Track 2 Summary ACAT 2024

Lukas Heinrich, TUM

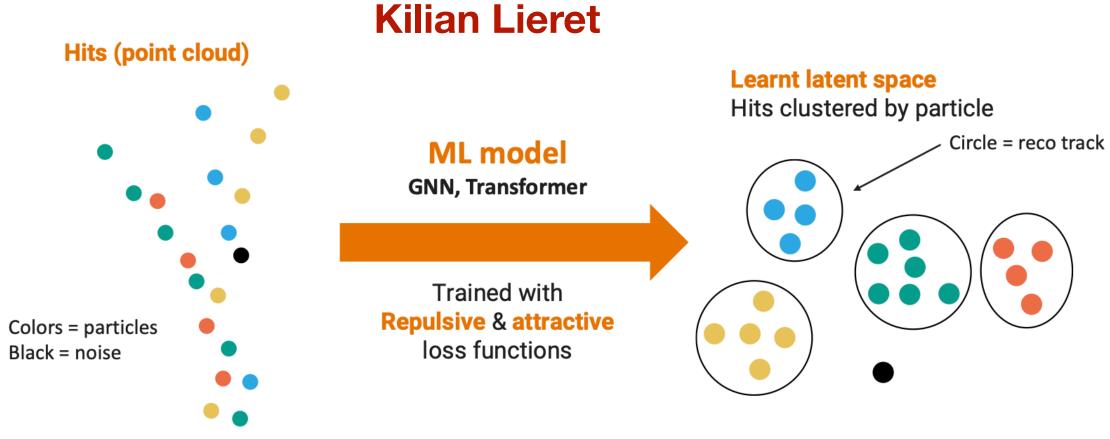
Track 2: Data Analysis - Algorithms and Tools

Track to discuss latest developments in reconstruction and analysis tools.

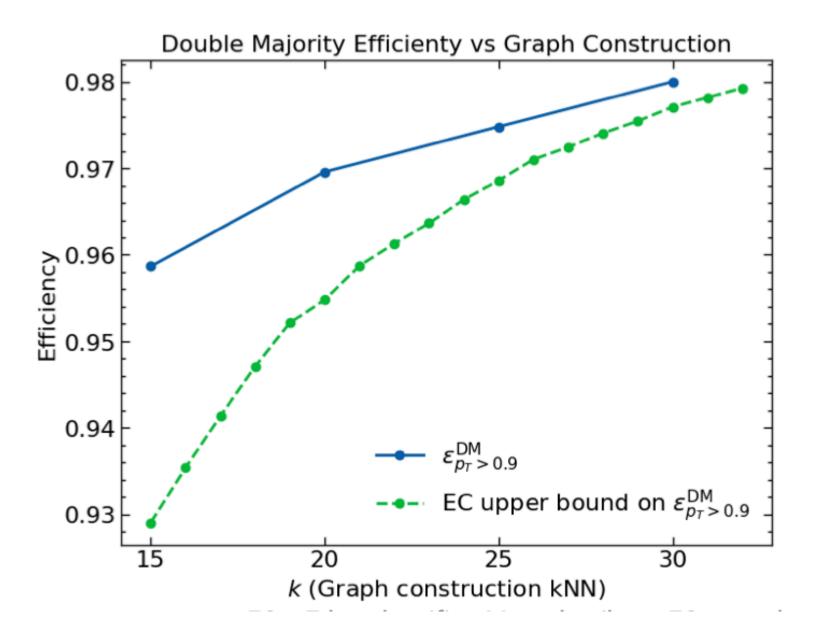
32 Talks. Lots of ML but also great talks that go beyond it incl. online systems, data management, statistics ...

Impossible to summarize everything, but short lightning overview & some high-level thoughts

