

Quantum simulation of colour in perturbative QCD

Herschel A. Chawdhry Florida State University

ACAT conference 2024 (Stony Brook) Friday 15th March 2024

Based on SciPost Phys. 15, 205 (2023) with Mathieu Pellen

and ongoing work with Mathieu Pellen and Simon Williams

Outline

- 1. Introduction/motivation
- 2. Background
- 3. Quantum circuits for colour
 - Overview
 - Details
- 4. Results/validation
- 5. Outlook and summary

Outline

- 1. Introduction/motivation
 - Why perturbative QCD?
 - Why quantum computers?
 - Why now?
 - Proposed applications of quantum computing in high-energy physics
- 2. Background
- 3. Quantum circuits for colour
 - Overview
 - Details
- 4. Results/validation
- 5. Outlook and summary

Why perturbative QCD? (1) Particle physics and the Standard Model

Image sources: CERN

Image source: CERN / ParticleQuest / André-Pierre Olivier

Standard Model Total Production Cross Section Measurements

Status: October 2023

5

Why perturbative QCD? (2)

Lattice QCD $\sum_{n} \langle n | e^{-H(T-t)} \mathcal{O} e^{-Ht} | n \rangle = \int d[U_{\mu}(n)] e^{-\mathcal{A}[U]} \det(D+m) \mathcal{O}[U](t)$ $\sum_{n} \langle n | e^{-H(T-t)} \mathcal{O} e^{-Ht} | n \rangle = \int d[U_{\mu}(n)] e^{-\mathcal{A}[U]} \det(D+m) \mathcal{O}[U](t)$ • Very large computational
challenge:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.<

ACAT 2024 - 3/14/2024 (5)

Slide from Norman Christ's talk yesterday (my highlighting)

Why perturbative QCD (3)

- Very rapid increase in difficulty with each order in α_s
 - Each new order typically takes 10-20 years
 - But vital for producing precise theoretical predictions to compare against experimental measurements
- Highly challenging and computationally intense
 - e.g. multi-loop amplitude calculations
 - e.g. Monte-Carlo integration of cross sections
 - So new techniques and technologies are always needed

Outline

- 1. Introduction
 - Why perturbative QCD?
 - Why quantum computers?
 - Why now?
 - Proposed applications of quantum computing in high-energy physics
- 2. Background
- 3. Quantum circuits for colour
 - Overview
 - Details
- 4. Results/validation
- 5. Outlook and summary

What can quantum computers do?

- Prime factorisation
- Unstructured search
 - e.g. searching abstract spaces
 - e.g. Monte-Carlo integration
- Simulating quantum systems
 - Computational chemistry
 - Condensed matter systems
 - Lattice QFT/QCD
- Machine learning

Why now?

- Hardware progress
 - Trapped ions
 - Neutral atoms
 - Photonic systems
 - Superconducting systems
 - •
- Software progress
 - e.g. Error-correcting codes (e.g. "surface codes")
- Commercial interest

Why now?

IBM Quantum Development Roadmap

Why now?

Google's quantum roadmap

Herschel Chawdhry (Florida State University), ACAT conference,

15/03/2024, Quantum simulations of perturbative QCD

Proposed applications in high-energy physics

- Experiments / data analysis
- PDFS [Pérez-Salinas, Cruz-Martinez, Alhajri, Carrazza, '20], [QuNu Collaboration, '21]
- EFTS [Bauer, Freytsis, Nachman, '21]
- Monte Carlo for cross-sections [Agliardi, Grossi, Pellen, Prati, '22]
- Parton showers [Bauer, de Jong, Nachman, Provasoli, '19], [Bepari, Malik, Spannowsky, Williams, '20], [Gustafson, Prestel, Spannowsky, Williams, '22]
- Event generation [Gustafson, Prestel, Spannowsky, Williams, '22], [Bravo-Prieto, Baglio, Cè, Francis, Grabowska, Carrazza, '21], [Kiss, Grossi, Kajomovitz, Vallecorsa, '22]
- Lattice QCD (See reviews [Klco, Roggero, Savage, '21] and [Bauer et al., '22] and references therein)
- More [Cervera-Lierta, Latorre, Rojo, Rottoli, '17], [Ramírez-Uribe, Rentería-Olivo, Rodrigo, Sborlini, Vale Silva, '21], [Fedida, Serafini, '22], [Clemente, Crippa, Jansen, Ramírez-Uribe, Rentería-Olivo, Rodrigo, Sborlini, Vale Silva, '21]

