# Fermilab Dus. Department of Science



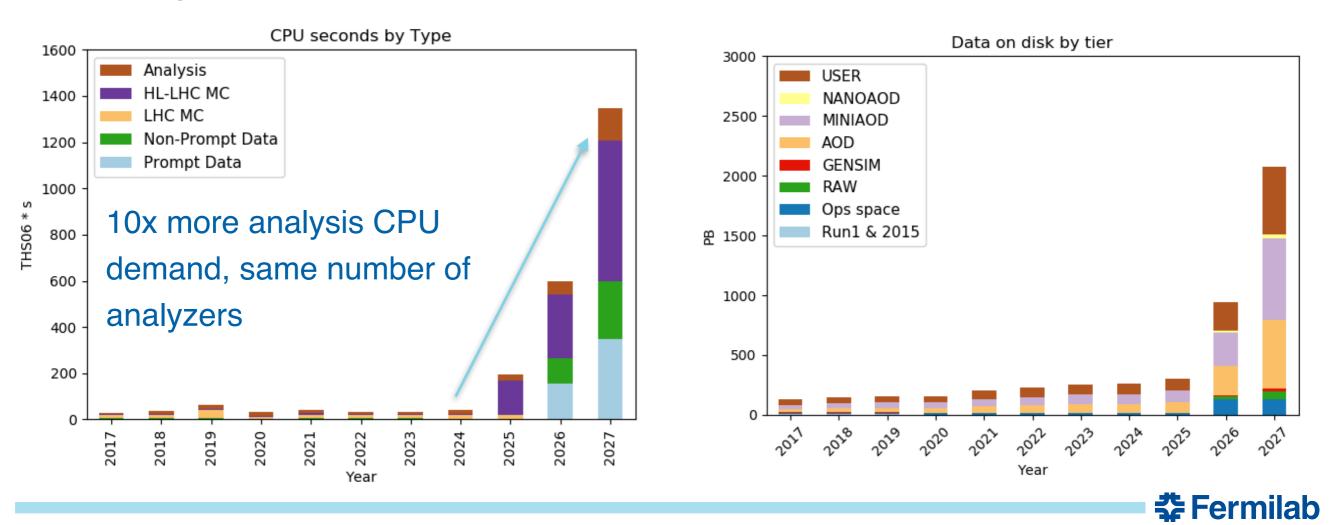
#### What will it take to do a HL-LHC analysis in 15'?

Lindsey Gray ACAT 2024, Stony Brook University 14 March 2024



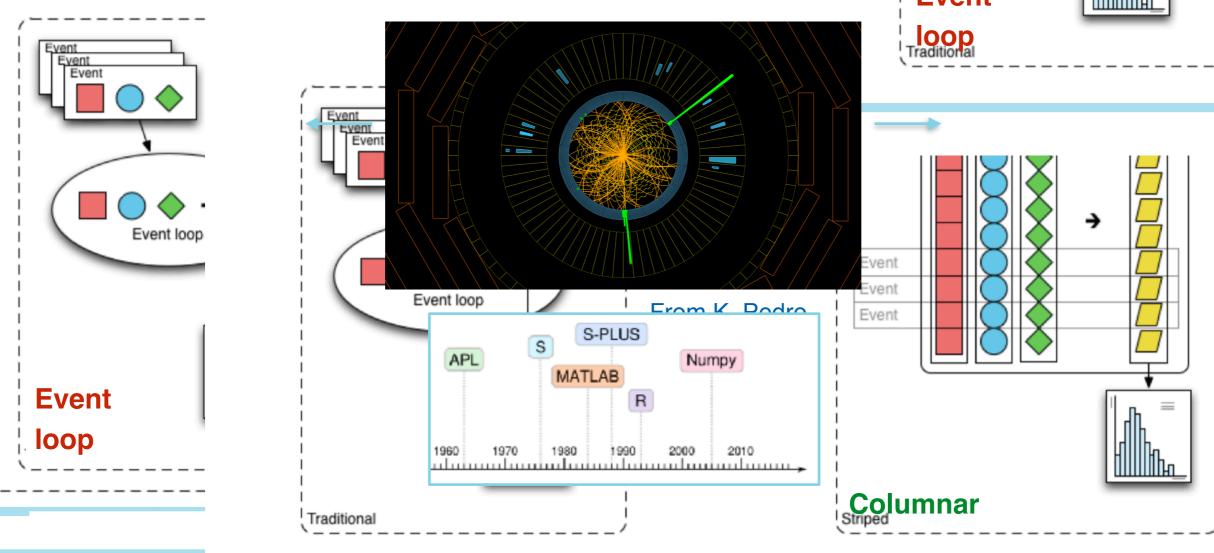
### The challenge of analysis for HL-LHC

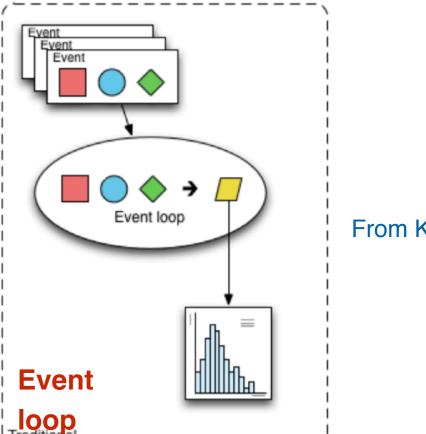
- The increase total data volume of the HL-LHC begets an increase in enduser analysis data
- In order to make scientific progress with such a large amount of intricate data time-to-next-action must be short
  - Input datasets must be easy to efficient to access and interpret
  - <u>Software and hardware infrastructure must deliver prompt, complete results without</u> requiring undesired attention from the user