Single Shot Tracking

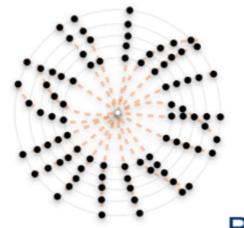


Hit features: coordinates + cluster shapes



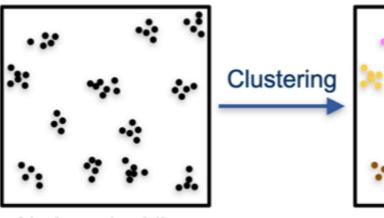
GNN + Object Condensation

Jay Chan

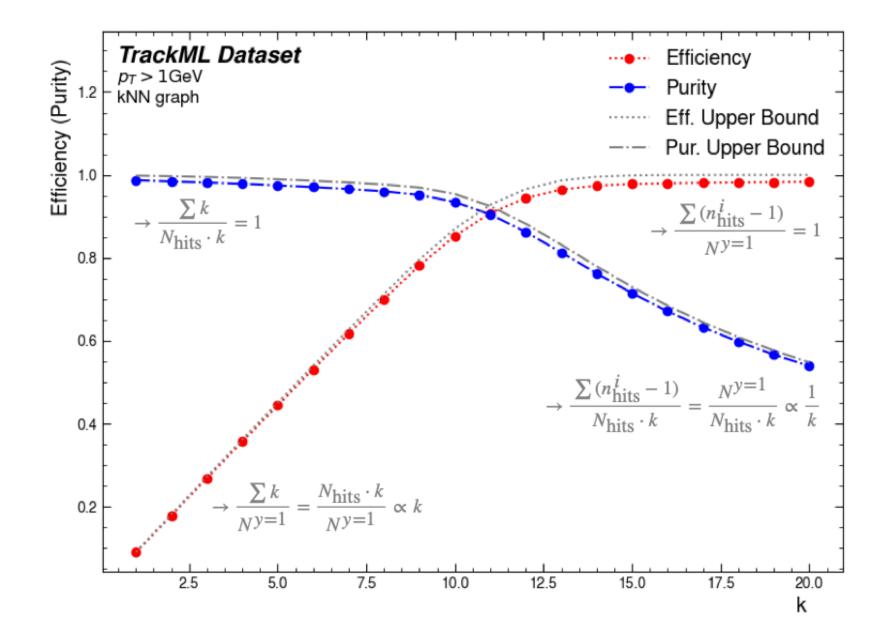


Point cloud

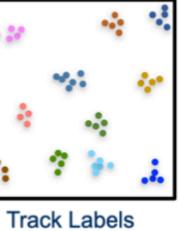
Recursive graph attention with dynamically built graph



