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Outline

 Lattice QCD (2024)

« QCD - Technology
— Lattice QCD in 1980
— Commercial computers in 1980
— Purpose built hardware 1980-2005
— Blue Gene codesign 2005-2012

 Technology 2 OCD:

— All errors controlled, <1% accuracy
— QCD - QCD + QED
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Lattice QCD
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Lattice QCD

* Introduce a space-time lattice.
« Evaluate the Euclidean Feynman 3 :
path integral e |
— Study e~ Hacot > 2 |

— Foundational non-perturbative -
formulation of QCD!

— Permits numerical evaluation

Y (nfe 0 0y = [ d|U, (m)]e~ Y det (D+m)O[U](1)

n

 Evaluate using Monte Carlo importance sampling with a
hybrid of molecular dynamics & Langevin evolution. (HMC)
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Lattice QCD

Z(me—H(T—f)Oe—Hﬂn) — / d|U, (n)]e~ Y det(D+m)O|U(1)

Frontier — ORNL

e

* Very large computational

challenge:

— For a 96° x192 lattice: Integrate
over five billion variables

— Integrand contains the determinant
of (100 Billion) x (100 Billion) matrix

« Fast code running on 2048 nodes of Frontier
sustains 16 Petaflops [10%° (adds + mults)/sec ]

e Soon to be overtaken by Intel Aurora machine at

Argonne
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Lattice QCD
1980
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Lattice QCD — 1980

B

* Invented six years earlier by Wilson

« Strong coupling expansion explained
guark confinement

« Mike Creutz extracted the perturbative
QCD beta function from the scale
dependence of lattice QCD string tension.
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1980: Promise of Lattice QCD demands
enhanced computer resources

« Commercial computers were IBM or Control Data
Corporation main frames or a Cray supercomputer.

* Increasing component integration was creating
single-board computers.

* Hobbyist PC’s beginning to appear with integrated
MmICroprocessors.

« Parallelism was not being exploited but was
natural for QCD — an opening to far exceed
commercial computers.

 Integrated circuits + parallelism = 100x
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1980-1985 many HE Theory groups began
parallel computer construction for QCD

» Caltech: Cosmic Cube, Seitz and Fox

* Columbia: Terrano and N.C.

« Tsukuba: PACs, Hoshino, Iwasaki, Ukawa

« Edinburgh: Transputers, Bowler, Kenway, Wallace

« Rome: APE, Cabibbo, Parisi, Marinari, Trippicione
 Femilab: ACP-MAPs, Mackenzie, Eichten, Hockney, Fischler

« |IBM: GF11, Beetem, Denneau, Weingarten
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Columbia
QCD Machines
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Overview

1980-1983: matrix multiplier 1 Mflops B

2D mesh machines
— 1983 —1985: 16 nodes, 256 Mflops
— 1985 -1987: 64 nodes, 1 Gflops

Design
Manufacture

— 1987 —1989: 256 nodes, 16 Gflops _
1989-1992: Thinking Machines/MIT (failed)
4 & 6 D mesh machines =

— 1992 —1998: QCDSP, 400 + 600 Gflops -

— 1998 — 2005: QCDOC, 10+10+10 Tflops
2002 — 2012 Blue Gene series, IBM

—
=

2016 — 2019 CSA, Intel (failed) —

—

2016 — Aurora, Intel (some QCD input)

Codesign

Design
Manufacture

Codesign
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1980-1983 Columbia Matrix Multiplier
(A. Terrano)

Built as a peripheral for a
DEC PDP11/23

Download SU(3) matrices

Accumulate the product of
three matrices in a " "staple”

Upload the result

16-bit integer multiplier and
adder

Three small wire-wrap boards

controlled by preset counters

20X speed-up making the PDP11 2x faster than a
VAX 780
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534 Nuclear Instruments and Methods in Physics Research 222 (1984) 534-539
North-Holland, Amsterdam

\

HARDWARE MATRIX MULTIPLIER /ACCUMULATOR FOR LATTICE GAUGE THEORY
CALCULATIONS *

Norman H. CHRIST and Anthony E. TERRANO
Columbia University, New York, NY 10027, USA

Received 30 September 1983
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 Fluctuations in the action
« A competitive result in 1983
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1983-1985 Columbia 16-node

TRW 22-bit floating point adder
TRW 16-bit integer multiplier

Driven by 4K 56-bit microcode
words.