Spotlight: quantum simulation

- Quantum simulation: a flagship application of quantum computers
- Recent years: proposals for quantum simulation of lattice QFTs (e.g. lattice QCD)
- Quantum simulation of perturbative QCD remains largely unexplored
 - Notable exception: several papers on parton showers
- This talk: first steps towards generic perturbative QCD processes
 - Quantum simulation of colour in perturbative QCD
 - Simulation of (more challenging) kinematics left to future work

Motivation for quantum simulation of pQCD

- 1. Perturbative QCD requires quantum-coherent combination of contributions from many unobservable intermediate states
 - natural candidate to exploit superpositions of quantum states in quantum computers
- 2. Processes with high-multiplicity final states, with full interference effects
- 3. Improve speed/precision of perturbative QCD predictions by exploiting speed-ups of known quantum algorithms
 - e.g. quantum amplitude estimation; quantum Monte Carlo

Outline

- 1. Introduction
- 2. Background
- 3. Quantum circuits for colour
 - Overview
 - Details
- 4. Results/validation
- 5. Outlook and summary

Quantum circuit model

- Qubits
- Gates
 - Unitary, reversable
 - Can be controlled by other qubits

Figure from: Feynman, R.P. Quantum mechanical computers. Found Phys **16**, 507–531 (1986)

Operator	Gate(s)		Matrix
Pauli-X (X)	- x -		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	- Y -		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	- Z -		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$
Phase (S, P)	- S -		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	—T —		$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		-*- -*-	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Herschel Chawdhry (Florida State University), ACAT conference,

15/03/2024, Quantum simulations of perturbative QCD

Crash course: colour in QCD calculations

- SU(3) structure function f^{abc} at each triple-gluon vertex
 - (4-gluon vertex can be written as linear combination of 3-gluon vertices)
- SU(3) generator T^a_{ij} at each quark-gluon vertex
- Trace over unmeasured (unmeasurable) colours
- e.g.

• Note: the large- N_c expansion is <u>not</u> used in this work

Outline

- 1. Introduction
- 2. Background
- 3. Quantum circuits for colour
 - Overview
 - Details
- 4. Results/validation
- 5. Outlook and summary

Idea: can Gell-Mann matrices become gates?

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
$$T_{ij}^{a} = \frac{1}{2}\lambda_{ij}^{a} \qquad \qquad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$
$$\lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

- Short answer: yes, but there are complications:
 - Not 2ⁿ x 2ⁿ
 - Not unitary

Key results of this work

• Two quantum gates (G and Q) to simulate colour parts of the interactions of quarks and gluons

• Explicit construction of these gates: see later

Methods

- Quark colours: represented by 2 qubits (2² = 4 basis states, of which 1 is unused)
- Gluon colours: represented by 3 qubits (2³ = 8 basis states)
- Quark-gluon interaction gate is designed such that $Q |a\rangle_g |k\rangle_q |\Omega\rangle_{\mathcal{U}} = \sum_{j=1}^3 T_{jk}^a |a\rangle_g |j\rangle_q |\Omega\rangle_{\mathcal{U}} + (\text{terms orthogonal to } |\Omega\rangle_{\mathcal{U}})$
- Triple-gluon interaction gate is designed such that

 $G |a\rangle_{g_1} |b\rangle_{g_2} |c\rangle_{g_3} |\Omega\rangle_{\mathcal{U}} = f^{abc} |a\rangle_{g_1} |b\rangle_{g_2} |c\rangle_{g_3} |\Omega\rangle_{\mathcal{U}} + (\text{terms orthogonal to } |\Omega\rangle_{\mathcal{U}})$

• Note: $|\Omega\rangle_{\mathcal{U}}$ is a reference state of a "Unitarisation register", which we introduce because in SU(3), T^a_{ik} and f^{abc} are non-unitary.