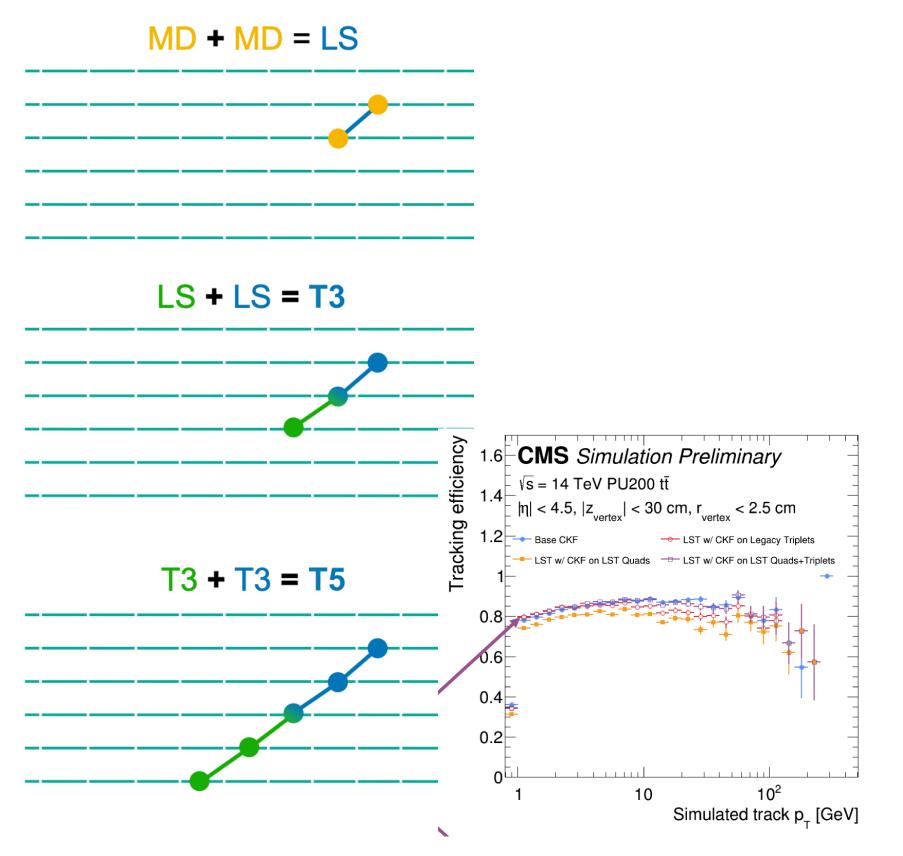
Node embedding



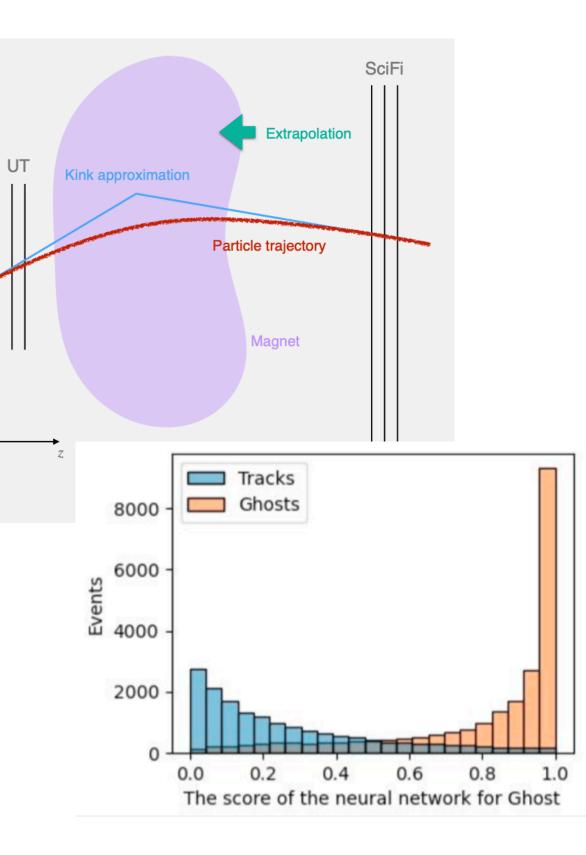
Recursive Graph Attention + DBSCAN



Online Tracking Algorithms Online Environment is special. Generally not the place for gigantic models, but tailored solution.