Controlled by an Intel 80286
12"x18" wire-wrap board
Two 64 Kbyte memory banks

Connectors at top give direct
read/write access to +x, and +y
neighbors’ memories.
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1983-1985 Columbia 16-node

Central controller distributes
clock and daisy chain 10.

2D periodic mesh

Access with equal latency to
local and neighboring memory.

Efficient for 24 local volume.

$150K, 256 Mflops

Machine Peak Link update
Mflops m sec

Cray 1 160 80

16 Node 256 65

Cray XMP-4 1000 15

ACAT 2024 - 3/14/2024  (16)



Readers’ Favorite
Byte Magazine — 1986

N-UMBER CRUNCHING

A MICRO-BASED
SUPERCOMPUTER

BY NORMAN H. CHRIST AND ANTHONY E. TERRANO

A unique combination of microcomputer parts
yields supercomputer processing power

% THIS ARTICLE we will describe a
atively simple paraliel computer
g built in the Physics Department
Columbia University. Although
node of the computer is quite
ar to a microcomputer in com-
slexity, the combination of many
~des is capable of speeds compar-
to those obtained on today's
stest mainframe supercomputers.
~he device is pictured in photo 1.

Microprocessors are used in exper-
~ental university research for
~onitoring and controlling apparatus
and performing data analysis. How-
=ver, for the large-scale simulations
-ommon in theoretical science, the
~ower of micros is simply inadequate.
The arrival of Intel's 8087 {and now
%0287) arithmetic coprocessors did
~ot alter this situation. The speed of
100,000 floating-point operations per
second, typical of an 8086/8087-
based microcomputer, is still 1000
simes slower than a Cray-1 supercom-
puter.

This state of affairs has been com-
pletely transformed by the manufac-
-ure of special arithmetic chips cap-
able of up to 10 million fleating-point
operations per second (or 10 mega-
flops), It is now extremely attractive

21IOTGCRAPHED BY AARON REZNY

Photo |: Columbia Universily's
parafiel contpuler.

for theoretical scientists {especially
those with limited university comput-
ing budgets) 1o harness these chips to
microprocessors and. exploiting
parallelism, build supercomputer-
class machines. The project described
here is an example of this approach.

These blindingly fast floating-point
adders and multipliers are currently
sold by Weitck. TRW. Advanced Micro
Devices, and Analog Dcvices for
prices in the range of $200 to $1000
each. Of course, these chips by them-
selves do not make up a complete
arithmetic coprocessor, First, you
need external storage registers to pro-
vide an interface to a standard 16-bit
bus, and second, you must very a
number of input contro! signals to
generate the desired sequence of
arithmetic operations. About a dozen
integrated circuits are needed in ad-
dition to the floating-point adder and
multiplier chips for a working circuit.
We refer to the resulting arithmetic
unit as a "vector processor’’ because
of its ability to execute a sequence of
similar operations on a string (or vec-
tor) of data elements. Such a vector
processor has the speed and pro-
gramming characteristics of a com-

{eontinued
Novman H. Cirist folds BA. and PR.D.
degrees in physics front Columbia University.
Anthony E. Terrano holds a BA. in mathe-
matics from the University of Chiicago and a
DR.D. in physics from Caltech. Both authiors
can be reached at the Departmient of Physics.
Columbia University, New York, NY 10027.