(See later slides for more complicated examples)

(See later slides for more complicated examples)

(See later slides for more complicated examples)

Outline

- 1. Introduction
- 2. Background
- 3. Quantum circuits for colour
 - Overview
 - Details
 - Constructing the Q and G gates
 - General algorithm for calculating colour factors for arbitrary Feynman diagrams
- 4. Results/validation
- 5. Outlook and summary

Construction of the Q gate

• Start by defining matrices $\overline{\lambda}_a$

$$\overline{\lambda}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \overline{\lambda}_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \overline{\lambda}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\overline{\lambda}_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \overline{\lambda}_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 1 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \overline{\lambda}_6 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\overline{\lambda}_7 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \overline{\lambda}_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Herschel Chawdhry (Florida State University), ACAT conference, 15/03/2024, Quantum simulations of perturbative QCD

 $g \equiv q \equiv Q$

 $Q |a\rangle_{g} |k\rangle_{q} |\Omega\rangle_{\mathcal{U}} = \sum T_{jk}^{a} |a\rangle_{g} |j\rangle_{q} |\Omega\rangle_{\mathcal{U}} + (\text{terms orthogonal to } |\Omega\rangle_{\mathcal{U}})$

 $\overline{j=1}$

Construction of the Q gate

• Next, define a gate Λ

Construction of the Q gate

• Finally, define the gate Q

M

Recall: $\langle \Omega |_{\mathcal{U}} B(\alpha) A | \Omega \rangle_{\mathcal{U}} = \alpha$

where μ is defined such that $\mu(a,i)\overline{\lambda}_a \ket{i} = \frac{1}{2}\lambda_a \ket{i}$

 $B(\mu(a,i)$

with

Construction of the G gate

• Define G gate:

Calculating the colour factor of arbitrary Feynman diagrams

- Build a quantum circuit with:
 - For each gluon, 1 gluon register, with 3 qubits per register
 - For each quark line, a pair of quark registers: q and \tilde{q} , with 2 qubits per register
 - A unitarisation register with $N_{\mathcal{U}} = \lceil \log_2(N_V + 1) \rceil$ qubits
- Initialise each register $\mathcal r$ into the state $|\Omega\rangle_r$
- For each gluon, apply R_g
- For each quark, apply R_q
- For each quark-gluon vertex, apply Q gate to the corresponding g and q registers (not \tilde{q})
- For each triple-gluon vertex, apply G gate to the corresponding g registers
- For each gluon, apply $(R_g)^{-1}$
- For each quark, apply $(R_q)^{-1}$
- Colour factor C is found encoded in the final state of the quantum computer, which is:

 $\frac{1}{\mathcal{N}}\mathcal{C}\left|\Omega\right\rangle_{all} + (\text{terms orthogonal to}\left|\Omega\right\rangle_{all})$

Herschel Chawdhry (Florida State University), ACAT conference, 15/03/2024, Quantum simulations of perturbative QCD

Recall the illustrative example:

Outline

- 1. Introduction
- 2. Background
- 3. Quantum circuits for colour
 - Overview
 - Details
- 4. Results/validation
- 5. Outlook and summary

Validation

- Implemented using Qiskit (IBM)
- Simulated various diagrams
 - Simulated noiseless quantum computer
 - These examples use up to 30 qubits
 - Ran each diagram 10⁸ times
 - Measured output to infer colour factor $\frac{1}{N} C |\Omega\rangle_{all} + (\text{terms orthogonal to } |\Omega\rangle_{all})$
 - Full agreement with analytic expectation
- Follow-up work (in progress)
 - Improved algorithm (quadratically faster)
 - Enables interferences of multiple diagrams

