

EU Project MuCol Status and Plans

R. Losito CERN

Funded by the European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

 All Deliverables (D) and Milestones (M) achieved and declared on EU portal

 D & M falling in summer over the entire project have been moved to end of October of the corresponding year (list in spare slides)

 Few Associated Institutes didn't sign yet the Consortium Agreement...

Physics And Detector Requirements

WP2

1) Software and detector training

Collar CCRN Europe/Zuri		or design and phys		Q	 46 partic remote Presenta sessions
	Introduction to the MuCol project and tutorial goals	Donatella Lucchesi 🥝			
	40/S2-C01 - Salle Curie, CERN	13:30 - 13:45			
	Description of the actual detector	Davide Zuliani 🥔	09:00	Beam Induc	ed background description
14:00	40/S2-C01 - Salle Curie, CERN	13:45 - 14:05		40/S2-C01 -	Salle Curie, CERN
	Introduction to the software	Karol Krizka 🥝		Hands on: E	Beam Induced Background overlay to physics event
	40/S2-C01 - Salle Curie, CERN	14:05 - 14:30			
	Hands on: Event generation examples	Donatella Lucchesi et al.		40/S2-C01 -	Salle Curie, CERN
	40/S2-C01 - Salle Curie, CERN	14:30 - 15:00	10:00	Hands on: M	Nodify the detector geometry
15:00	Coffee Break				
	40/S2-C01 - Salle Curie, CERN	15:00 - 15:30		40/S2-C01 -	Salle Curie, CERN
	Hands on: detector simulation	Lorenzo Sestini 🥝		Coffee Brea	k
				40/S2-C01 -	Salle Curie, CERN
16:00	40/S2-C01 - Salle Curie, CERN	15:30 - 16:15	11:00	Open hands	s on: from beginners to advanced
	Hands on: event reconstruction	Laura Buonincontri 🥔			
	40/S2-C01 - Salle Curie, CERN	16:15 - 17:00			
17:00	Hands on: event analysis	Chiara Aime' 🖉	10.00		
			12:00		
	40/S2-C01 - Salle Curie. CERN	17:00 - 17:45		40/S2-C01 -	Salle Curie, CERN
	HUIDE-OUT - Salle Guile, GENT	11.00 - 11.45			

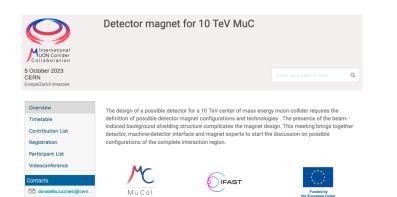
International UON Collider

MuCol

- 46 participants in person and remote
- Presentations and hands-on sessions very well attended

Nazar Bartosik @ 09:00 - 09:20 Nazar Bartosik @ 09:20 - 09:55 Lorenzo Sestini @ 09:55 - 10:30

10:30 - 11:00


11:00 - 12:30

WP2

) Definitions of requisites for detector design at $\sqrt{s} = 10$ TeV

International UON Collider

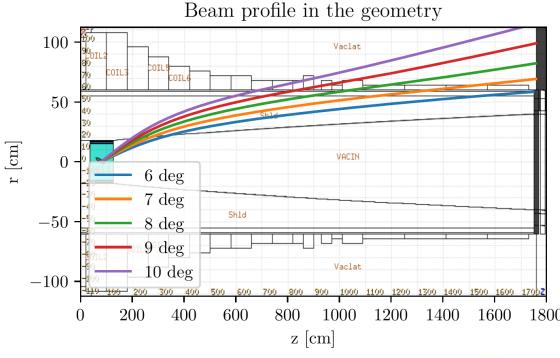
aboration

MuCol

We received several suggestions and recommendations on how to proceeds on magnet assumptions.

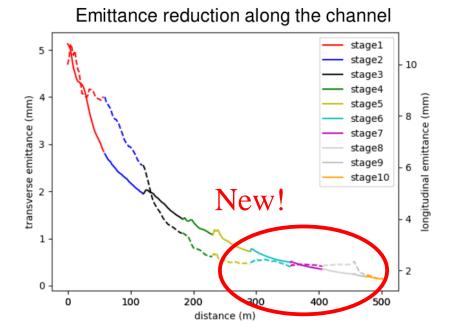
Activities starting on first concept of a base design.