APRIL [986 « BYTE 145
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Follow-on 2D machines

AMERICAN

L A A
ASSOCIATION FOR THE -
ADVANCEMENT OF B
SCIENCE A

18 MARCH 1988 $3.00
VOL. 2390 u PAGES 1349—1464

1989: 256 nodes, 16 Gflops
| 6.7 Gflops sustained
SN R (later equaled by CM2 and GF11)
1987: 64 nodes, 1 Gflops
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1992-1998 QCDSP
(A. Gara, R. Mawhinney)

1000’s of credit-card size nodes
TI DSP, custom ASIC, 2ZMB memory
64 nodes/board.

Fast DMA access to 4D
neighbors.

Efficient for 44 local volume.
400 Gflops (Columbia)
600 Gflops (BNL)

1998 Gordon Bell prize for
price performance

Used by larger BNL/Columbia
collaboration
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1998-2005 QCDOC
(P. Boyle, A. Gara, R. Mawhinney)

IBM custom ""system on a
chip” ASIC

6D mesh, 128 MB memory
Efficient for 84 local volume.

8 Gbyte/sec 1 Gflops ‘
4 MBytes of . 2.6 GByte/sec Interface
Memory/Processor Double Precision
Embedded DRAM Bandwidth RISC Processar to External Memory

2.6 GByte/sec
EDRAM/SDRAM
DMA

24 Link DMA
Communication
Control

24 Off-Node Links
12 Gbit/sec
Bandwidth

Bootable
Ethernet
Interface

100 Mbit/sec
Fast Ethernet

scu D TBM Librery Component L
2] Custom Designed Lagic m"

2 Mbyte EDRAM
8 Watts/node

Complete Processor Node
on a Single QCDOC Chip
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1998-2005 QCDOC
(P. Boyle, A. Gara, R. Mawhinney)

 $2 M NRE, $7 M IBM ASCI Fab, $20M total
« RBRC /BNL / Edinburgh: 10+10+10 Tflops
* First USQCD computer
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Technology Transfer: BG/L & /P
(A. Gara)

* IBM Blue Gene: replace QCDOC with IBM product

« Columbia students/postdoc: J. Sexton, D. Chen, P. Vranas

 BG/L top of Top 500, '04-'07
- - Two BG/L nodes

. “; Ak 'Y"_“ o e i "/‘,

e m 1 ; 84
, g e =" ‘
o= N _~ -~ |\

P > - V“"‘,“; N L5 s
Ve B ;A‘ \‘f Yv E a

>

Géra, Palmisano (IBM CEO) & Obama
National Medal of Technology
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Codesign: Blue Gene/Q
(A. Gara, P. Boyle)

Cost of ASIC design exceeded our funding — join IBM Blue
Gene/Q project.

P. Boyle, C. Kim, N.C. designed the L1P, interface
between Power CPU and BG/Q the system

QCD code was run on
ASIC simulator and first
hardware

P. Boyle was a critical
member of 4-5 person
team making ASIC work

Decommissioned In ,
March 2020 after billions MlRA, ANL 10 PﬂOpS
of core hours for QCD
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ELSEVIER

EOMPUTER FEYSICS

Computer Physics Communications
Volume 177, Issue 8, 15 October 2007, Pages 631-639

« EOtvos, Wuppertal:

Z. Fodor (2006) Lattice QCD as a video game

Gydzd 1. Egri ®, Zoltén Fodor °®© © &, Christian Hoelbling ®, Séandor D. Katz @ &,

L |

Daniel Négradi ®, Kalmén K. Szabé ®

9g cluster JLab 100 Tflops (2011)

« Began with gaming cards

« Among the first science
applications using GPUs

I _<— Boston University & JLab:

Babich, Brower, Clark,
Edwards, Joo
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Software Innovation

Neglected In this presentation.
Custom OS designed for

— High parallel performance
— Fault detection

— Diagnostic power

Non-Linux kernel essential:

— QCSDP

— QCDOC

— Blue Gene

Require talks from Bob Mawhinney and
Peter Boyle.
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QCD Predictions

9
Discovery...
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Physics driven by lattice QCD

* Explore confinement and chiral symmetry
breaking

* Nucleon = nuclear structure (EIC)
* Quark and lepton flavor physics:

