbg(x ‘ SB)

Sideband
The ANODE method

» NF
Pa)o(x |m) =~ Pbg(x |m)  Trained in m € SB

Density

pa)l(x | M) =~ pyo(X|m) Trained in m € SR
h NF e

Signal Region

Sideband

Data

[2001.04990]



CWola Likelihood estimate

. pdata(-x ‘ SR)

RCW La —
- pbg(x ‘ SB)

Sideband
The ANODE method

» NF
Pa)o(x |m) =~ Pbg(x |m)  Trained in m € SB

Density

pa)l(x | M) =~ pyo(X|m) Trained in m € SR
h NF e

Signal Region

Interpolate

Sideband

Data

[2001.04990]



CWola Likelihood estimate

RCWoLa —

—

Sideband
The ANODE method

A/NF

2
Pa)o(x | m) ~ Pbg(x |m)  Trained in m € SB éc’
pa)l(x | M) =~ pyo(X|m) Trained in m € SR
ha NF e

Signal Region

Interpolate

Sideband

Data

[2001.04990]



ANODE

CWola Likelihood estimate ANODE Likelihood estimate

RCWoLa =

R - pa)l(x ‘ SR) - pdata(x | SR)
q ANODE P (XISR)  Ppg(x[SR)

Sideband Signal Region Sideband
The ANODE method

/NF

Interpolate

2
Pa)o(x |m) =~ pbg(x |m)  Trained in m € SB 3 7
M Tompay.
pwl(x | M) =~ pyo(X|m) Trained in m € SR Data
™ NF O i

[2001.04990]



Are we already happy?



CWOoLA versus ANODE

CWolLa Likelihood estimate ANODE Likelihood estimate

. pdata(x ‘ SR) pa)l('x ‘ SR)
Rowora = RANODE =
Poo(x | SB) P, (x| SR)

Pros and cons: Pros and cons:

[1902.02634] [2001.04990]



CWOoLA versus ANODE

CWolLa Likelihood estimate ANODE Likelihood estimate

. pdata(x ‘ SR) pa)l('x ‘ SR)
Rowora = RANODE =
Poo(x | SB) P, (x| SR)

Pros and cons: Pros and cons:
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CWOoLA versus ANODE

CWola Likelihood estimate

R . pdata(x ‘ SR)
CWolLa Poe ()C ‘ SB)

Pros and cons:

@ Classification is easy and precise

© Sensitive to correlations between

m;; and other features x

[1902.02634]

ANODE Likelihood estimate

P, (XISR)
ANODE — Por (x|SR)

Pros and cons:
@ Robust against correlations

© Less powerful and sensitive
than classification

[2001.04990]




Can we get the best of both worlds?



Classifying Anomalies THrough Outer Density Estimation (CATHODE)



Best of both worlds — CATHODE 0
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Best of both worlds — CATHODE 0

The CATHODE method CATHODE Likelihood estimate

pdata(x ‘ SR) "y pdata(x ‘ SR)

Pa)o(x |m) ~ pbg(x |m) Trained inm € SB

TS
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How do they compare?



How to quantify improvement? @
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Significance Improvement
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Are there other ways?



ML techniques to construct SM template @
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ML techniques to construct SM template @
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ML techniques to construct SM template
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ML techniques to construct SM template
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ML techniques to construct SM template @

The Interplay of Machine Learning—based

Resonant Anomaly Detection Methods

Tobias Golling,” Gregor Kasieczka,” Claudius Krause, Radha Mastandrea,®¢ Benjamin
Nachman,®/ John Andrew Raine,” Debajyoti Sengupta,® David Shih,? and Manuel
Sommerhalder®

“ Département de physique nucléaire et corpusculaire, Université de Genéve, 1211 Genéve, Switzerland
® Institut fiir Experimentalphysik, Universitit Hamburg, 22761 Hamburg, Germany

“Institut fiir Theoretische Physik, Universitat Heidelberg, 69120 Heidelberg, Germany

¢ Department of Physics, University of California, Berkeley, CA 94720, USA

¢ Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

! Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

INHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
E-mail: tobias.golling@unige.ch, gregor.kasieczkaQuni-hamburg.de, '
claudius.krause@thphys.uni-heidelberg.de, rmastand@berkeley.edu, bpnachman@lbl.gov,
john.raine@unige.ch, debajyoti.sengupta@unige.ch, shih@physics.rutgers.edu,

manuel . sommerhalderQuni-hamburg.de

ABSTRACT: Machine learning-based anomaly detection (AD) methods are promising tools for extend-
ing the coverage of searches for physics beyond the Standard Model (BSM). One class of AD methods
that has received significant attention is resonant anomaly detection, where the BSM physics is as-
sumed to be localized in at least one known variable. While there have been many methods proposed
to identify such a BSM signal that make use of simulated or detected data in different ways, there has
not yet been a study of the methods’ complementarity. To this end, we address two questions. First,
in the absence of any signal, do different methods pick the same events as signal-like? If not, then we
can significantly reduce the false-positive rate by comparing different methods on the same dataset.
Second, if there is a signal, are different methods fully correlated? Even if their maximum performance
is the same, since we do not know how much signal is present, it may be beneficial to combine ap-
proaches. Using the Large Hadron Collider (LHC) Olympics dataset, we provide quantitative answers
to these questions. We find that there are significant gains possible by combining multiple methods,
which will strengthen the search program at the LHC and beyond.

[2307.11157]




Can we do even better?



Residual ANODE (R-ANODE)
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The ANODE method
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Summary and Outlook

Take-home messages Future exercises

ML beneficial in every step of the * Full integration of ML-based methods into
simulation and analysis chain standard tools — Taggers, MadGraph,....

* We find both proof-of-concepts as well as  Make everything run on GPUs and
established use cases (— AD, MadNIsS,...) make it differentiable

Foster deeper collaboration between

* Interesting interplay between physics and ML
theory, experiment, and ML community

— Physics provides ~infinite data for ML

— Physics requirements (precision, symmertries,...)
different than industry applications

Hadronization Detectors




