
Quantum computers for particle theory

Challenges and achievements in the NISQ era

Stefano Carrazza, Università degli Studi di Milano

March 14th, 2024

ACAT2024, Stony Brook

HEP challenges for LHC and future colliders

Monte Carlo simulation and data analysis are intensive and requires lots of computing power.

1

Parton-level Monte Carlo generators

Theoretical predictions in hep-ph are based on:

∑
a,b

∫ 1

xmin

dx1dx2 |Mab({pn})|2 J n
m({pn}) fa(x1, Q2)fb(x2, Q

2),

a multi-dimensional integral where:

• |M| is the matrix element,

• fi(x,Q
2) are Parton Distribution

Functions (PDFs),

• {pn} phase space for n particles,

• J n
m jet function for n particles to m.

⇒ Procedure driven by the integration algorithm.

2

Monte Carlo generator pipeline

3

R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:

4

R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:

4

Quantum Computing topics in HEP

The HEP community is testing quantum computing algorithms in topics related to:

hep-exp

Data analysis

hep-ph

Theoretical modelling

quant-ph

Software / Middleware

5

Quantum computing for HEP experiments � arXiv:2307.03236

QC4HEP WG

Goal:

Replace classical ML data analysis methods

with variational quantum computing (QML)

and observe advantage with quantum

computing methods.

How?

• Developing variational models using

classical quantum simulation.

• Adapting problems and deploying strategies

on NISQ hardware.

6

https://arxiv.org/abs/2307.03236

Quantum computing for Theoretical Modelling in HEP � arXiv:2307.03236

Goal:

Design new algorithms for QFT and Hadronic

physics observables, identify advantage from

quantum computing methods.

How?

• Designing hybrid quantum-classical

methods using classical quantum

simulation.

• Deploying classical quantum simulation

techniques on HPC infrastructure.

QC4HEP WG

7

https://arxiv.org/abs/2307.03236

Quantum machine learning

From classical Machine Learning to quantum

Classical Machine Learning solves statistical problems such as data generation, classification,

regression, forecasting, etc.

û Aims to know some hidden law between two variables: y = f(x);

| Defines a parametric model with returns yest = fest(x;θ);

� Defines an optimizer, which task is to compute argminθ
[
J(ymeas,yest)

]
.

8

Parametric Quantum Circuits

º Classical bits are replaced by qubits: |q⟩ = α0 |0⟩+ α1 |1⟩;

2 The qubit state is modified by applying gates (unitary operators).

Rotational gates Rj(θ) = e−iθσ̂j are used to build parametric circuits C(θ);
� Information is accessed calculating expected values E[Ô] of target observables Ô on the

state obtained executing C.

9

Parametric Quantum Circuits

º Classical bits are replaced by qubits: |q⟩ = α0 |0⟩+ α1 |1⟩;
2 The qubit state is modified by applying gates (unitary operators).

Rotational gates Rj(θ) = e−iθσ̂j are used to build parametric circuits C(θ);

� Information is accessed calculating expected values E[Ô] of target observables Ô on the

state obtained executing C.

9

Parametric Quantum Circuits

º Classical bits are replaced by qubits: |q⟩ = α0 |0⟩+ α1 |1⟩;
2 The qubit state is modified by applying gates (unitary operators).

Rotational gates Rj(θ) = e−iθσ̂j are used to build parametric circuits C(θ);
� Information is accessed calculating expected values E[Ô] of target observables Ô on the

state obtained executing C.

9

Quantum Machine Learning

10

Quantum Machine Learning

10

Quantum Machine Learning

10

From ML to QML

11

QML reuploading model � arXiv:1907.02085

We define an uploading channel U(x;θ), and we repeat the uploading N times.

It has been proved this approach is equivalent to approximate a function with an N -term

Fourier Series.

12

https://arxiv.org/abs/1907.02085

Example 1: Parton Distribution Functions

 Parton distribution functions
(Machine Learning)

13

Determination of parton distribution functions � arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1 Define a quantum circuit: U(θ, x)|0⟩⊗n = |ψ(θ, x)⟩

2 Uw(α, x) = Rz(α3 log(x) + α4)Ry(α1 log(x) + α2)

3 Using zi(θ, x) = ⟨ψ(θ, x)|Zi|ψ(θ, x)⟩:

qPDFi(x,Q0, θ) =
1− zi(θ, x)

1 + zi(θ, x)
.