# **Essential difficulties of describing HEP** ¿

- The first step in HEP was organizing around effi opposed to richness of data representation
  - HEP events are highly structured objects and thinking design
  - Highly structured data can be inefficient on disk / in me
- To develop an efficient system need to be able t expression simultaneous to efficient access

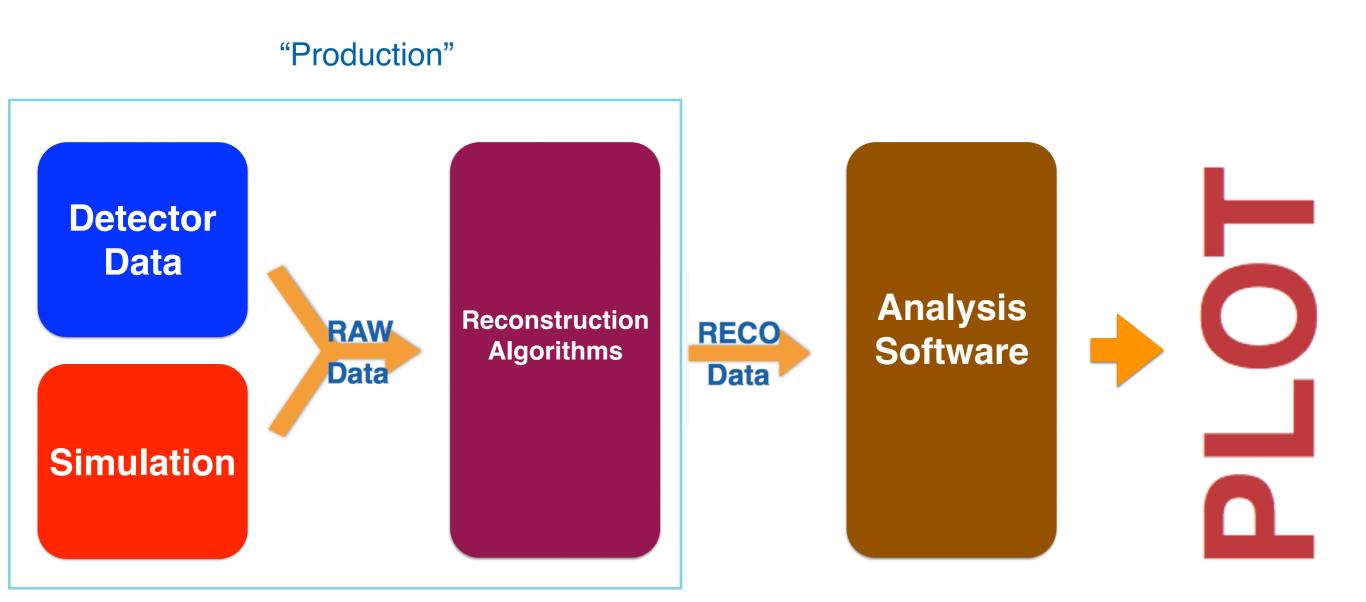




la

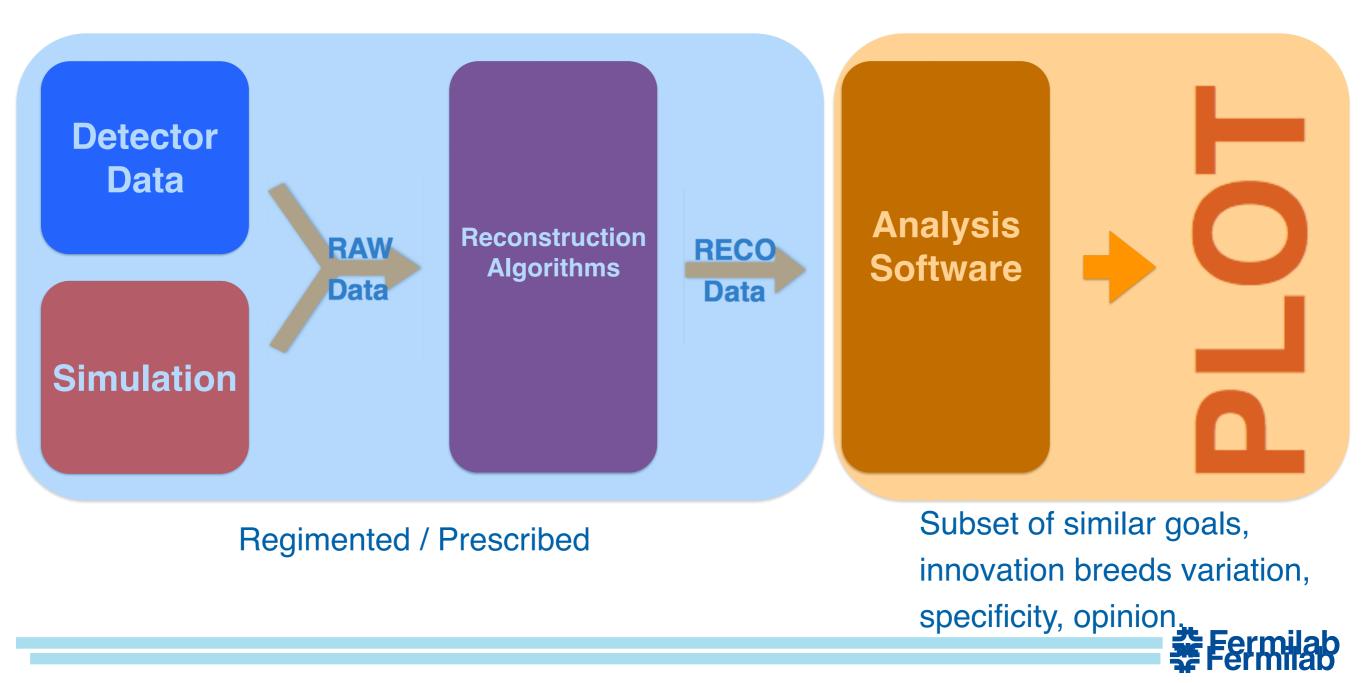
**き** Formilah

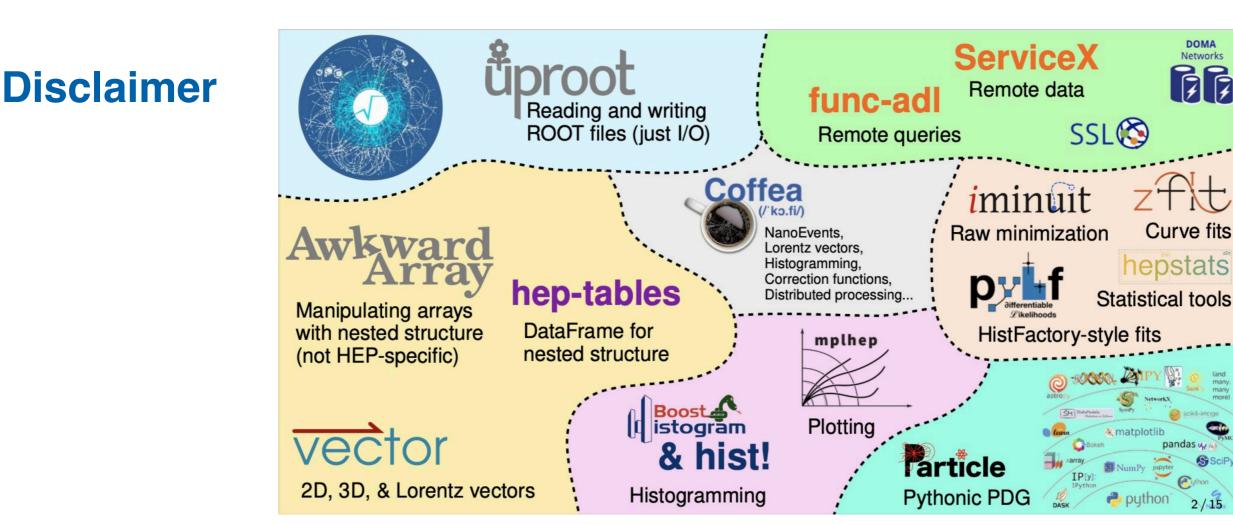
#### **Outline of HEP data derivation**





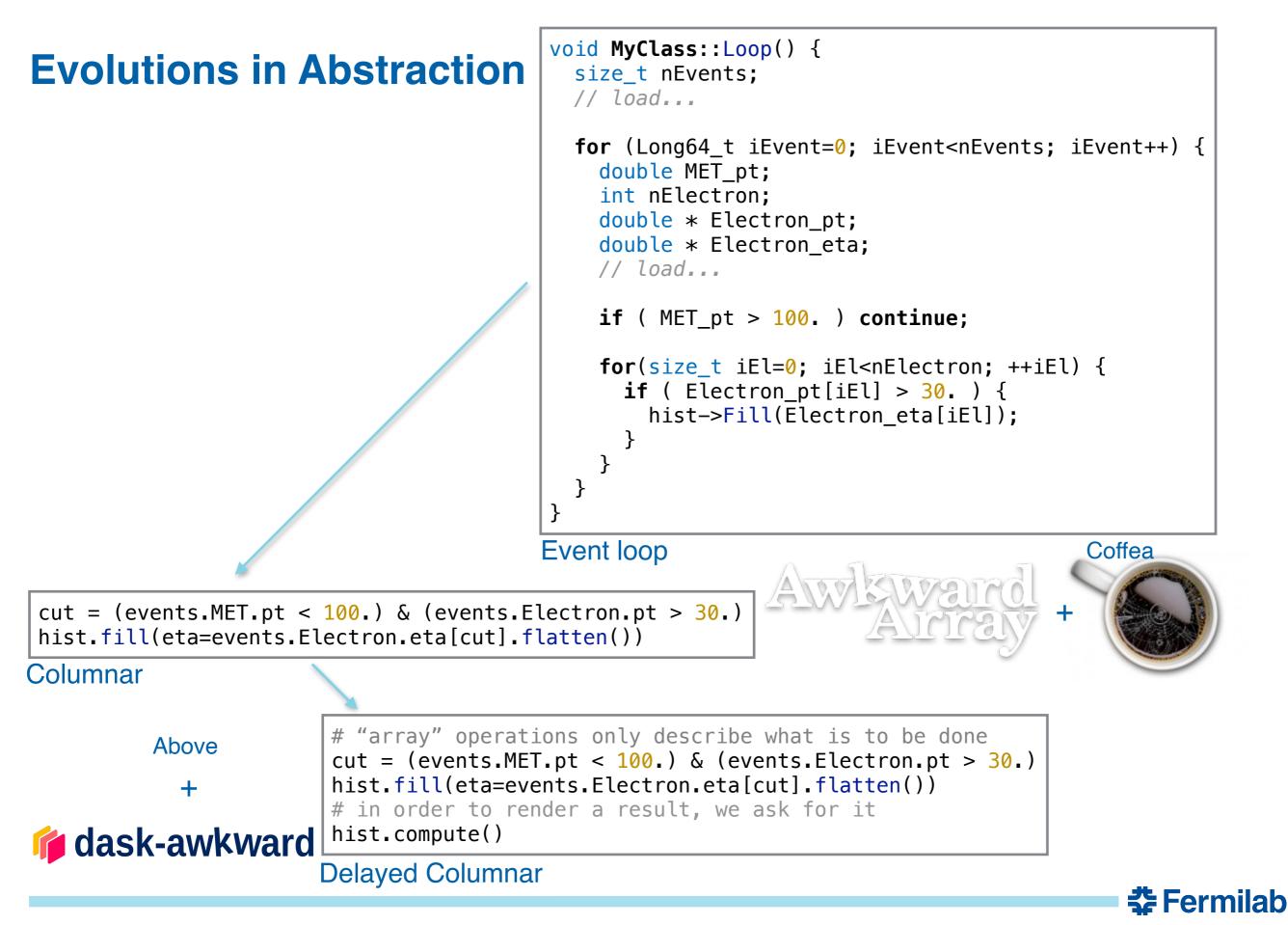
### **Typical Difference between Production and Analysis**





