

The Compact Linear Collider: physics potential

Jan Klamka, University of Warsaw on behalf of the CLICdp Collaboration

Rabat - Salé - Kénitra Regional University Consortium Organizes

The First Edition of the African Conference on High Energy Physics

Rabat & Kénitra Morocco jan.klamka@fuw.edu.pl

CLIC running scenarios

Staged implementation

 \rightarrow Possible adjustments based on any potential discoveries

Three main areas of research:

- Higgs physics
- Top physics
- Beyond Standard Model searches

Baseline: several energy stages

Stage	\sqrt{s} [GeV]	$\mathcal{L}_{\mathrm{int}} \; [fb^{-1}]$
1	380	1000
top scan	350	100
2	1500	2500
3	3000	5000

25 October 2023

Simulation and software framework

- Whizard (+Pythia) as the main generator
- Most of results based on **Geant4 full simulation**
- Comprehensive set of tools for reconstruction include:

 \rightarrow <u>Conformal Tracking</u>, PandoraPFA libraries, <u>VLC algorithm</u> for jet reco.

- \rightarrow tools for flavour tagging, isolation, and more
- Set of **Delphes cards** for fast simulation

- Beam-induced backgrounds taken into account in full sim.
- Timing cuts applied to reduce $\gamma\gamma \rightarrow$ hadrons overlay events

tt events before and after cuts

25 October 2023

Higgs boson

Higgs physics

ZH (Higgsstrahlung)

- At 380 GeV (close to max. cross section)
- Precise mass and coupling measurements

Production in Vector Boson Fusion (VBF)

- WW fusion dominant at high energies
- Allows complementary measurements increasing precision

Di-Higgss production

- Significant cross section in WW fusion at 3 TeV
- Self-coupling measurement

Higgsstrahlung and global fit

 e^+

e

Ζ

Η

Ζ

ZH (Higgsstrahlung)

- Use Z \rightarrow ee, $\mu\mu,$ and Z recoil mass to identify HZ events
 - \rightarrow model-independent $\mathbf{g}_{\rm HZZ}$ coupling determination
- Further improvement with $\mathsf{Z} \to \mathsf{q}\mathsf{q}$

Invisible decays

- Model-independent measurement of $BR(H \rightarrow inv.)$
- Can be constrained to $\mathbf{1\%}$ at 95% C.L.

Model-independent global fit (no assumptions on BSM scenarios)

- Possible only at lepton colliders
- Fit to $\sigma \times BR$ measurements in HZ, VBF (different channels, energies)
- Precision $\lesssim 1\%$ for most couplings
- Model-dependent fit also possible (see EPJ C 77 (2017) 475, arXiv:1812.01644)

+ 1.4 TeV, 2.5 ab⁻¹ + 3 TeV. 5 ab⁻¹

0.8

Higgs self-coupling

Determines shape of the scalar potential

 \rightarrow important for vacuum metastability, hierarchy problem, electroweak phase transition and baryogenesis

Direct access possible only above 500 GeV c.m. energy Cross section for HHvv grows with energy

- \rightarrow $\rm g_{\rm HHH}$ can be extracted using:
- + 1.5 TeV (ZHH and HHvv) and 3 TeV (HHvv) data
- Cross section measurements and distributions of sensitive variables
 - \rightarrow leads to -8%, +11% precision on ${\bf g}_{_{\rm HHH}}$

As g_{HHWW} also contributes to HHvv, simultanous fit can be performed to constrain both couplings

Top quark

25 October 2023

Top physics

tt production

- At 380 GeV (close to max. cross section)
- Precise mass measurements

ttH production

- At 1.5 TeV (close to max. rate due to higher lumi)
- Top Yukawa coupling measurement

tt_production in VBF

- At 3 TeV
- Sensitive to BSM effects

Other highlights in the top sector:

- Electroweak couplings
- CP properties (ttH)
- Forward-backward asymmetry
- New physics searches (compositeness, FCNC, and more)

Top mass measurements

Top threshold scan:

- Dedicated runs at 10 points (10 fb⁻¹ each) around 350 GeV with reduced charge lumi. spectrum \rightarrow lower beamstrahlung
- Uncertainties from Yukawa and $\alpha_{_{\! s}}$ couplings
- Most precise method for mass measurement \rightarrow uncert. **20 MeV (stat.)** and **50 MeV (tot.)**

Complementary methods:

- Radiative events (tt γ) at 380 GeV
 - \rightarrow Similar method to threshold scan, ~140 MeV uncert.
- Direct mass reconstruction at 380 GeV
 - \rightarrow large theoretical uncert., experimentally challenging

BSM physics

EFT framework

 $\Lambda [\text{TeV}]$

precision reach of the Universal EFT fit 10^{-1} -LHC (3/ab, S1) + LEP/SLD light shade: CLIC + LEP/SLD HL-LHC (3/ab, S2) + LEP/SLD solid shade: combined with HL-LHC(S2) CLIC Stage 1 blue line: individual reach CLIC Stage 1+2 yellow mark: additional result 10 CLIC Stage 1+2+3 [TeV⁻²] Higher reach $c_i \, / \, \Lambda^2$ 10-1 -10 10^{-2} 10^{-3} C2 W×10² C2 E×10² C_H c_{WW} c_{BB} c_{HW} *С*_{НВ} $c_{\rm GG^{\times 10}}$ C_{V_f} c_{3W} $c_{\rm WB}$ CT C_6