— heavy quarks: CKM unitarity

— light and strange guarks: rare processes
— leptons: g ,- 2
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Standard Model Tests
(RBC/UKQCD Collaboration)

(9,2 expt = 0.00116592089(63)
(Expt) — (Theory) = 0.00000000249(87)
HLbL = 0.00000000079(35)

[Phys.Rev.Lett.124, 132002 (2020)]
Calculation of light-by-light contribution (L. Jin)

. L . .
Direct CP violation K >z 7 i 4
[Phys.Rev.D 102, 054509 (2020)] K| .
Re (¢'l¢) = 21.7(6.9) x10-4 s

[16.6(2.3) x10~4 expt] (C. Kelly, T Wang)
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Standard Model Tests
(RBC/UKQCD Collaboration)

My, — My = 5.8(2.4) x 107" MeV [PosS, Lattice 2021]
[3.484(6) x 1012 expt]
« Sensitive to new physics at the 1,000 TeV scale
* More accurate calculation about to start o

(B. Wang, Yikai Huo)

s

72 > et e~ BR=6.30(06) x108
[6.87(36) X108 expt]
« First lattice QCD calculation (Y. Zhao)

KL -2 /[" L Initially without disconnected graphs

« BSM-sensitive, strangeness-changing neutral
current process (EH Chao, C. Hu)
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Add QED: QCD - QCD + QED
(L. Jin)

 Lattice formulation for QCD +QE'6 ?

o Lattice QCD + Continuum QED

(Kenneth Wilson) (Richard Feynman)
Finite volume Infinite volume
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Hadronic light-by-light

scattering from lattice QCD
(L. Jin)

14
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V> e*er & K > u*tu Decays
(Y.Zhao, EH Chao, C. Hu)

CD
//Vglume

« Must remove a p intermediate state

« Perform a Wick rotation resulting in complex E&M factor

and Euclidean QCD Green’s function
ACAT 2024 - 3/14/2024 (32)



QED Corrections to K>zt |-v

A

KO

<€

Large time t is not further suppressed

Reconstruct full Minkowski amplitude from Euclidian
pion-emission Greens function, (IVR: L. Jin and X. Feng)
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Conclusion

Lattice QCD - HPC - Lattice QCD

Symbiosis of lattice QCD and HPC remains

strong [Listen to Peter Boyle this afternoon for the
software dimension and g -2.]

First-principles LQCD calculations profoundly
changing search for new physics.

Precision advances:
10% (2015) = 1% (2020) = 0.1% (2025)
- 0.01% (20??)
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Thank you!
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| essons learned

Focus on real physics goals: clear metric
for what is needed and what is not

Aim for 10-100x enhancements
— Hardware projects take longer than imagined.
— Final performance always compromised.

Not theoretical physics: team and mentors
are critical.

— Highly-talented collaborators critical

— Ethical, reliable colleagues essential

— Powerful supporters necessary.
* T.D. Lee (Columbia)
* Nick Samios (BNL)
« Randy Issacs (IBM)
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Columbia
QCD Machines
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Elaborate methods required

Use 5-D, domain wall lattice
fermions — physical quarks
bound to 4D boundaries

Use a 963 x 192 > 1283 x 288 > 1603 x 360 lattice

Compute 8000 lowest Dirac eigenvectors to
speed up Dirac operator inversion.

Frontier machine at ORNL has 9472 nodes, each
with one AMD EPYC CPUs and 4 MI250X GPUSs,
complex memory and communications
hierarchies

Broad collaboration needed.
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Path Integral Formulation

Asymptotic freedom justifies a lattice action defined
at weak coupling.

Stochastic evaluation exploits the large number of
field theory variables while treating them exactly.

Monte Carlo Markov chain importance sampling Is
extremely effective: 1% accuracy from 10 samples.

Euclidean e"eco! projects onto stable Hycp
eigenstates:

— Correlation lengths give particle masses.

— Matrix elements of physical operators directly evaluated.

Clearly the key to solving non-perturbative gauge
theory at low-energy
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