- I am going to discuss from the perspective of a scientific python HEP user
  - This will bias architectural choices to some degree, but not so much
- I am doing this because it is the system, and ecosystem, that I know better
- A majority of the concepts and usage patterns are also possible with the ROOT ecosystem and other ways of ingesting/manipulating data
- I will use a number of nVidia infographics and product references
  - I am not trying to sell nVidia products, just sketching system architectures
  - Again, ecosystem bias... and they make really nice infographics





#### Kinds of Data in the CMS Experiment

RECO: O(MB) per event

AOD: O(500 kB) per event

#### MiniAOD: O(40 kB) per event

NanoAOD and similar: O(2 kB) per event

- LHC experiments, and here CMS, use a variety of tiered data
- Very few analyses these days use the larger data tiers
- All analyses do histogram making, statistical analysis, ML training on flexible, concise analysis ntuples
  - This paradigm is likely not going away, and data like this will always materialize at some point in an analysis workflow
  - Software products like <u>serviceX</u> are helping to make these more transient and composable



# Setting the Stage for 15'

- The scope of the question is enormous, so I am choosing to make some reasonable simplifications to come close to answering it!
- Analysis we're doing in HL-LHC is going to have a large overlap with cutting edge analysis right now
  - Cutting edge analysis then will look very different, the input data volumes will be **larger** than what is outlined here due to low level input for ML
  - If we are careful, it will not be that much larger
- Assuming NanoAOD + delta we expect ~2 kB per event
  - O(1 PB) NanoAOD for HL-LHC, a typical analysis will use ~30-40% of data
  - -> Average **450 Gbit/s** to ingest data without decompression in 15 minutes
  - 2 kB / event -> 500 billion events to process
    - average 560 MHz event processing throughput
- For facilities needs Analysis Facilities Whitepaper a good start
  - Outlines capabilities that analysis users desire, reconciles with facilities
  - This talk will largely be about capabilities and where suitable software abstractions provide the flexibility to speed things up and plan execution efficiently



#### Can you do this right now with CPUs and current software?

Some may ask do you need to do analysis HL-LHC in 15'? Really?

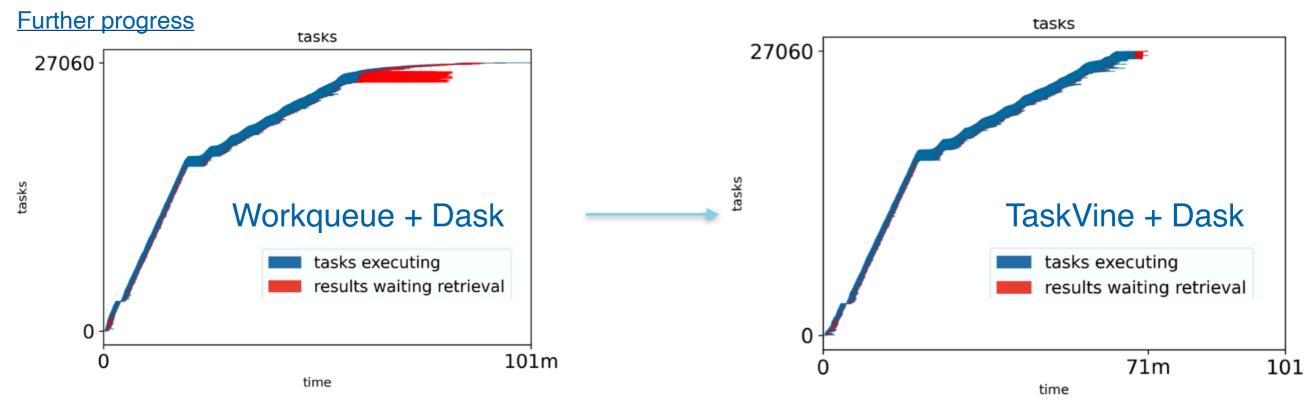
I think that's beyond the scope of this talk!