U l(θl, γl, x)

U(θl,0, x) • Rz(γl,7)

U(θl,1, x) Rz(γl,0) •

U(θl,2, x) • Rz(γl,4)

U(θl,3, x) Rz(γl,1) •

= U(θl,4, x) • Rz(γl,5)

U(θl,5, x) Rz(γl,2) •

U(θl,6, x) • Rz(γl,6)

U(θl,7, x) Rz(γl,3) •

1Results from classical quantum simulation and hardware execution (IBM) are promising:

14

https://arxiv.org/abs/2011.13934

Example 2: Event generation

 Event generation
15

Monte Carlo event generation using style-QGAN � arXiv:2110.06933

Train with a small dataset, use unsupervised machine learning models to learn the

underlying distribution and generate for free a much larger dataset.

16

https://arxiv.org/abs/2110.06933

Style-based quantum generator � arXiv:2110.06933

Quantum generator: a series of quantum layers with rotation and entanglement gates

17

https://arxiv.org/abs/2110.06933

Simulation with LHC generated data � arXiv:2110.06933

Testing the style-qGAN with real data: proton-proton collision pp→ tt̄

Training and reference samples for Mandelstam variables (s, t) and rapidity y generated with

MadGraph5 aMC@NLO.

Simulation results: 3 qubits, 2 layers, 100 bins

18

https://arxiv.org/abs/2110.06933

Testing different architectures � arXiv:2110.06933

19

https://arxiv.org/abs/2110.06933

Example 3: Monte Carlo Integration / Sampling

 Monte Carlo Integration
20

Multi-variable integration with classical INN � arXiv:2211.02834

Multi-variable integrals using Neural Networks:

Evaluate loss
functionData

Optimizer updates
parameters

Inject information into the NN

Target integral

Fit the integrand with the
derivative of the NN

␣ both NN and dNN are models of the integral and integrand respectively;

␣ once trained, the NN can be called with any combination of data and parameters. Monte

Carlo Integration (MCI), instead, has to be recomputed every time;

␣ in the INN is the integrand to be approximated, instead of the integral (as in MCI), swaps

variance for approximation error.
21

https://arxiv.org/abs/2211.02834

Quantum inspiration - Parameter Shift Rule � arXiv:1811.11184

Considering the unitary U(x) = e−ixU affected by one parameter x, if the hermitian generator

U has at most two eigenvalues ±r, an exact estimator of ∂xG is:

∂xG = r
[
G(x+)−G(x−)

]
.

Where x± = x± s and, considering rotational gates, we have s = π/2 and r = 1/2.

22

https://arxiv.org/abs/1811.11184

Translating to quantum computing � arXiv:2308.05657

At this point, we know that:

1. variables can be injected into a quantum circuit as rotational angles;

2. the same circuit architecture C can be used to compute both the estimator and its

derivatives.

Evaluate loss
functionData

Optimizer updates
parameters

Evaluate derivatives

Inject information into the Circuit

Target integral

Fit the integrand with the
derivative of the circuit

If independent variables, dG(x)
dx is obtained by summing all PSR contributions.

23

https://arxiv.org/abs/2308.05657

The u-quark PDF � arXiv:2308.05657

0.2

0.4

0.6

u
f(x

)

u-quark PDF fit

10 4 10 3 10 2 10 1 100

x

0.975

1.000

1.025

Ra
tio

Approximation
Target u-quark 0.210

0.220

0.230

I u
(Q

2)

Estimates of Iu(Q2)

0 2500 5000 7500 10000 12500 15000
Q2 (GeV2)

0.990
1.000
1.010

Ra
tio

Approximation
Target result

24

https://arxiv.org/abs/2308.05657

Middleware challenges

Stage 1: Prototyping models / algorithms

Prototyping

1 High-level quantum circuit

programming language

2 Fast classical quantum simulation

for model prototyping

25

Stage 2: Deployment on quantum hardware

Deployment

1 Gates to microwave pulses sequence

compilation (SC qubits)

2 Hardware compatible optimization

algorithms

3 Error-mitigation algorithms

26

Introducing Qibo � arXiv:2009.01845

Qibo is an open-source hybrid operating system for self-hosted quantum computers.

