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Decades of Innovations in Computer Systems

HOME > NEWS > IT HARDWARE & SEMICONDUCTORS

Meta to operate "600,000 H100 GPU
equivalents of compute” by year-end
Including 340,000 H100 Nvidia GPUs at its data centers
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Comeuting’s Energx Footerint

700 million tons of CO,e

Half of the aviation industry’s emissions
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Comeuting’s Energx Footerint

Google, Meta and Microsoft Energy Growth
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Computing’s Footprint Projected to Double over the Decade




Coreorate Climate Pledges
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Meta Sustainability

A MESSAGE FROM OUR CEO

QOur third decade of climate action: We are committed to

Realizing a carbon-free future reaching net zero

Official Microsoft B|Og Microsoft On the Issues ~ The Al Blog  Transform e m iSSionS qcross Ou r VG I ue
chain in 2030.

Microsoft

In 2020 and beyond, Facebook’s global
Microsoft will be carbon negative by 2030 Sl el SIS
greenhouse gas emissions and be 100

Jan 16,2020 | Brad Smith - President percent supported by renewable energy.

Amazon
Su sta i na bi lity i n PRESS RELEASE
the Cloud | :

] e Apple commits to be 100
Amazon Web Services (AWS) i .
commci)ttedeto rSnninegS our bussi'ness in percent Carbon neUtraI for its
the most environmentally friendly way Supply chain and pl‘OdUCtS

possible and achieving 100%

renewable energy usage for our global by 2030

infrastructure.

https://sustainability.aboutamazon.com/environment/the-cloud
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Exponential Growth Trend of Al

Data, Model Sizes, System Infrastructures
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Al’s Carbon FootErint

Operational Carbon

Operational tCO2e =
training/inference time *
# of processors *
power consumption per processor *
PUE *
kg CO2e per KWh
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Al’s Carbon Footerint
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Sustainable Al: Environmental Implications, Challenges and Opportunities. Wu et al. MLSys-2022.



Carbon Optimization via HW-SW Co-Design

Universal Language Translation
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Efficiencx Oetimization |t

But Jevon’s Paradox
1.2

Improved efficiency increases use
(18% power footprint increase)
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Lifecxcle Carbon Emissions

Embodied CO, Operational CO,
Manufacturing Product Use Recycling
Emissions from fabs Emissions of system use

building chip (Software and Hardware)
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The chip industry’s dirty little secret:
It’s very dirty

BY MICHAL LEV-RAM
January 29, 2024 at 6:00 AMEST <
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An Under-Explored Aspect of Computing’s Carbon Footprint

Embodie arbon

Manufacturing ‘f
account for

> 33% of emissions
(SoCs, DRAMs, NAND Flash)

Integrated Circuit
Manufacturing

accounts for 74% of
Apple’s end-to-end
breakdown in 2019

Business travel
Recycling

Product transport

Product use account for 19%
macOS Idle of emissions

macOS Active

Product Use

Displays

Electronics

Manufacturing and operational carbon footprint (location-based) is roughly equal
for cloud infrastructure.



Al’s Carbon Footerint

Embodied Carbon

Embodied tCO2e
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Al’'s (Operational & Embodied) Carbon Footprint
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Sustainable Al: Environmental Implications, Challenges and Opportunities. Wu et al. MLSys-2022.



Open Research Fosters Innovations

% g CV:ImageNet
g NLP: LibriSpeech

Recommendation?

m Computer Vision
= RNN Translation
m Recommendation



MLPerf includes DLRM + Criteo Ads Dataset

A machine learning performance
benchmark suite with broad industry
and academic support



MLPerf Includes DLRM + Criteo Ads Dataset

Recommendation Model

*  Cover adiverse set of use cases with the goal to optimize
for both click-through-rate and conversion-rate, as well as
to improve long-term values

Recommendation Datasets

*  (Capture the degree of sparsity found in industry-scale
problems

 Cover user- and item-features as well as user-item
interactions

DEVELOPING A RECOMMENDATION BENCHMARK FOR MLPERF TRAINING
AND INFERENCE

Carole-Jean Wu' Robin Burke? Ed H. Chi® Joseph Konstan* Julian McAuley > Yves Raimond ¢
Hao Zhang’

1 INTRODUCTION

Deep learning-based recommendation models are used per-
vasively and broadly, for example, to recommend movies,
products, or other information most relevant to users, in
order to enhance the user experience. Among various ap-
plication domains which have received significant indus-
try and academia research attention, such as image clas-
sification, object detection, language and speech transla-
tion, the performance of deep learning-based recommenda-
tion models is less well explored, even though recommen-
dation tasks unarguably represent significant Al inference
cycles at large-scale datacenter fleets (Jouppi et al., 2017;
Wu et al., 2019a; Gupta et al., 2019).