Directions for future work

- Interference of multiple diagrams (work in progress)
 - Natural application for a quantum computer
 - Can try with/without quantum simulation of kinematic parts
- Kinematic parts
 - Unitarisation register could be useful here too
 - Much larger Hilbert space since kinematic variables are continuous
- High-multiplicity processes
- Monte-Carlo integration of cross-sections
 - quadratic speed-up

Summary and outlook

- Designed quantum circuits to simulate colour part of perturbative QCD
 - Example application: colour factors for arbitrary Feynman diagrams
 - First step towards a full quantum simulation of generic perturbative QCD processes
- Natural avenues for follow-up work:
 - Interference of multiple Feynman diagrams (work now in progress)
 - Kinematic parts of Feynman diagrams
 - Use in a quantum-accelerated Monte Carlo calculation of cross-sections
 - Quadratic speed-up over classical Monte Carlo

Backup slides

What quantum computers can and cannot do

• Formally, anything that can be computed on a quantum computer can also be computed on a classical Turing machine

Figure from: opengenus.org

• But quantum computers are potentially (much) faster than classical computers for certain problems

Example: the increment circuit

 $|k\rangle \rightarrow \left|k+1 \pmod{2^N}\right\rangle$

- Examples:
 - $\bullet \left| 00000 \right\rangle \rightarrow \left| 00001 \right\rangle$
 - $\bullet \left| 01011 \right\rangle \rightarrow \left| 01100 \right\rangle$
 - $|11111\rangle \rightarrow |00000\rangle$ (overflow)
 - $\stackrel{\bullet}{\xrightarrow[|\alpha|^2+|\beta|^2} \rightarrow \frac{\alpha|0000\rangle + \beta|0110\rangle}{|\alpha|^2+|\beta|^2} \rightarrow \frac{\alpha|00001\rangle + \beta|01100\rangle}{|\alpha|^2+|\beta|^2}$

Figure adapted from: algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html

Example: the increment circuit

 $|k\rangle \rightarrow \left|k+1 \pmod{2^N}\right\rangle$

- Examples:
 - $\bullet \left| 00000 \right\rangle \rightarrow \left| 00001 \right\rangle$
 - $|01011\rangle \rightarrow |01100\rangle$
 - $|11111\rangle \rightarrow |00000\rangle$ (overflow)
 - $\stackrel{\bullet}{\xrightarrow[|\alpha|^2+|\beta|^2} \rightarrow \frac{\alpha|00001\rangle + \beta|01100\rangle}{|\alpha|^2+|\beta|^2}$

Herschel Chawdhry (Florida State University), ACAT conference, 15/03/2024, Quantum simulations of perturbative QCD

Figure adapted from: algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html

Example: the increment circuit

 $|k\rangle \rightarrow \left|k+1 \pmod{2^N}\right\rangle$

- Examples:
 - $\bullet \left| 00000 \right\rangle \rightarrow \left| 00001 \right\rangle$
 - $\bullet \left| 01011 \right\rangle \rightarrow \left| 01100 \right\rangle$
 - $|11111\rangle \rightarrow |00000\rangle$ (overflow)
 - $\stackrel{\bullet}{\xrightarrow[|\alpha|^2+|\beta|^2} \rightarrow \frac{\alpha|0000\rangle + \beta|0110\rangle}{|\alpha|^2+|\beta|^2} \rightarrow \frac{\alpha|00001\rangle + \beta|01100\rangle}{|\alpha|^2+|\beta|^2}$

Figure adapted from: algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html

Non-unitary operators in perturbative QCD

• Would like quantum gates for the 8 linear operators

$$|j\rangle_q \rightarrow \sum_i T^a_{ij} \, |i\rangle_q$$

and also for the (diagonal) operator

$$a\rangle_{g_1}|b\rangle_{g_2}|c\rangle_{g_3} \to f^{abc}\,|a\rangle_{g_1}|b\rangle_{g_2}|c\rangle_{g_3}$$

- An operator is unitary iff the rows of its matrix representation are orthonormal
 - In matrices T^a_{ij} and f^{abc}, rows are orthogonal
 - But not necessarily of unit norm
- Need a unitary way to alter a state's norm