 $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \mathcal{O}\left(\Lambda^{-4}\right)$ Based on CLIC combined precision measurements of: Higgs couplings, top-quark observables, WW production and $ee \rightarrow ff$

25 October 2023

Direct BSM searches

Process	HL-LHC	CLIC	
Higgs mixing with heavy singlet	$\sin^2\gamma < 4\%$	$\sin^2\gamma < 0.24\%$	-
Higgs self-coupling $\Delta\lambda$	$\sim 50\%$ at 68% C.L.	[-8%, 11%] at 68% C.L.	
BR(H ightarrow inv.) (model-independent)		<1% at 95% C.L.	
Higgs compositeness scale m_*	$m_* > 3 \mathrm{TeV}$	Discovery up to $m_* = 10 \text{TeV}$	_
	$(>7 \mathrm{TeV} \mathrm{ for } g_* \simeq 8)$	(40 TeV for $g_* \simeq 8$)	_
Top compositeness scale m_*		Discovery up to $m_* = 8 \text{TeV}$	-
		(20 TeV for small coupling g_*)	_
Higgsino mass (disappearing track search)	> 250 GeV	> 1.2 TeV	-
Slepton mass		Discovery up to $\sim 1.5 { m TeV}$	
RPV wino mass ($c\tau = 300$ m)	> 550 GeV	> 1.5 TeV	_
Z' mass (SM couplings)	Discovery up to 7 TeV	Discovery up to 20 TeV	
NMSSM scalar singlet mass	$> 650 \mathrm{GeV} (\tan\beta \le 4)$	$> 1.5 \mathrm{TeV} (\mathrm{tan}\beta \leq 4)$	_
Twin Higgs scalar singlet mass	$m_{\sigma} = f > 1 \mathrm{TeV}$	$m_{\sigma} = f > 4.5 \mathrm{TeV}$	_
Relaxion mass (for vanishing mixing)	< 24 GeV	< 12 GeV	_
Relaxion mixing angle $(m_{\phi} < m_{\rm H}/2)$		$\sin^2 \theta \leq 2.3\%$	
Neutrino Type-2 see-saw triplet		> 1.5 TeV (for any triplet VEV)	_
		$> 10{ m TeV}$ (for triplet Yukawa coupling $\simeq 0.1)$	
Inverse see-saw RH neutrino		$> 10 \mathrm{TeV}$ (for Yukawa coupling $\simeq 1$)	_
Scale $V_{LL}^{-1/2}$ for LFV $(\bar{e}e)(\bar{e}\tau)$		$> 42 \mathrm{TeV}$	- arXiv:1812.0798 arXiv:2111.0478

Outlook

- CLIC, as a mature option for a future Higgs factory, has a broad physics programme for staged running at 380 GeV, 1.5 TeV, and 3 TeV
- Higgsstrahlung channel allows for Higgs measurements independent on its decay channels
- Higgs couplings can be measured at CLIC with unprecedented precision in a modelindependent way
- CLIC is the earliest project where less than 10% presicion on Higgs self-coupling can be reached
- Top quark measurements include precise determination of mass and width (in the threshold scan), Yukawa and EW couplings
- CLIC high energy stages offers great possibility for direct BSM searches, in many cases surpassing HL-LHC reach

BACKUP

25 October 2023

Disappearing tracks

 \rightarrow Reachable higgsino mass of 1.1 TeV required for exact DM relic density

Heavy Scalar Singlets

25 October 2023

Jan Klamka, CLIC physics potential

arXiv:1812.02093

Invisible scalar decays

25 October 2023

Most general approach for DM search

Simplified DM Models framework

Vector, axial-vector and scalar mediators

Coupling geY = 0.1, 1

+80%, -80% and no beam polarisation considered Best limits using: $\sigma(Pe=-80\%)/\sigma(Pe=+80\%)$ (sys. uncert. cancel)

Discrimination between vector and axial-vector mediators, with $m_Y = 3.5 \text{ TeV}, m_X = 1 \text{ TeV}$ WIMP mass determination with 1% accuracy arXiv:2103.06006

CLIC 3 TeV, geY = 0.1

Mono-photon – light mediator

Weak dependence on the model scenario!

For high masses limits on <u>EFT mass scale</u>: <u>6-10 TeV</u>

Eur.Phys.J.C 81 (2021) 10, 955

Small masses and **couplings**

"Experimental" approach – limits depending on width and mass

 Λ^2

Inert Doublet Model

Good agreement between **full** and **fast** simulation \rightarrow **realistic predictions** for all scenarios

Wide range of scenarios at **1.5 TeV** and **3 TeV** CLIC analysed

Almost all scenarios could be discovered

Scalars with **masses of 1 TeV accessible** → significant **increase** w.r.t. previous study (based on leptonic channel)

Significance reaching even 50σ

Heavy neutrinos

Based on DELPHES simulation, with $e\gamma, \gamma\gamma$ backgrounds considered

Observation expected almost up to the kinematic limit

Limits stronger than from LHC and FCC-hh

Semi-leptonic channel allows full neutrino reconstruction

JHEP 06 (2022) 010