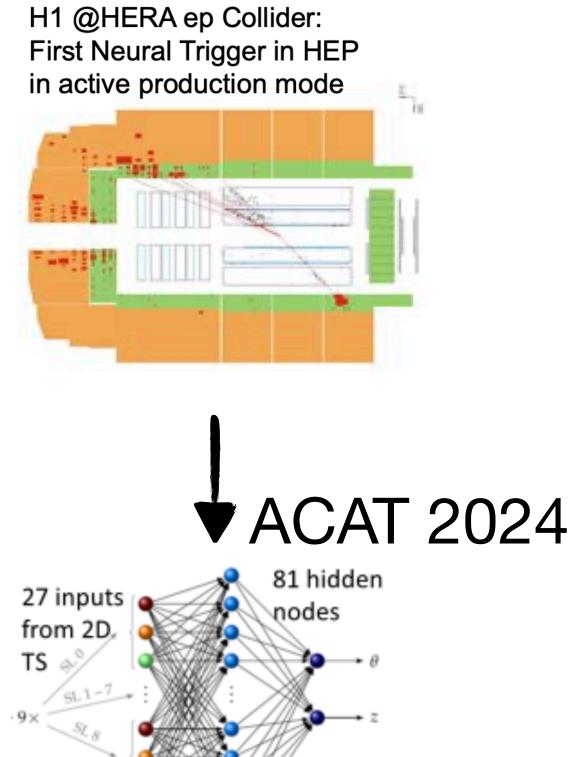


Fast and Parallelizable Tracking for CMS Trigger



Downstream Tracking in LHCb Trigger

AINHEP 1999



Neural Network Trigger at Belle II

Virex 6

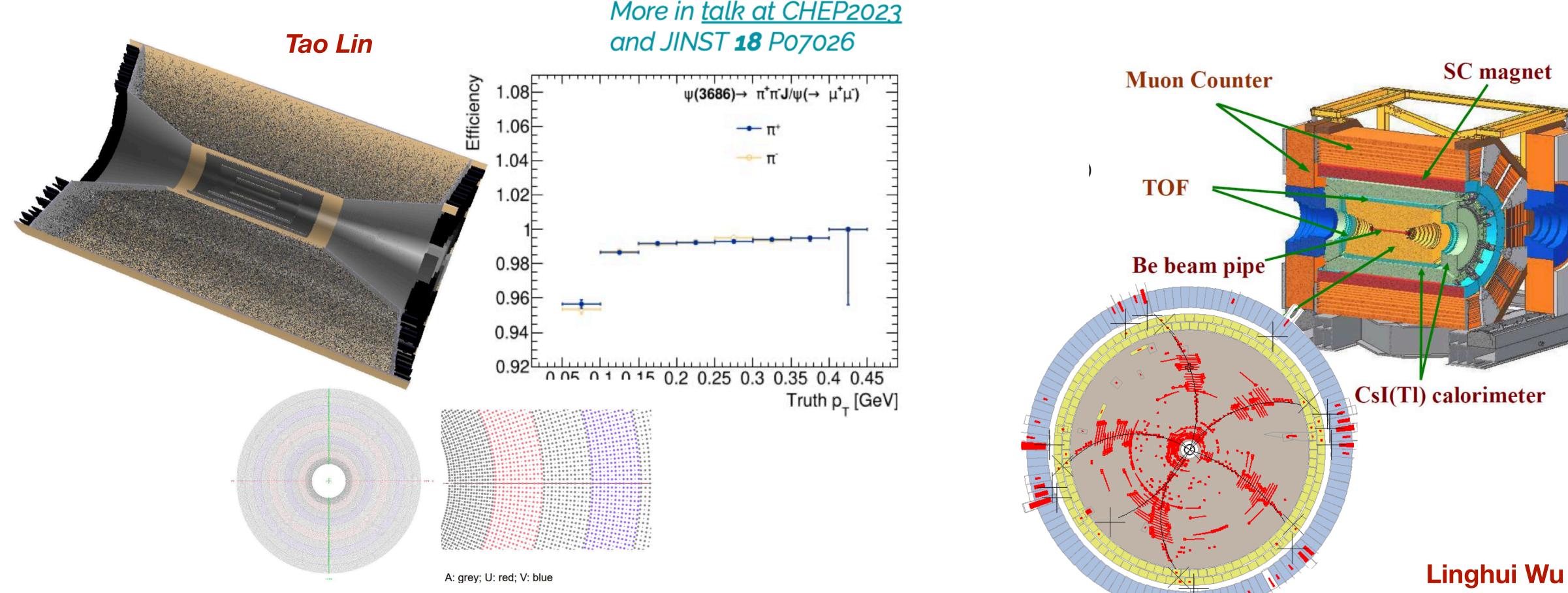
FPGA

300 ns

+ stereo

ΤS

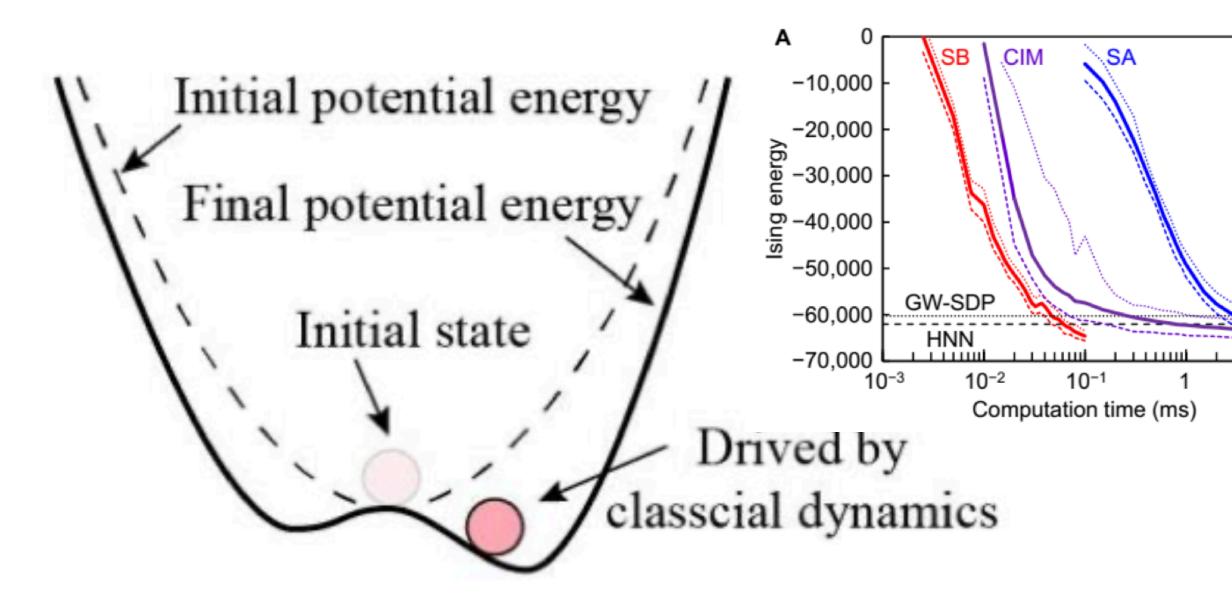
Tracking beyond LHC & Silicon Not everything is the LHC. Unique challenges & Solutions