09:00	Introduction	Ø
	4/3-006 - TH Conference Room, CERN	09:00 - 09:10
	Detector requirements at a 10 TeV muon collider	Massimo Casarsa 🥝
	4/3-006 - TH Conference Room, CERN	09:10 - 09:40
	Discussion	
	4/3-006 - TH Conference Room, CERN	09:40 - 09:50
	MDI Requirements	Daniele Calzolari 🥝
0:00	4/3-006 - TH Conference Room, CERN	09:50 - 10:20
	Discussion	
	4/3-006 - TH Conference Room, CERN	10:20 - 10:30
	Coffee Break	
	4/3-006 - TH Conference Room, CERN	10:30 - 11:00
L:00	Superconducting Technology for Future Colliders and Detectors	Prof. Akira Yamamoto 🥝
	4/3-006 - TH Conference Room, CERN	11:00 - 11:30
	Status and plans of aluminium stabilized conductor R&D at CERN for detector magnets	Benoit Cure 🥝
	4/3-006 - TH Conference Room, CERN	11:30 - 11:55
2:00	The 3.6 T CLIC-like superconducting solenoid for the Muon Collider	Matthias Mentink 🥝
	4/3-006 - TH Conference Room, CERN	11:55 - 12:20
	Discussion	
	4/3-006 - TH Conference Room, CERN	12:20 - 12:30
	Lunch Break	
	Detector magnets survey	Andrea Bersani 🥝
	4/3-006 - TH Conference Room, CERN	15:15 - 15:40
	Discussion and decision on possibilities to use on detector(s) concept	


WP3 Proton Complex

- PhD student started in August and looking into transport of the beam from compressor to target.
- Hiring of a postdoc to work on the compressor ring design ongoing and on final round of interview (expected start Jan 2024).
- Collecting some data from PS and Booster on merging and bunch rotation.
- Work on the tentative parameter list and interim report for MuCol and IMCC.

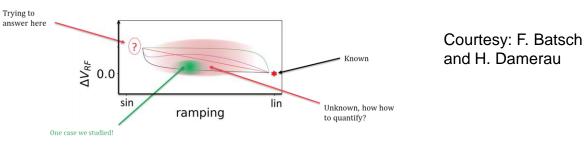
WP4 Muon Production & Cooling


- Established preliminary radial build
- Optimising dose levels, heat load etc to shielding and magnet
 - Close liaison with magnets team
 - Discussion around 60 vs 70 cm magnet bore
- Looking at beam window
- Looking at spent proton beam extraction

WP4 Muon Production & Cooling

- Lattice optimisation ongoing
- Rectilinear cooling (Zhu Ruihu)
 - Drive optimisation
- Final cooling (Elena Fol, Bernd Stechauner)
 - Improved scattering model in RFTrack
 - Implement realistic RF
 - Phase rotation and acceleration of muon beam

WP5 - High Energy Complex Parameter table

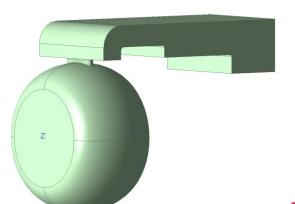

- A first parameter table is proposed for the highenergy acceleration.
 - The RCS4 is the most preliminary and needs more studies to be consolidated.
 - The needed total dipole length and RF voltage are evaluated and can be a first step for costing considerations.
 - The optics is based on FODO cells and should be reviewed.
 - The acceleration ramp is quasi-linear and may evolve.
- Future versions of the parameter table should include also an FFA alternative.
- We need to continue the discussions to see how to marry RF, magnet, powering, costing, vacuum, collective effects, and optics considerations.

