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Big Picture Questions

Development of Al methods
for Particle Physics
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The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest I Researchers seek to leverage their human knowledge [...], hethods that leverage computation are ultimately the
most effectivyg but the only thing that matters in the long run v, or rather its generalization of continued
exponentially is the leveraging of computation nducted as if the computation available to the agent
were constan only ways to improve performance) but, over a

slightly longer time than a typical research project, massively more computation inevitably becomes available. Seeking an
improvement that makes a difference in the shorter term, researchers seek to leverage their human knowledge of the domain, but the
only thing that matters in the long run is the leveraging of computation. These two need not run counter to each other, but in practice
they tend to. Time spent on one is time not spent on the other. There are psychological commitments to investment in one approach
or the other. And the human-knowledge approach tends to complicate methods in ways that make them less suited to taking
advantage of general methods leveraging co Eutatlon There were many examples of Al researchers' belated learning of this bitter
lesson, and it is instructive to review some of the most prominent.

In computer chess, the methods that defeated the world chape=iee—Tfacmamac 2 1007 wisosalocoad e wecacieadaep search. At the

time, this was looked upon with dismay by the majority of « Is that leveraged
human understanding of the special structure of chess. Whe ... many examples of Al researchers’ belated |ware and software
proved vastly more effective, tEese human-knowledge-base learning of this bitter lesson nat ~brute force"
search may have won this time, but it was not a general stra s. These researchers

wanted methods based on human input to win and were diSapponmeawrerrurey oot




Is this what we want ?

ATLAS

EXPERIMENT

Candidate Event:
pp—-H(-bb) + W(-1v)
Run: 338712 Event: 335908183
2017-10-19 23:31:18 CEST

TS o] anal=1g Al: Trust me,
This is a Higgs Decay

or whatever
comes next. Human: Ok.

A end to end “Hits to Higgs” system seems neither feasible (today)
nor particularly desirable. As scientists we usually want more.



Probably not.

The compositional & hierarchical nature of the data is core to
our understanding. Sacrificing all of it for a non-descript
“latent space”? Some of it yes, but probably not everything.
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What do we want?

We don’t know (yet) how much domain knowledge will remain
iImportant and how much we can leave up to the machine

Need framework to build hybrid Physics-Al systems, learnable
but with flexible control where & how much physics to put in.



Architectures and the Inductive Bias Story

Initially the simplest way to integrate physics into Al systems
Is through adding constraints: inductive bias
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Can’t keep a Physicist from Symmetries
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But there Is more

In (experimental) HEP what we think of as physics knowledge
Is often less about symmetries but more through

meaning of internal states data flow between states

Physics Computation ML modules



But there Is more

Optimize this hybrid system directly: Instead of training
separately before assembling a pipeline — train the ML in-situ

Backpropagation

P hysics
v Objective

For this to work, the physics components must
play nice gradient descent — differentiable programming



Differentiable Programming

At the core, ML frameworks are programming languages that
produce “enhanced programs” — add gradient information

General purpose, ready for physics

Program

e

PYTHRCH




From beyond HEP

Many project that (re-)write major software components in
differentiable languages for us in hybrid Al systems

Accepted at the ICLR 2024 Workshop on Al4Differential Equations In Science

JAX-SPH: A DIFFERENTIABLE SMOOTHED PARTICLE
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Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAOQO LI, MIT CSAIL
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(b) real photograph  (c) camera gradient]
(per-pixel contribut]

(a) initial guess

Fig. 1. We develop a general-purpose differentiable renderer that is capal
with respect to scene parameters, such as camera pose (c), material pa

computed from. the o.utput image. (c) shows the per-pixel gradient cont o Samuel S. Schoenholz Ekin D.
shows the gradient with respect to the red channel of table albedo. (e) sh ('\] G le R h: Brain T G le R
As one of our applications, we use our gradient to perform an inverse re O oogle kesearch: brain 1€am 00gle Researd
(a) with a manual geometric recreation of the scene. The scene contains] (.\] schs am@google .com CUbUk@gO(I
optimize for camera pose, material parameters, and light source inten
method generates image (f) that almost matches the photo reference. &'
Gradient-based methods are becoming increasingly important for compu QO
graphics, machine learning, and computer vision. The ability to compy Q Abstract
gradients is crucial to optimization, inverse problems, and deep learning.
rendering, the gradient is required with respect to variables such as camg o
Lichi saak bonatesialannesioncedl oo . : :
We introduce JAX MD, a software package for performing diff;
e simulations with a focus on molecular dynamics. JAX MD i
o, of physics simulation environments, as well as interaction pot
I networks that can be integrated into these environments withouf
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ABSTRACT

Rapid advances in deep learning have brought not only myriad powerful neural
networks, but also breakthroughs that benefit established scientific research. In
particular, automatic differentiation (AD) tools and computational accelerators

like GPUs have facilitated forward modeling of the Universe with differentiable
micaclotiome Daned aecealentin ot obcenatia oo ool cscmcnts il rminii ol




Optimizing a Differentiable Simulator

Optimizing initial conditions
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In HEP & al, we are pushing as well
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Recent Example of a true Hybrid:

1044

—— C-jet rejection FTAG+NDIVE

—— light-jet rejection FTAG+NDIVE

B c-jet rejection FTAG
I G light-jet rejection FTAG

Adding Physics does give you more |
l

performance than just dumping
the raw data into a big transformer

c/light-jet rejection

060 065 070 075 080 085 090  0.95 1.00

b-jet efficiency

i Soft Track Selector Vertex Fit Jet Tagging »
(Transformer) | Physics (Transformer)