ACTS for Gaseous Detectors (Extending Community Tools & Open Source!

Data Quality for Tracking in MDC (BESIII)

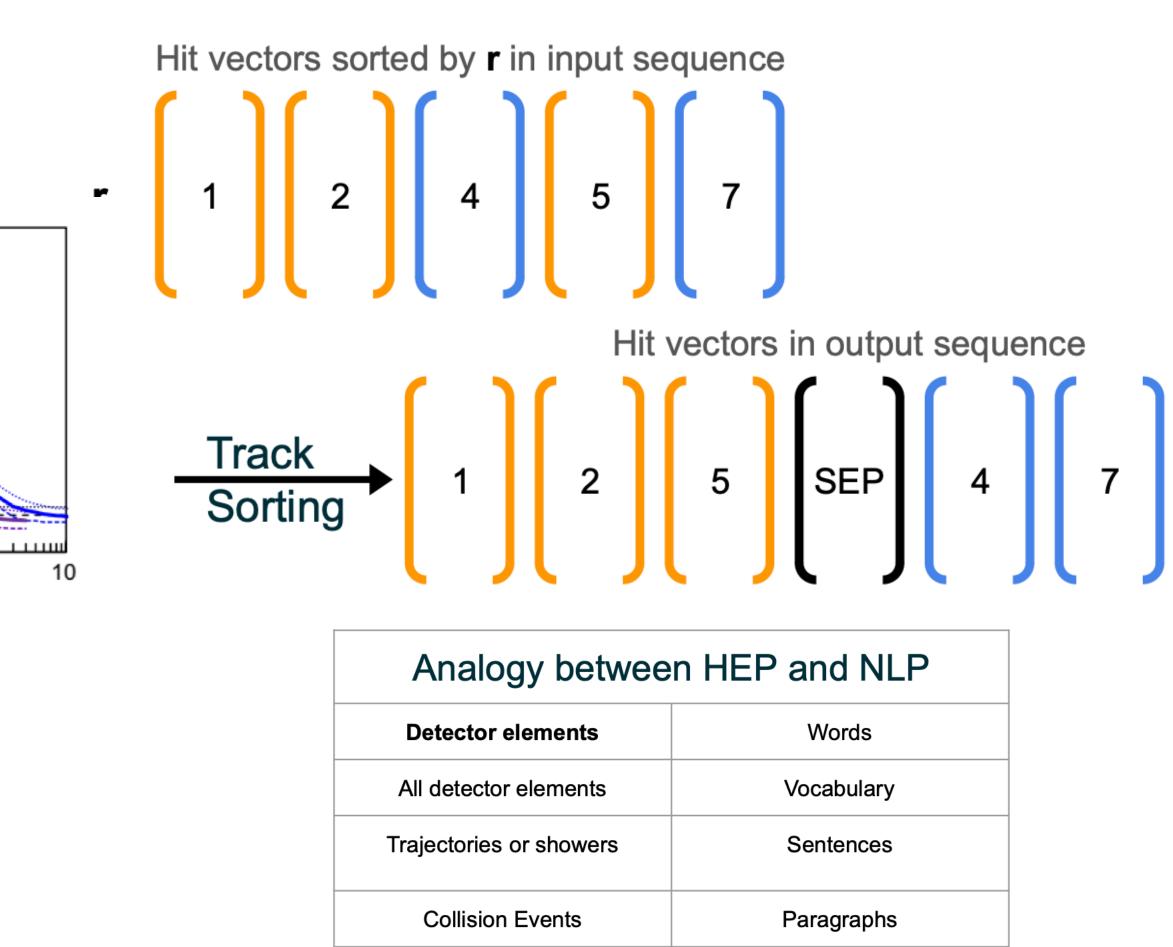
Future Tracking Technologies



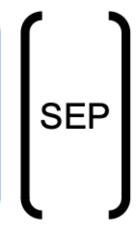
Quantum inspired algorithm

Hideki Okawa