To advance the state of understanding and enable machine
learning system development and optimization for the e-
commerce domain, we aim to define an industry-relevant
recommendation benchmark for the MLPerf Training and
Inference suites. We will refine the recommendation bench-
mark specification annually to stay up to date to the current
academic and industrial landscape. The benchmark will
reflect standard practice to help customers choose among
hardware solutions today, while also being forward looking
enough to drive development of hardware for the future.

The goal of this white paper is twofold:

e We present the desirable modeling strategies for per-
sonalized recommendation systems. We lay out desir-
able characteristics of recommendation model archi-
tectures and data sets.

e We then summarize the discussions and advice from
the MLPerf Recommendation Advisory Board.

Desirable characteristics for ideal recommendation
benchmark models should represent a diverse set of use

!Facebook/ASU *University of Colorado, Boulder *Google
Research “University of Minnesota sUniversily of California,
San Diego ®Netflix "Facebook. Send correspondence to carole-
Jjedanwu@fb.com

cases, covering a long tail. For example, most recommen-
dation tasks with large candidate sets have both a candi-
date generation model and a ranking model working to-
gether. The candidate generation model tends to be latency-
sensitive with a dot-product or softmax on top, while a rank-
ing model tends to have a lot of interactions being consid-
ered. The end-to-end model should ideally produce predic-
tions for both click-through rate and conversion rate. To en-

able a rep c of the r dation task
diversity and diff scales of r dation tasks (that
are often dependent on the scale of the available data), wed
want to ider r dation bench ks of different
scales.

Recommendation models are tasked to produce novel, non-
obvious, diverse recommendations. This is really at the
heart of the recommendation problem — we learn from pat-
terns in the data that generalize to the tail items, even if the
items only occur a few times, despite the temporal changes
in the data sets. Thus, from the system development and op-
timization perspective, even though less-frequently indexed
items can consume significant memory capacity in a sys-
tem and it can be challenging to select an optimizer to de-
termine meaningful weights for the embedding entries in a
few epochs, we must retain all user and item categories in
a feature to capture rep ive system requi

Many enhancement techniques have been explored to
improve recommendation prediction quality. For exam-
ple, variations of RNNs (e.g. attention layers, Trans-
former/LSTM styles) are under active investigation for at-
scale industrial practice. It is not clear yet how to best ex-
ploit the temporal sequence in DNN-based recommenda-
tion models. In addition, dense-matrix multiplication with
very sparse vectors is an interesting case as well. This
could be thought of as embeddings where input vectors
are not just indices but also carry numerical value, to, say,
be multiplied with the corresponding embedding row. We
should keep an eye on the develop of the afe

tioned enhancement techniques and refine the recommen-
dation model architecture when it is proven to improve in-
ference quality for practical use cases.




7 A ML System Performance Benchmark Suite on Speed
MLPerf

Relative performance best results - Closed Available On Premise
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ML Benchmarks v Datasets v Working Groups v Research A

Commons AI Safety

MLPerf Training MLPerf Inferel Data
The MLPerf Training benchmark suite measures how fast The MLPerf Mobile b
systems can train models to a target quality metric. can process inputs a @ Data sets

« Best Practices

MLPerf Training: HPC MLPerf Inferer ¢ Medical
The MLPerf HPC benchmark suite measures how fast systems The MLPerf Tiny benc €
can train models to a target quality metric. can process inputs a ® C FOISSAa nt

Research

MLPerf Inference: Datacenter MLPerf Storag Al go rithms
The MLPerf Inference: Datacenter benchmark suite measures The MLPerf Storage k
how fast systems can process inputs and produce results using systems can supply 1 ¢ Data -ce ntrl C M L

a trained model.