[ Tracks

Smith, Ochoa, Inacio, Shoemaker, Kagan, 2310.12804

Backpropagation



Not too worried about Integrations

Not only a ML thing. A huge community with experience In

automati

c differentiation in large C++, Julia, FORTRAN

Scientific

M. Sagebaum - CoDIPack

- x
I = TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Even RooFit has become differentiable

Computing

projects:

Motivation - Why do we need derivatives?
Example: A380 Turbine: GP7000

Munich 2023:
Differentiating
FORTRAN
Madgraph
with TAPENADE

almass) THEN

G. Singh, V. Vassilev et al - Clad

2304.02650v1 [cs.MS] 4 Apr 2023

arxXiv

Automatic Differentiation of Binned Likelihoods

With Roofit and Clad

Garima Singh”, Jonas Rembser!, Lorenzo Moneta', David Lange”,

Vassil Vassilev”

* Department of Physics, Princeton University, Princeton, NJ 08544, USA
1 EP-SFT, CERN, Espl. des Particules 1, 1211 Meyrin, Switzerland

E-mail: garima.singh@cern.ch, jonas.rembser@cern.ch, lorenzo.moneta@cern.ch,

david.lange@cern.ch, vassil.vassilev@cern.ch

Inlet

Program shares:
30.0% P&W
30.0% GE
22.5% MTU
10.0% Snecma
7.5% Techspace Aero

Combustion

chamber Turbine

Fan Compressor

MTU share (22.5 %):

5.0% HP Turbine

5.0% Turbine Center Frame
12.5% LP Turbine

Pictures www.mtu.de

Sagebaum

High-performance Algorithmic Differentiation 2nd MODE workshop 7/ 59

Abstract. Just as data sets from next-generation experiments grow, processing requirements
for physics analysis become more computationally demanding, necessitating performance
optimizations for RooFit. One possibility to speed-up minimization and add stability is the use
of Automatic Differentiation (AD). Unlike for numerical differentiation, the computation cost

scales linearly with the number of parameters, making AD particularly appealing for statistical
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2 500k

2 000k

1 500k

1 000k

500k

Code Squashing - Numeric Differentiation

Number of Parameters

RooFit - Numeric Differentiation -~ Code Squashing - Numeric Differentiation Code Squashing - AD

hundreds of likelihood components, each representing a different measurement channel. For the

= TECHNISCHE UNIVERSITAT
s KAISERSLAUTERN

Scientific e
Computing /
Test case - Lockheed Martin 1021 configuration
[
AN,

Explicit Runge-Kutta
m Euler scheme

Mach: 1.6

Angle of attack: 2.1

m Mesh size: 5,730,841
m Primal Memory: 16.7 Gb
m Primal time (one G step): 2.05 s

= Run on 32 processors of the Elwetritsch
TU Kaiserslautern

cluster from the

Sagebaum

High-performance Algorithmic Differentiation

2nd MODE workshop 13/ 59



Challenges

One of the key challenges for differentiable physics in HEP is
that we have non-differentiable operations at the core

To zero-th order: HEP = splitting & clustering!
— a conceptual not a technical challenge.




Challenges

With some thought, it’s possible to differentiate even discrete
processes e.g. as particle showers & event selections

/
R . ‘.. o

.

" ———
\ “

Shower

Key: Adapt methods from e.g. Reinforcement Learning or newer
“Stochastic Automatic Differentiation”

arxiv:2308.16680 [LH, M. Kagan] arxiv:2210.08572 [G. Arya, et al]



Application: Detector Design

With a differentiable detector simulation or a neural network
surrogate, we can optimize the detector design

Emulsion spectrometer

Target & Magnetised hadron absorber

N
p @ s

p

bbbbbbb G. Strong, T. Dorigo et al
2309.14027

[S. Shirobokov, M. Kagan et al]

arxiv:2002.04632 “
Physics Simulator Possibly ML
DeS|gn (or Surrogate) Reco & Analysis Performance J

Backpropagation




Challenges

Gradients are not the only secret sauce of ML. Over-
parametrization is important. Hybrid Systems likely work best
with fairly big neural components connected by some physics

tt, 14 TeV, 200 PU
Tracks
= ECAL clusters

L HCAL clusters
Truth particles
1
Filter likely, Filter, convert to = | 3
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ML Tracking
(Graphs Neural Nets)

ML Particle Flow
(Graphs & Transformers)

probability

Softmax
1

Decoding

JJJJJJ
AUC:

Dropout

Average Pooling 10%]
[ ht .

LGEB
I pL-1 T L1
LGEB XL-—1

t ho x°
Embedding
1

0 T T T T t
Scalars 4-momentum 10%0.0 0.2 0.4 0.6 0.8 1.0

Top-tagging
Linear classifier test

LorentzNet

arxiv: 2201.08187 arxiv: 2108.04253
Jet Representations

(Transformers)



Looking Forward

Differentiable Programming we have a tool that allows us to
Inject physics into the data-flow. A more nuanced picture re:
role of physics in Al models. Worth investing in R&D.

Where will we land?

\_
mrTcr:\t; :";f‘ere'i‘tzg:: few big ML blocks / maximalist ML
prog gpip connected by little physics (black box from raw data)

small ML + lots of physics