- Technically yes but with a 400 kHz, throughput rate you'd need to
  - Would need to scale immediately to 500k cores that all have high quality access to data
- So probably really no, given the law of large numbers and many users...
- What's a way forward?



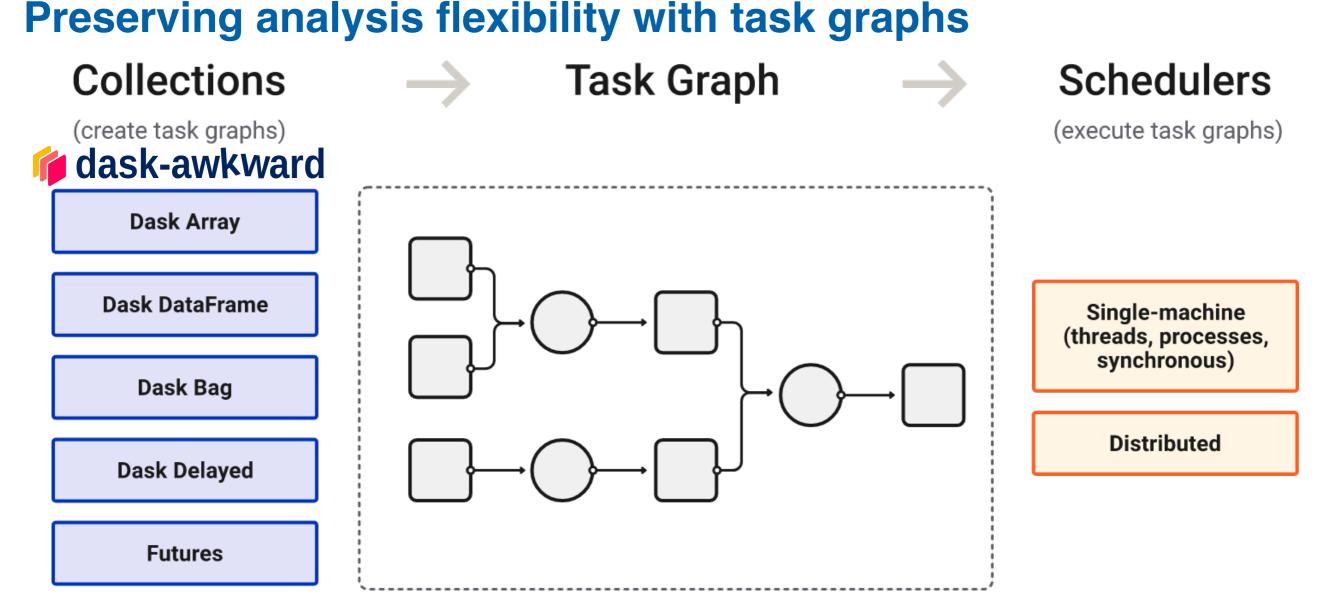
# Scheduling matters more as you have more tasks!

#### K. Morhman and UND



- 1h30m-2h for run 2 top analysis with full systematics achieved last year
  - Since then repeated by UCSD, UF, and time improved to 45 minutes
  - This corresponds to O(400 kHz) throughput on 1B events: 1000x away from 500 MHz!
- For ATLAS: analysis with 40s turnaround time using serviceX + coffea
  - see M. Tost poster today (note here fewer events in final processing step)
- However if we want to go faster we must expose more parallelism and not treat analyses as black boxes that fill histograms
  - Prototypes show 20m turn around for analysis with full jet re-clustering, ~1200 cores

😎 Fermilab

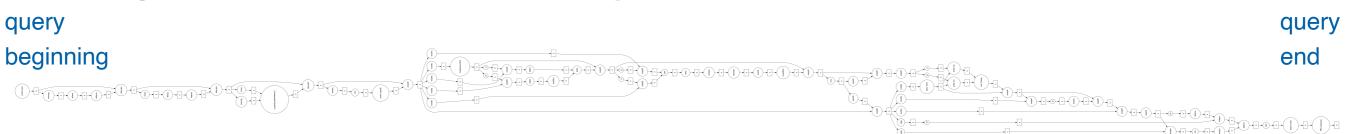


- Dask provides an interface for specifying/locating input data and then describing manipulations on that data are organized into a task graph
  - This task graph can then be executed on local compute or on a cluster
  - This defines a DAG but not how it is traversed, intent separated from compute!

🗲 Fermilab

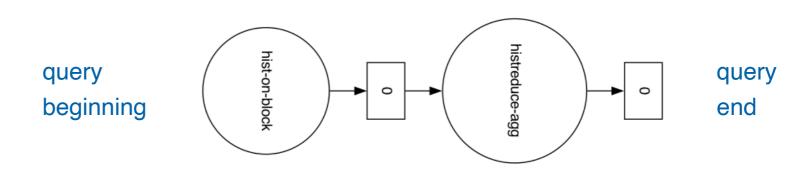
- A recent contribution, dask-awkward, provides this for HEP data
  - See Jim's poster from Wednesday for more info on that package family

# Task graphs provide flexibility with abstraction



#### dask.optimize(q8\_hist)

Bonus: free data transport and query plan optimization (here fusing linear chains)

