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Big Picture Questions

Development of AI methods 
for Particle Physics 

Does this mean we should put 
Physics Knowledge into AI ? 

AINHEP 1990



Researchers seek to leverage their human knowledge […], 
but the only thing that matters in the long run 

is the leveraging of computation

… many examples of AI researchers’ belated 
learning of this bitter lesson



Is this what we want ? 

Transformer 
or whatever 
comes next.

AI: Trust me, 
This is a Higgs Decay 

Human: Ok.

A end to end “Hits to Higgs” system seems neither feasible (today) 
nor particularly desirable. As scientists we usually want more.



Probably not.
The compositional & hierarchical nature of the data is core to 
our understanding. Sacrificing all of it for a non-descript 
“latent space”? Some of it yes, but probably not everything. 

Data Theory



What do we want?

We don’t know (yet) how much domain knowledge will remain 
important and how much we can leave up to the machine 

Need framework to build hybrid Physics-AI systems, learnable 
but with flexible control where & how much physics to put in.



Architectures and the Inductive Bias Story
Initially the simplest way to integrate physics into AI systems 
is through adding constraints: inductive bias 

MLx y

fϕ(rx(g)x) = ry(g)fϕ(x)
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Can’t keep a Physicist from Symmetries

Hamiltonian Neural Nets

Lorentz-Invariance

Neural Nets with 
QCD-like Structure

arXiv:1906.01563

arXiv:2006.04780

arXiv:1702.00748

Gauge-Equivariant 
Convolutional Neural Networks

SU(N)-Equivariant Normalizing Flows

Lagrangian Neural Nets
arXiv: 2003.04630
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But there is more
In (experimental) HEP what we think of as physics knowledge 
is often less about symmetries but more through 

data flow between statesmeaning of internal states

Physics Computation ML modules

ML

ML

ϕ1

ϕ3

ML

ϕ2



But there is more
Optimize this hybrid system directly: Instead of training 
separately before assembling a pipeline → train the ML in-situ 

Physics 
Objective

Backpropagation

For this to work, the physics components must 
play nice gradient descent → differentiable programming



Differentiable Programming
At the core, ML frameworks are programming languages that 
produce “enhanced programs” → add gradient information 

General purpose, ready for physics

Program

x ϕ

fϕ(x)

Program

x ϕ

fϕ(x) ∇ϕ fϕ(x)



From beyond HEP
Many project that (re-)write major software components in 
differentiable languages for us in hybrid AI systems 



Optimizing a Differentiable Simulator

arXiv:2211.09815



In HEP & al, we are pushing as well
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Differentiable Inference
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Recent Example of a true Hybrid:

Soft Track Selector 
(Transformer)

Vertex Fit 
Physics

ϕ

Loss

Backpropagation

TracksTracksTracks
Jet Tagging 

(Transformer)

ϕ

Adding Physics does give you more

performance than just dumping

the raw data into a big transformer

Smith, Ochoa, Inacio, Shoemaker, Kagan, 2310.12804  



Not too worried about Integrations
Not only a ML thing. A huge community with experience in 
automatic differentiation in large C++, Julia, FORTRAN 
projects: Even RooFit has become differentiable

Munich 2023: 
Differentiating 

FORTRAN 
Madgraph 

with TAPENADE

M. Sagebaum - CoDIPack

G. Singh, V. Vassilev et al - Clad



Challenges
One of the key challenges for differentiable physics in HEP is 
that we have non-differentiable operations at the core 

To zero-th order: HEP = splitting & clustering! 
→ a conceptual not a technical challenge. 

Simulation AnalysisData

Care Needed to 

become differentiable



Challenges
With some thought, it’s possible to differentiate even discrete 
processes e.g. as particle showers & event selections 

Key: Adapt methods from e.g. Reinforcement Learning or newer 
“Stochastic Automatic Differentiation”

Shower

arxiv:2210.08572 [G. Arya, et al]arxiv:2308.16680 [LH, M. Kagan]



Application: Detector Design
With a differentiable detector simulation or a neural network 
surrogate, we can optimize the detector design 

Physics Simulator 
(or Surrogate)Design Possibly ML 

Reco & Analysis

G. Strong, T. Dorigo et al

2309.14027

Performance

Backpropagation

before after

[S. Shirobokov, M. Kagan et al]

arxiv:2002.04632



Challenges
Gradients are not the only secret sauce of ML. Over-
parametrization is important. Hybrid Systems likely work best 
with fairly big neural components connected by some physics
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ML Particle Flow 
(Graphs & Transformers)

ML Tracking 
(Graphs Neural Nets)

Jet Representations 
(Transformers)

arxiv: 2201.08187 arxiv: 2108.04253

arxiv:2101.08578



Looking Forward
Differentiable Programming we have a tool that allows us to 
inject physics into the data-flow. A more nuanced picture re: 
role of physics in AI models. Worth investing in R&D. 

Where will we land? 

maximalist ML 
(black box from raw data)

few big ML blocks /  
connected by little physics

intricate differentiable 
programming pipeline 

small ML + lots of physics