Parameter	Symbol	Unit	RCS1	RCS2	RCS3	RCS4
Hybrid RCS	4	-	No	Yes	Yes	Yes
Repetition rate	frep	[Hz]	5	5	5	5
Circumference	$2\pi R$	[m]	5990	5990	10700	35000
Injection energy	E_{inj}	[GeV/u]	63	314	750	1500
Ejection energy	$E_{\rm ci}$	[GeV/u]	314	750	1500	5000
Energy ratio	$E_{\rm cj}/E_{\rm inj}$	-	4.98	2.39	2.00	3.33
Assumed survival rate	$N_{\rm cj}/N_{\rm inj}$	-	0.9	0.9	0.9	0.9
Acceleration time	Tacc	[ms]	0.343	1.097	2.37	6.37
Revolution period	$T_{\rm rev}$	[µs]	20.0	20.0	35.7	117
Number of turns	71turn		17	55	66	55
Required energy gain per turn	ΔE	[GeV]	14.8	7.9	11.4	63.6
Average accel. gradient	Gase	[MV/m]	2.44	1.33	1.06	1.83
Number of bunches/species	-	-	1	1	1	1
Bunch population	$N_{\rm inj}/N_{\rm cj}$	$[1 \times 10^{12}]$	2.7/2.43	2.43/2.2	2.2/2.0	2.0/1.
Vertical norm, emittance	Cv.n	[mm]	25	25	25	25
Horiz, norm, emittance	ch.n	[mm]	25	25	25	25
Long. norm. emittance $\sigma_E \times \sigma_t$	Cz.n	[eVs]	0.025	0.025	0.025	0.025
Tot. straight section length	L_{str}	[m]	2335	2336	3976	1036
Total NC dipole length	LNC	[m]	3655	2539	4366	20370
Total SC dipole length	LSC	[m]	0	1115	2358	4257
Max. NC dipole field	BNC	[T]	1.80	1.80	1.80	1.80
Max. SC dipole field	BSC	[T]	-	10	10	16
Ramp rate	B	[T/s]	4200	3282	1519	565
Main RF frequency	f RF	[MHz]	1300	1300	1300	1300
Max RF voltage	VRF	[GV]	20.9	11.2	16.1	90

WP5 High Energy Complex Ramp optimization

- 2 powering circuits are being considered (full-wave and switched resonances).
- Some cost model (RF and powering) is under development. Clearly, the choice of the ramp has a big impact on the total cost.
- Next steps: Integrating in a python environment the different scaling laws (costing, powering, optics, RF,...) to reduce the number of free parameters and improve the optimization process.

WP6 RF

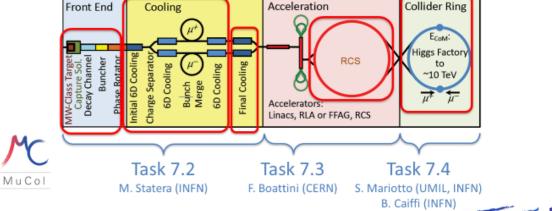

- The activities of the WP6 proceed during the first months of the project focusing on some specific elements related to
 objective of each of the subWP.
- WP 6.1 specifically addressed different approaches to the analysis of the problems related to the HOM of the SC cavities involved. The study of specific aspects relating to these cavities was addressed in a general sense with an overview of the skills available in the components involved.
- WP 6.2 focused on carrying out an overview of possible technologies to be applied to the construction of RF cavities for the cooling system. In parallel, in concert with WP4, we focused on the definition of the main parameters (frequency, aperture, ...) as well as how these derive from the beam dynamics in the channel.
- WP 6.3 is probably the WP where the most part of the efforts concentrated. Computer simulations and theoretical analysis have been carried out to outline and face the problems related to the coexistence of high electric RF fields in strong magnetic fields. The requirement to carry out deep analysis on the experimental side to define the technologies to be used in such application has been deeply discussed. A pulsed DC test set is under realization at INFN Milano and a couple of different RF cavities (with related power couplers) have been electromagnetically designed to be used in a test stand based on a SC solenoid and one of these cavities.

- The pulsed DC test set has been conceived taking into account the experience made at CERN on a similar bench.
- The innovative feature of this new test set is that we may apply the pulsed DC voltage along with a static magnetic field up to 1 Tesla.
- We will expect to get more and more data on materials and surface treatments.
- The picture below report the RF design for a 3 GHz cavity which may be inserted in a SC solenoid with a bore of nearly 350 mm. The design of the solenoid will provide a field up to 7 Tesla while the electric fields may reach a value of 50 MV/m.