 $\begin{aligned} \text{Recall:} \\ \lambda^{1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{3} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \lambda^{4} &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda^{5} &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda^{6} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \\ \lambda^{7} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda^{8} &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{aligned}$

Unitarisation register: expanding the space

- Let L be an operator acting on a Hilbert space \mathcal{H}_1
- If L is non-unitary, it cannot be directly implemented as a circuit
- But it may be possible to define a new unitary operator \hat{L} acting on a larger space $\mathcal{H}_1\otimes\mathcal{H}_{\mathcal{U}}$ such that

 $\langle \Omega |_{\mathcal{U}} \langle \chi_2 | \hat{L} | \chi_1 \rangle | \Omega \rangle_{\mathcal{U}} = \langle \chi_2 | L | \chi_1 \rangle$

for some state $|\Omega_{\mathcal{U}}\rangle \in \mathcal{H}_{\mathcal{U}}$ for all states $|\chi_1\rangle, |\chi_2\rangle \in \mathcal{H}_1$

In this work, we introduce a single additional register U, whose size is small: N_U = ⌈log₂(N_V + 1)⌉

Unitarisation register: gates A and B

- Let A denote the increment circuit described earlier
- Define a gate $B(\alpha)$:

where:

$$B_1(\alpha) = \begin{pmatrix} \sqrt{1 - |\alpha|^2} & \alpha \\ -\alpha & \sqrt{1 - |\alpha|^2} \end{pmatrix}$$

Unitarisation register: key properties

• Together, gates A and $B(\alpha)$ act on \mathcal{U} in the following way:

$$B(\alpha)A|k\rangle = \begin{cases} \alpha |0\rangle + \sqrt{1 - |\alpha|^2} |1\rangle & \text{if } k = 0 \\ |k+1\rangle & \text{if } 0 < k < 2^{N_{\mathcal{U}}} - 1 \\ \sqrt{1 - |\alpha|^2} |0\rangle - \alpha |1\rangle & \text{if } k = 2^{N_{\mathcal{U}}} - 1. \end{cases} \qquad |0\rangle_{\mathcal{U}} \equiv |\Omega\rangle_{\mathcal{U}}$$

which means we can apply B(α)A repeatedly up to $2^{N_u} - 1$ times and satisfy

$$\langle \Omega |_{\mathcal{U}} \prod_{i=1} \{ B(\alpha_i) A \} | \Omega \rangle_{\mathcal{U}} = \prod_{i=1} \alpha_i$$

R_g and R_q gates for tracing

$$R_g^{-1}\sum_{a=1}^8 c_a \left|a\right\rangle_g = \left(\frac{1}{\sqrt{8}}\sum_{a=1}^8 c_a\right)\left|\Omega\right\rangle_g + \left(\text{terms orthogonal to }\left|\Omega\right\rangle_g\right)$$

$$\begin{split} R_q \left| \Omega \right\rangle_q \left| \Omega \right\rangle_{\tilde{q}} &= \sum_{k=1}^3 \frac{1}{\sqrt{3}} \left| k \right\rangle_q \left| k \right\rangle_{\tilde{q}} \\ q \\ q \\ \tilde{q} \\ R_q \\ \tilde{q} \\ R \\ = \underbrace{\left\{ \begin{array}{c} \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{6}} & 0 \\ \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{6}} & 0 \\ \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{6}} & 0 \\ \sqrt{\frac{1}{3}} & 0 & \sqrt{\frac{2}{3}} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right]} \\ R_q^{-1} \sum_{i,k \in \{1,2,3\}} c_{ik} \left| i \right\rangle_q \left| k \right\rangle_{\tilde{q}} = \left(\frac{1}{\sqrt{3}} \sum_{i=1}^3 c_{ii} \right) \left| \Omega \right\rangle_q \left| \Omega \right\rangle_{\tilde{q}} + \left(\text{terms orthogonal to } \left| \Omega \right\rangle_q \left| \Omega \right\rangle_{\tilde{q}} \right) \end{split}$$