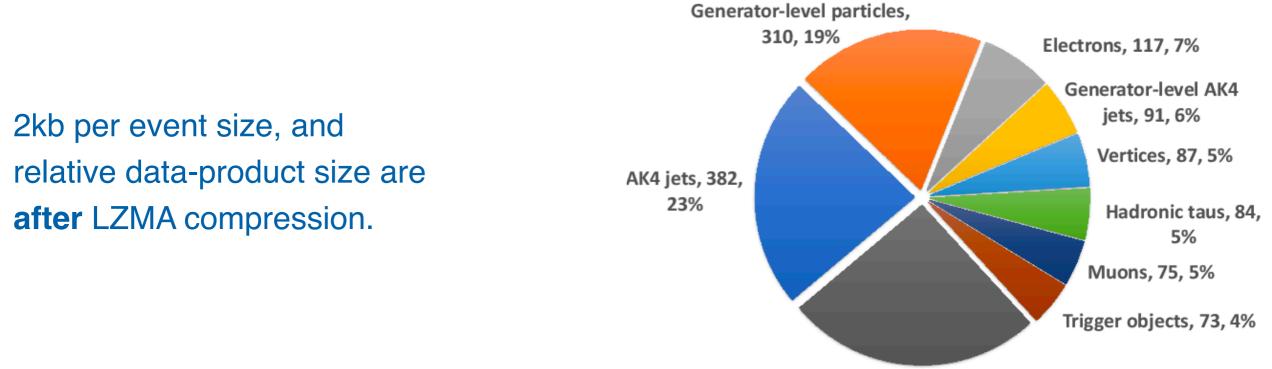


Having *plan* of analysis lets us predict data needs!

Preserves the ability to innovate while yielding an abstraction for execution.

- Above an example of part of an analysis
  - A full HEP analysis O(1000s) of such nodes, infeasible to put on a slide
  - These graphs (with care) can be manipulated after being built and split across tools
  - Nodes in graph can be ML inference, output to disk, histogram fills, ...
- By meticulously recording intent, rather than performing execution, the full depth of an any HEP analysis can be abstracted further away from compute
  - See G. Watts parallel today for further variations on how to do this!
  - With additional research it is possible to start abstracting away hardware too

#### Some first roadblocks to 15' in data management Typical NanoAOD

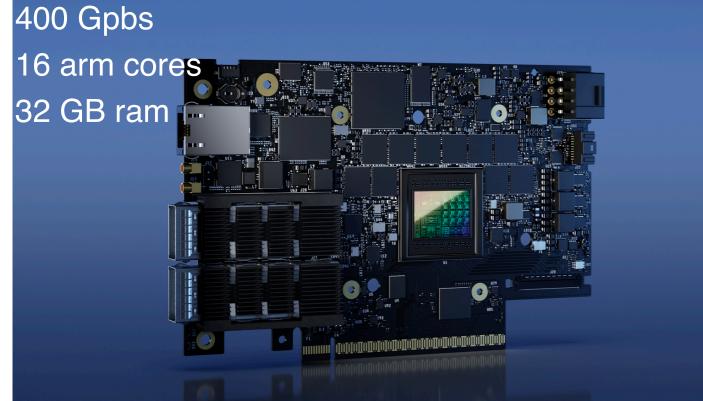


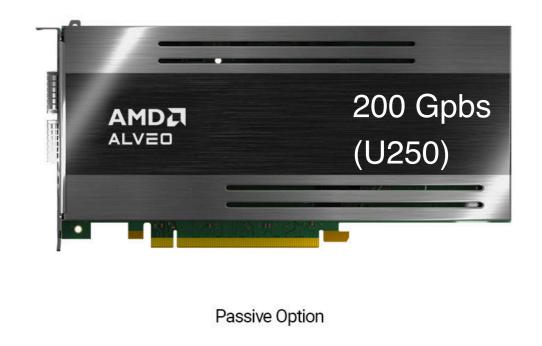
Others, 422, 26%

- LZMA compression is in widespread use because it is the most space efficient
  - 2x-10x slower decompression than zstandard depending on data, code dictionary size
  - Typically 1.2x-2x better in space efficiency
- Either we accelerate this algorithm or divest ourselves of it quickly
  - Both are possible with various trade offs
- Can be solved with parallelism but at the cost of node acquisition and task overhead which may easily lose throughput if not uniformly careful



# **Advanced Networking Possibilities**

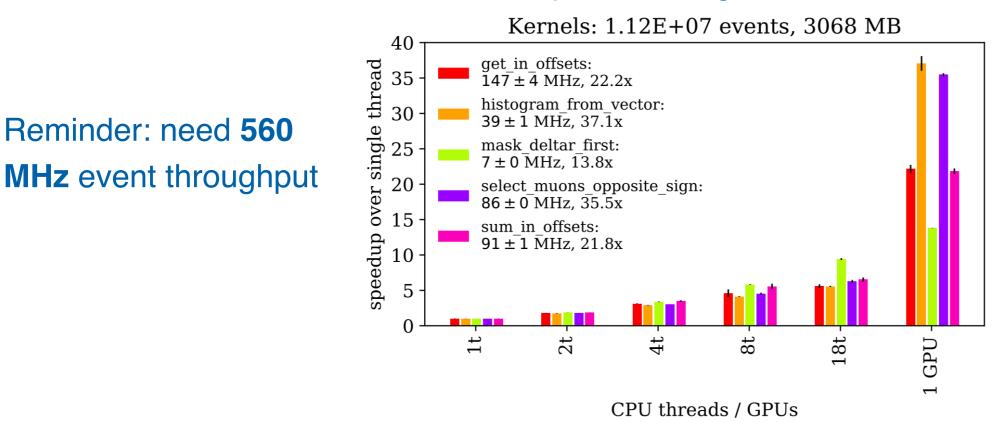




- Recall need average 450 Gbit/s for a single user to achieve necessary data ingestion
  - Using a different compression algorithm for all data this ingestion outstrips
- Left nVidia bluefield DPU, right Xilinx Alveo ultrascale FPGA
  - Both of these options can provide decompression into local memory or DMA to system
  - Knowing analysis plan yields the ability to prefetch data
- Since we are able to separate analysis intent from execution we can use accelerators like this to run basic cuts before data hits processing elements
  - Work at UCSD/UF ongoing investigating FPGA decompression / data reduction
    Fermilab