-1-2

WP7 Magnets

- Review held during annual meeting, preliminary report presented to the Community
- Working at precising responsibilities and refining parameters for the parameter list (see next slide)



WP7 Magnets

Muon Collider magnet "team"

Cooling	Acce	leration	Collider Ring
KIT	UniTwente	UniLaval	TUT
UMIL	SO'TON	HEIA-FR	CERN
CERN	UniGE	UniMalta	UMIL
INFN	PSI	UniTwente	INFN
	CNRS	TUDa	
	CEA	UniBO	
	INFN	CERN	
	CERN	-	
	CERN UMIL KIT	INFN CEA CNRS INFN PSI CERN UniGE UMIL SO'TON KIT UniTwente	INFN CERN CEA UniBO CNRS TUDa INFN PSI UniTwente CERN UniGE UniMalta UMIL SO'TON HEIA-FR KIT UniTwente UniLaval

WP7 Magnets

Complex	Magnet	Aperture (mm)	Length (m)	Field (T)	Ramp rate (T/s)	Temperature (K)
Target, decay and capture channel	Solenoid	1200	19	20	SS	20
6D cooling channel	Solenoid	901500	0.080.5	415	SS	4.2/20
Final cooling channel	Solenoid	50	0.5	> 40	SS	4.2
Rapid cycling synchrotron	NC Dipole	30x100	5	± 1.8	4200	300
Rapid cycling synchrotron	SC Dipole	30x100	1.5	10	SS	4.2/20
Collider ring	Dipole	160100	46(1)	1216	SS	4.2/20

⁽¹⁾ depends on sagitta vs. aperture (see US-MAP studies)

WP8 Cooling Cell

- Working on the definition of the prototype cooling cell to be designed
- Training on the design of the RF-in-magnetic-field test stand
- First preliminary ideas will be presented and discussed in a workshop at CERN on 18 and 19 January in order to collect feedback from the community. Design work will then start

WP8 Cooling cell

MDP

C. Rogers, NuFact 22

Article A Demonstrator For Muon Ionisation Cooling

Chris Rogers 10

1 Rutherford Appleton Laboratory; chris.rogers@stfc.ac.uk

Abstract: The muon collider is an excellent prospect as a multi-TeV lepton collider, with the possibility for high luminosity and reach to 10 TeV or more. In order to realise such luminosity, high beam brightness is required. Ionisation cooling, which was demonstrated recently by the Muon Ionization Cooling Experiment (MICE), is the technique proposed to realise sufficient brightness. MICE demonstrated transverse emittance reduction of incident beams having relatively high emittance and without beam reacceleration. The international Muon Collider Collaboration proposes a Demonstrator for Muon Cooling that will demonstrate six-dimensional emittance reduction over a number of cooling cells, operating at beam emittance close to the ultimate goal for the muon collider. Together with a full R&D programme this will pave the way for construction of a muon collider. In this paper, initial considerations and possible implementations for the Demonstrator are discussed.

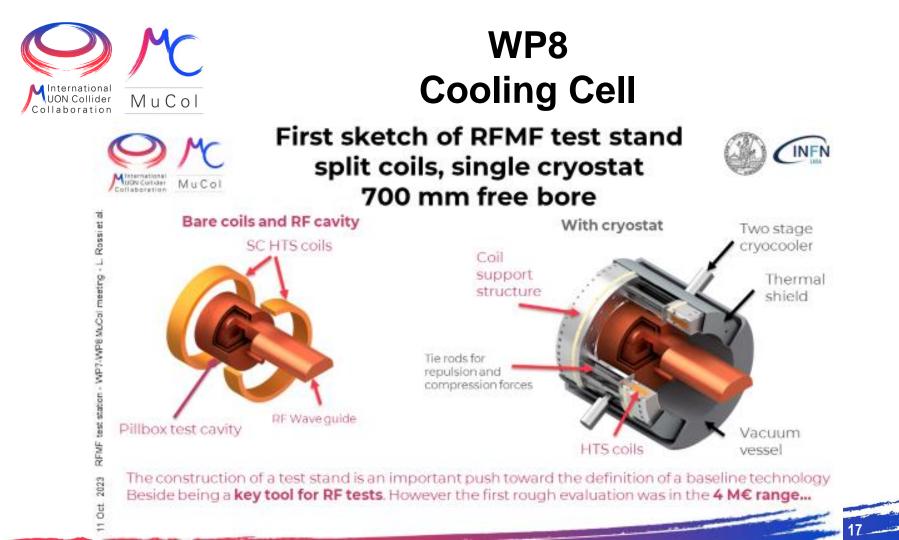

Keywords: collider; cooling; muon

Table 1. Hardware parameters for the Demonstrator.