Qibo Language API

Quantum annealing

Quantum circuits

Implementation

Simulation

Qibojit
Efficient device-agnostic
simulation with custom
operators

numpy Lightweight, fits
well with any CPU

tensorflow
Simulation of hybrid QML
with automatic
differentiation

Quantum
hardware

Qibocal

Characterization

Calibration

Validation

Qibolab

Control drivers

Convert gates to pulses

Transpiler

= backends

= tools

RFSoCs

Application
packages

Qibosoq

Qibochem

https://qibo.science see Pedicillo’s talk 27

https://arxiv.org/abs/2009.01845
https://qibo.science

Classical quantum simulation benchmarks � arXiv:2203.08826

State vector simulation solves:

ψ′(σ1, . . . , σn) =
∑
τ ′

G(τ , τ ′)ψ(σ1, . . . , τ
′, . . . , σn)

The number of operations scales exponentially with the number of qubits.

Qibo uses just-in-time technology and hardware acceleration:

Qibojit

CPU

Custom operations

using Numba

NumPy tensors

GPU(s)

CuPy tensors

Custom operations using

CuPy JIT

NVIDIA cuQuantum

Specialized operators

for 1 and 2 qubits gates

exploiting sparsity.

In-place updates.

28

https://arxiv.org/abs/2203.08826

Classical quantum simulation benchmarks � arXiv:2203.08826

5 10 15 20 25 30 35
Number of qubits

100

101

102

103

104

To
tal

 si
m

ul
ati

on
 ti

m
e (

se
c)

qibojit, qft, double precision
NVIDIA RTX A6000 (cupy)
NVIDIA DGX V100 (cupy)
NVIDIA GTX 1650 (cupy)
AMD Radeon VII (cupy)
NVIDIA RTX A6000 (cupy-multigpu)
AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)

Major features:

• Supports CPU, GPU and multi-GPU.

• NVIDIA and AMD GPUs support.

• Reduced memory footprint.

qft variational supremacy qv bv0

100

200

To
tal

 d
ry

 ru
n

tim
e (

se
c)

Multi-GPU - 32 qubits

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks

see Pasquale’s talk
29

https://arxiv.org/abs/2203.08826
https://github.com/qiboteam/qibojit-benchmarks

A full-stack example

Real-time error mitigation in QML trainings � arXiv:2311.05680

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

Data

Cost
function

Learn noise model
Noise map

when loses reliability

Gradient
descent step

Predictions

Gradients
Until convergence

• consider a Variational Quantum Algorithm trained with gradient descent;

• learn the noise map ℓ every time is needed over the procedure;

• use ℓ to clean up both predictions and gradients. 30

https://arxiv.org/abs/2311.05680

One dimensional HEP target: the u-quark PDF � arXiv:2311.05680

Parameter Ntrain Nparams Nshots MSErtqem MSEnomit Noise

Value 30 16 104 0.008 0.018 local Pauli

10−4 10−3 10−2 10−1 100

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Target function

Noiseless

RTQEM

Noisy

fQEM

0 20 40 60 80 100

Epoch

10−3

10−2

10−1

L
os

s

Noiseless

Noisy

RTQEM

1. thanks to the RTQEM procedure, we reach a good minimum of the cost function;

2. the QEM is not effective is applied to a corrupted scenario (orange curve).
31

https://arxiv.org/abs/2311.05680

Full-stack procedure: PDF determination � arXiv:2308.06313

1. High-Level API (Qibo)

• Define model prototype.

• Implement training loop.

• Perform training using simulation.

2. Execution on hardware

• Allocate calibrated platform.

• Compile and transpile circuit.

• Execute model and return results.

see Robbiati’s talk

10 4 10 3 10 2 10 1 100

x

0.0

0.2

0.4

0.6

0.8

u
f(x

)

u-quark PDF fit on the qubit

Target function
Predictions
2 belt
1 belt

Parameter Value

Ndata 50 points

Nshots 500

MSE 10−3

Electronics Xilinx ZCU216

Training time < 2h
32

https://arxiv.org/abs/2308.06313

Outlook

Outlook

We have observed a great set of interesting proof-of-concept applications in HEP.

For the future:

• Improve results quality, moving from prototype to production.

• Mitigate hardware noise by implementing real-time error mitigation techniques.

• Provide software tools for further enhancement of quantum technologies.

• Enhance calibration, characterization and validation techniques.

• Codevelop quantum hardware and instruments for application specific tasks.

33

	Quantum machine learning
	Middleware challenges
	A full-stack example
	Outlook