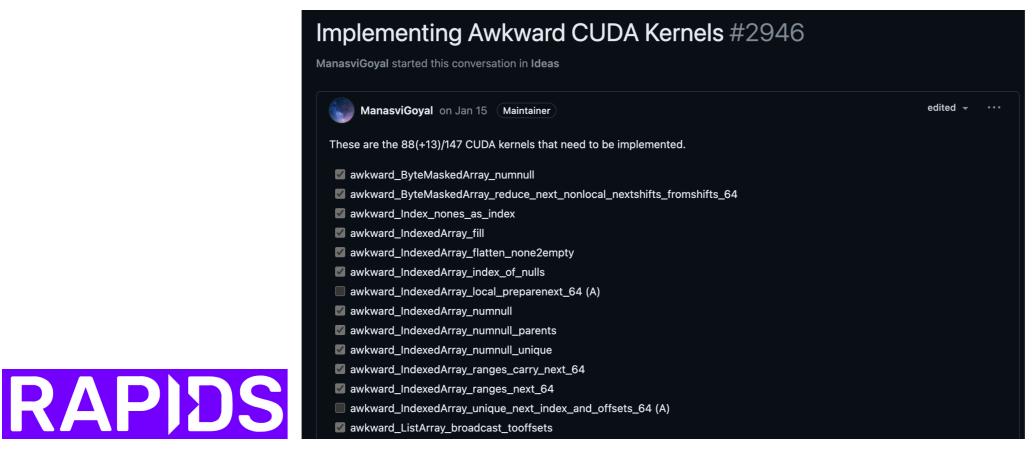
# **Revisiting analysis on GPUs...**

J. Pata: https://arxiv.org/abs/1906.06242



- Last benchmarked on a GeForce Titan X (many architectures ago...)
- Slowest kernel on that hardware O(100 MHz) throughput in ideal conditions
  Local ssd cache, 10 Gbps link to node with a hefty ceph cluster backing data.
- This is incredibly ripe for benchmarking again with the modern ecosystem
  - An interesting target for a completed suite of awkward array GPU kernels
  - There are important details with the software ecosystem that must be explored
  - Most GPU kernels above ~100 MHz already, **5x likely from recent hardware alone**.

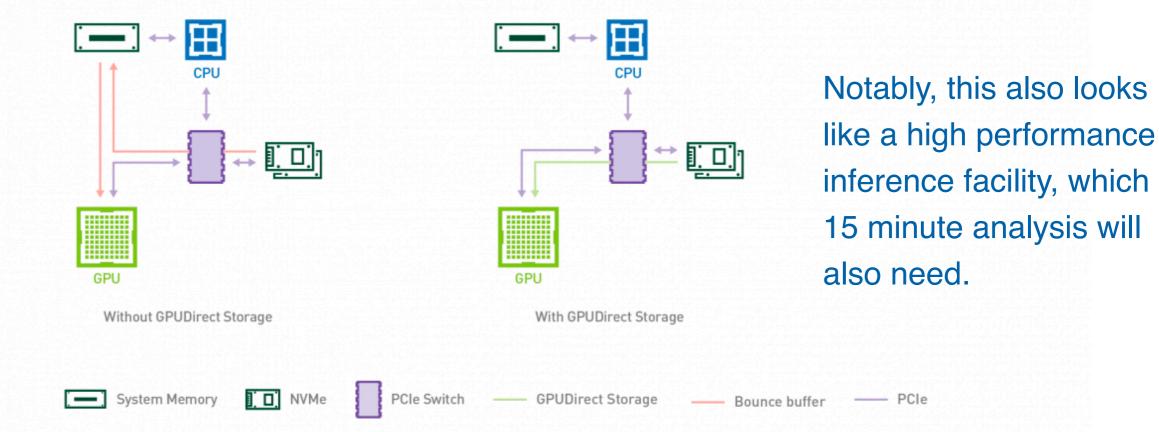
# **GPUs and the current pythonic ecosystem**



- Awkward array GPU kernel development is underway and progressing
  - Concurrent effort to integrate awkward with cuDF (Martin Durant @ Anaconda)
- With awkward CUDA kernels current awkward python code movable to use GPUs with little change (post-hoc manipulation of task graph!)
  - Issues arise through this transition, e.g. kernel call multiplicity, scheduling on the GPU
- Can envision in-transit decompression on smart-NIC (DPU/FPGA) with RDMA to GPU memory across PCIe bus
  - Efficient data placement requires knowledge of analysis execution plan