Beam Preparation S	System
Parameter	Value
Cell length	1 m
Peak solenoid field on-axis	0.5 T
Collimator radius	0.05 m
Dipole field	0.67 T
Dipole length	1.04 m
RF real estate gradient	7.5 MV/m
RF nominal phase	0° (Bunching)
RF frequency	704 MHz

Cooling System	
Parameter	Value
Cell length	2 m
Peak solenoid field on-axis	7.2 T
Dipole field	0.2 T
Dipole length	0.1 m
RF real estate gradient	22 MV/m
RF nominal phase	20°
RF frequency	704 MHz
Wedge thickness on-axis	0.0342 m
Wedge apex angle	5°
Wedge material	LiH

aller.

MInternational UON Collider Collaboration

Thank you for your attention

Deliverables new dates

Deliverable Name	Work Package No	Lead Beneficiary	l'pc	Date
	NU		DMP — Data	
Data-management plan	WPI	1 -CERN	Management Plan	8
reliminary ESPPU report No. 1	WPI	1 - CERN	R — Document, report	12
eliminary ESPPU report No. 2	WPI	1 -CERN	R — Document, report	24
termediate ESPPU report	WPI	- CERN	R — Document, report	36
onsolidated ESPPU report	WPI	1 - CERN	R — Document, report	48
			DATA — data sets, microdata,	
am-induced background and detector configuration	WP2	8 - UNIPD	etc	32
tector performance by using physics processes	WP2	2 - DESY	R — Document, report	36
nal report on parameters and initial study for the Proton Complex	WP3	11 -ESS	R — Document, report	45
velopment of BDSIM simulation	WP4	16 -UKRI	OTHER	24
eliminary Report on key subsystems for ESPPU input	WP4	16 -UKRI	R — Document, report	33
onsolidated Report on key subsystems	WP4	16 -UKRI	R — Document, report	45
port on the collider ring design	WP5	5 - CEA	R — Document, report	44
eport on the design of the HEC	WP5	5 - CEA	R — Document, report	45
port on design of high power and high efficiency RF power				
urces	WP6	5 - CEA	R — Document, report	44
port on RF for MCC and HEC	WP6	5 - CEA	R — Document, report	45
eliminary report on muon collider magnets	WP7	1 - CERN	R — Document, report	33
nsolidated report on muon collider magnets	WP7	1 - CERN	R — Document, report	45
resentation of cooling cell conceptual design	WP8	7 - UMIL	OTHER	15
nal report on cooling cell design	WP8	7 - UMIL	R — Document, report	44

30/11/2026 30/11/2025 30/11/2026 31/05/2024 31/10/2026

19

- 0-

Milestones new Dates

/lilestone No	Milestone Name	Work Package No	Lead Beneficiary	Means of Verification	Due Date (month)
1	Website Available	WP1	1 -CERN	Website online	2
2	Kick-off meeting	WP1	1-CERN	Indico site	3
3	Tentative parameters available	WP1	1-CERN	Database	8
4	First annual meeting	WP1	1 -CERN	Indico site	15
5	Preliminary parameters	WP1	1-CERN	Database	20
6	Second annual meeting	WP1	1-CERN	Indico site	27
7	Consolidated parameters	WP1	1-CERN	Database	32
8	Third annual meeting	WP1	1-CERN	Indico site	39
9	Training on detector design and physics performance tools	WP2	8-UNIPD	Training material	6
10	Workshop on MDI and IR design	WP2, WP5	8-UNIPD	Indico site	13
11	Release of simplified detector performance model (DELPHES card or/and similar format)	WP2	8-UNIPD	Model published on the website	20
12	Workshop on detector design and physics performance with a public lecture on Muon Collider	WP2	8-UNIPD	Indico site	25
13	Publication of report of detector performance with major physics process at several ECM	WP2	8-UNIPD	Article ready for submission	48
14	Mini-Workshop on pulsed magnets	WP7, WP5	5-CEA	Indico site	15
15	Tentative design of the interaction region	WP2, WP5	1-CERN	Optics files	20
16	Tentative optics of the collider ring and pulsed synchrotrons	WP5	5-CEA	Optics files	19
17	Tentative design of the FFA	WP5	5-CEA	Optics files	25
18	Tentative impedance budget in the collider and pulsed synchrotron	WP5	5-CEA	Dataset	26
19	Workshop on ultra-high-field solenoids	WP7	1 -CERN	Indico site	32
20	Workshop on high-field collider magnets	WP7, WP5	1-CERN	Indico site	44
21	Cooling cell design 3D model	WP8	7-UMIL	3D model completed & Report	33

Terror Statements

-1-