« Chakra

MLPerf Inference: Edge « Science

The MI Perf Fdoe henchmark siiite meastires how fast svstems
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Scaling Limit of Al?
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Scaling Comeuting Sustainablxz Paths Forward

Metrics & Al Design & Optimization
Accounting Space with CO,

MLPerf & OCP Standard Cross-Stack System Design

Programming Language

https://github.com/facebookresearch/ACT Runtime Management
Carbon Explorer System Architecture
https://github.com/facebookresearch/CarbonExplorer IC Hardware Design

Semiconductor Manufacturing

Sustainable
Development

Computing & Sustainability

Circular Economy



Scaling Al and Computing Sustainably

A 4

Environmentally Carbon-Efficient Al
Sustainable Systems Data/Models/Algorithms

ACT TT-Rec
[Gupta et al.; ISCA 2022] [Ying et al.; MLSys 2021]
Carbon-Efficient XR Systems Carbon-Efficient AI Models
[Elgamal et al.; arXiv 2023] [Gupta et al.; ICLR Climate Change Al 2023]

A

/r l\

Optimization at Scale

Carbon Explorer
[Acun et al.; ASPLOS 2023]

Dl-ld

Al Anytime
Anywhere

AutoScale / AutoFL
[Kim et al.; MICRO 2020]

GreenScale
[Kim et al.; arXiv 2023]
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Read more about

Computing & Sustainability

Scaling AI Computing Sustainably

Abstract—This paper explores the environmental impact of

the super-linear growth trends for Al from a holistic perspective,
ing Data, A il and System . We

ize the carbon footprint of AI computing by examining the model
development cycle across industry-scale machine learning use
cases and, at the same time, considering the life cycle of system
hardware. Taking a step further, we capture the operational and
manufacturing carbon footprint of AT computing and present an
end-to-end analysis for what and how hardware-software design
and at-scale optimization can help reduce the overall carbon
footprint of AL Based on the industry experience and lessons
learned, we share the key challenges and chart out important
development directions across the many dimensions of AL We
hope the key messages and insights presented in this paper
can inspire the community to advance the field of AI in an
environmentally-responsible manner.

1. INTRODUCTION

Artificial Intelligence (AI) is one of the fastest growing
domains spanning research and product development and
significant investment in Al is taking place across nearly every
industry, policy, and academic research. This investment in
AT has also stimulated novel applications in domains such as
science, medicine, finance, and ed Figure 1 analyzes
the number of papers published within the scientific disciplines,
illustrating the growth trend in recent years'.

Al plays an instrumental role to push the boundaries of
knowledge and sparks novel, more efficient approaches to
conventional tasks. Al is applied to predict protein structures
radically better than previous methods. It has the potential to
revolutionize biological sciences by providing in-silico methods
for tasks only possible in a physical laboratory setting [1]. AT
is d d to achieve h level conversation tasks,
such as the Blender Bot [2], and play games at superhuman
levels, such as AlphaZero [3]. Al is used to discover new
electrocatalysts for efficient and scalable ways to store and
utilize renewable energy [4], predicting renewable energy
availability in advance to improve energy utilization [5],
operating hyperscale data centers efficiently [6], growing plants
using less natural resources [7], and, at the same time, being
used to tackle climate changes [8], [9]. It is projected that, in
the next five years, the market for AI will increase by 10x into
hundreds of billions of dollars [10]. All of these investments

Sustainable Al: Environmental Implications,
Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott,
Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee,
Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

Facebook Al

Alin Different Disciplines

Computer Science
Math .
Learning

Fig. 1. The growth of ML is exceeding that of many other scientific disciplines.
Significant rescarch growth in machine learning is observed in recent years as
illustrated by the increasing cumulative number of papers published in machine
learning with respect to other scientific disciplines based on the monthly count
(y-axis measures the cumulative number of articles on arXiv).

in research, development, and deployment have led to a super-
linear growth in AI data, models, and infrastructure capacity.
With the dramatic growth of Al it is imperative to understand
the envi al implicati hall and opp iti
of this nascent technology. This is because technologies tend to
create a self-accelerating growth cycle, putting new demands
on the environment.

This work explores the environmental impact of AI from
a holistic perspective. More specifically, we present the
challenges and opportunities to designing sustainable AI
computing across the key phases of the machine learning (ML)
development process — Data, Experimentation, Training, and
Inference — for a variety of Al use cases at Facebook, such
as vision, speech, dation and ranking. The
solution space spans across our fleet of datacenters and on-
device computing. Given particular use cases, we consider the
impact of Al data, algorithms, and system hardware. Finally,
we consider emissions across the life cycle of hardware systems,
from manufacturing to operational use.

Al Data Growth. In the past decade, we have seen an
exponential increase in Al training data and model capacity.
Figure 2(b) illustrates that the amount of training data at
Facebook for two recommendation use cases — one of the
fastest growing areas of ML usage at Facebook— has increased
by 2.4x and 1.9 in the last two years, reaching exabyte scale.
The increase in data size has led to a 3.2x increase in data
i ion bandwidth demand. Given this increase, data storage

'Based on monthly counts, Figure 1 estimates the ive number of
papers published per category on the arXiv database.

and the ingestion pipeline accounts for a significant portion of
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