### What might a facility architecture look like when we can plan?



- RDMA + SmartNICs + GPUs + good caching policies + excessive networking
  - nVidia has already positioned themselves well in this space
  - It is almost surprising that with good abstractions the software and hardware realign
- Map a task graph onto hardware and make appropriate library substitutions
  User could develop code on laptop with CPU and deploy to high performance GPUs
- Reminder: this is specced for one user in 15 minutes to answer the prompt!
  - Actually scaling this out will require modification to topology, and sharing of hardware
  - Managing user expectations when system load is high is also a necessary discussion

🚰 Fermilab

# **Typical Challenges of Applying Amazing Tech to HEP Analysis**

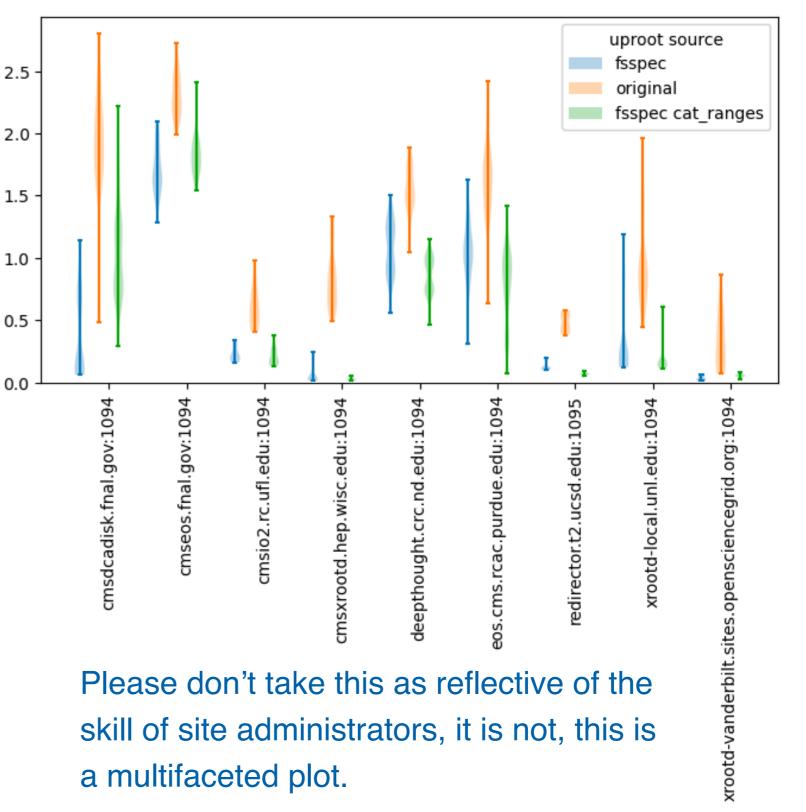
- User + high-tech gadget = CPU batch jobs with condor
  - Without really involved co-design and years of planning
- The history of HEP analysis computing has left many fantastic data processing ideas defeated and ignored
  - Often a technique works well in a specific task and is not generalizable
  - Efficient techniques that make it difficult to reason about our complex, structured, and voluminous data
  - New languages that satisfy a subset of analysis needs and are expressive but are difficult to match with tools or have unintuitive leaks
- Why do tools like Coffea (awkward array, dask, etc.), RDataFrame beat this trend, both are in routine use for years?
  - Co-design with many HEP physicists, dogfooding the tools, and years of planning
  - Extreme care is paid to making good abstractions and robust interfaces (thanks Jim!) that pay off



### What else is standing in our way today?

MBps

- Our access to data (at least on CMS shows some throughput problems)
  - This is an issue *between* software and hardware for wide-area network access
  - We need to address this to really scale the previous slide's architecture
- HEP has very few systems available for testing that look like the previous slide
  - And so far all we've covered is one user for 15 minutes, assuming we can engineer away all the inefficiencies.



🛟 Fermilab

# How do we keep track of progress: Benchmarks!

- Yesterday we saw the success of the MLPerf benchmarks in driving efficient ML research forward
  - Open benchmark where people can share their insights and achievements encourages friendly competition and drives the spread of knowledge
  - We should do the same if we want to achieve this goal
- <u>Analysis Grand Challenge</u> within IRIS-HEP already an enormous step in the right direction
  - Encapsulates typical HEP analysis needs in a variety of implementations to promote good use-case coverage of analysis platforms
    - This helps avoid the problem of creating tools that don't fill all the corners of HEP analysis
  - Can compare analysis platforms to each other at one site or compare suite of results across sites to understand inefficiencies arising from configuration or infrastructure
    - Excellent multi-modal debugging tool
- We need to support and expand this effort if we want to deploy advanced systems that are robust and also **fit user needs**.
  - More analysis varieties, more cutting edge ML it needs input from the ACAT crowd!

🗲 Fermilab

# **Closing Remarks / Conclusions**

- So can we do HL-LHC analysis in 15'?
  - Yes but it's a long road to truly achieve that and it is presently very expensive
  - Time is on our side
- There are software projects and computing hardware tools that cover every aspect we will need to accelerate analysis to this degree
  - Modern columnar analysis tools manage the complexity and richness of HEP data and let HEP physicists express any analysis efficiently
  - Task graphs are an old proven idea with enormous utility to abstract analysis description from its execution, especially if you let them be mutable!
  - The hardware tools to accelerate HEP analysis to the necessary data throughput and event processing rate exist today.
    - The HEP community should (re-)invest in understanding those tools to a larger degree than we are if we want to achieve this lofty goal
- Benchmarking will be critical to our success and it will pay forward 10x over to develop well-covering, thorough benchmarks now
  - This has been started with the Analysis Grand Challenge and we should expand it!