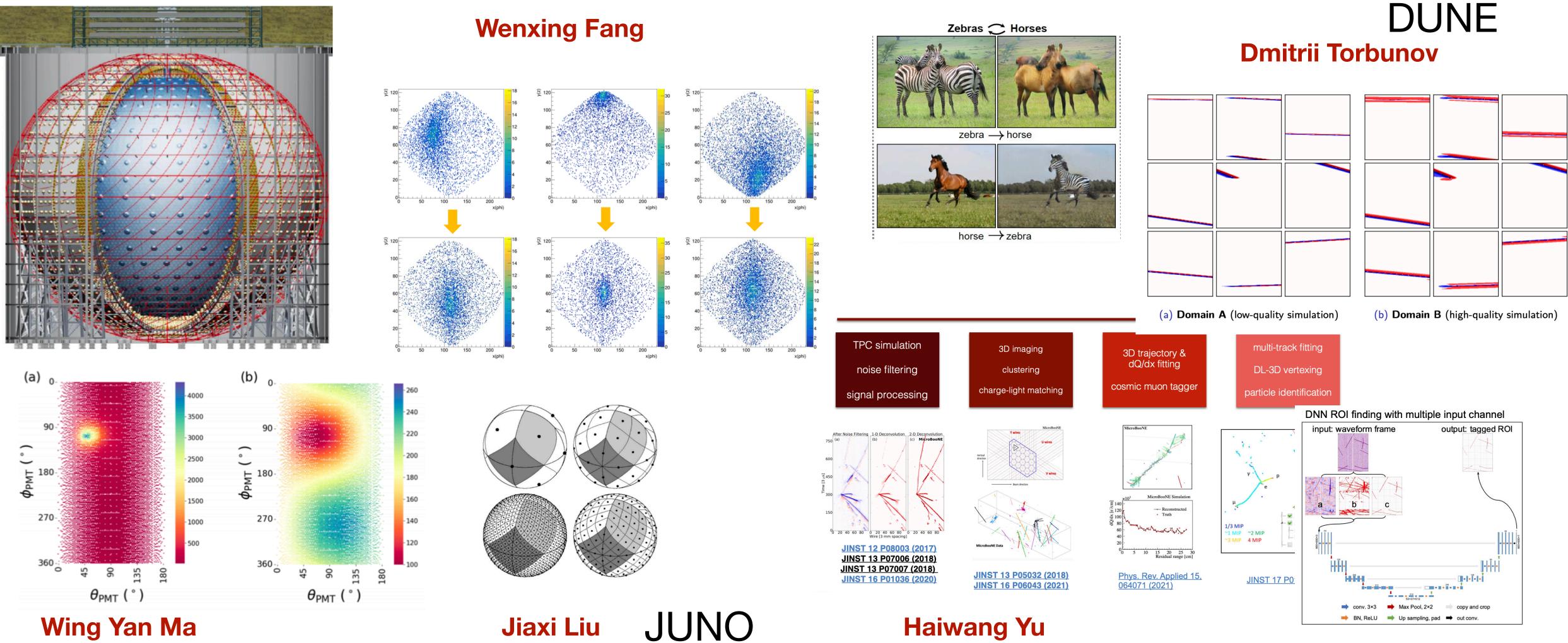
Xiangyang Ju



Language models



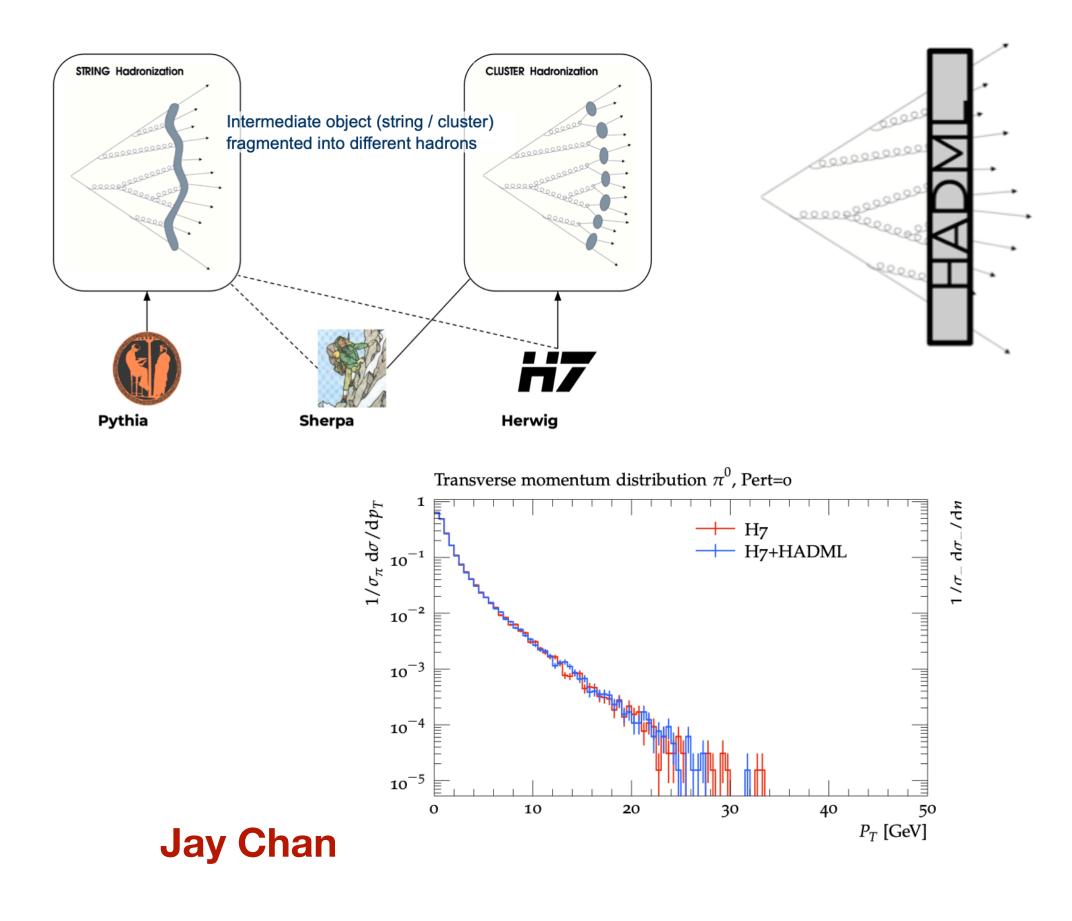
Reconstruction at Neutrinos Not everything is the LHC. Unique challenges & Solutions



Wing Yan Ma

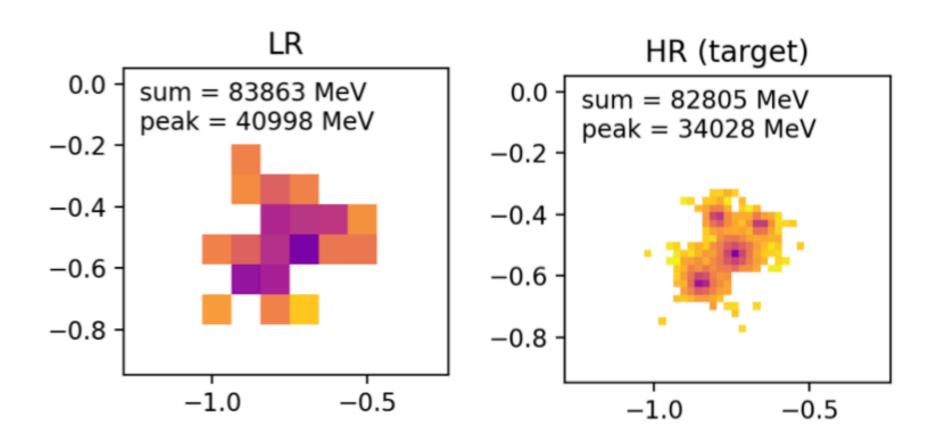
Generative Models

We're not done yet with Generative Models. Both on the Simulation as well as Reconstruction side.



 Input
 SR3 output
 Reference

 Imput
 Imput
 Imput
 Imput
 Imput



Nilotpal Kakati

Foundation Models

Foundation Models are about data efficiency & finetuning. Get used to seeing this plot more often in the future

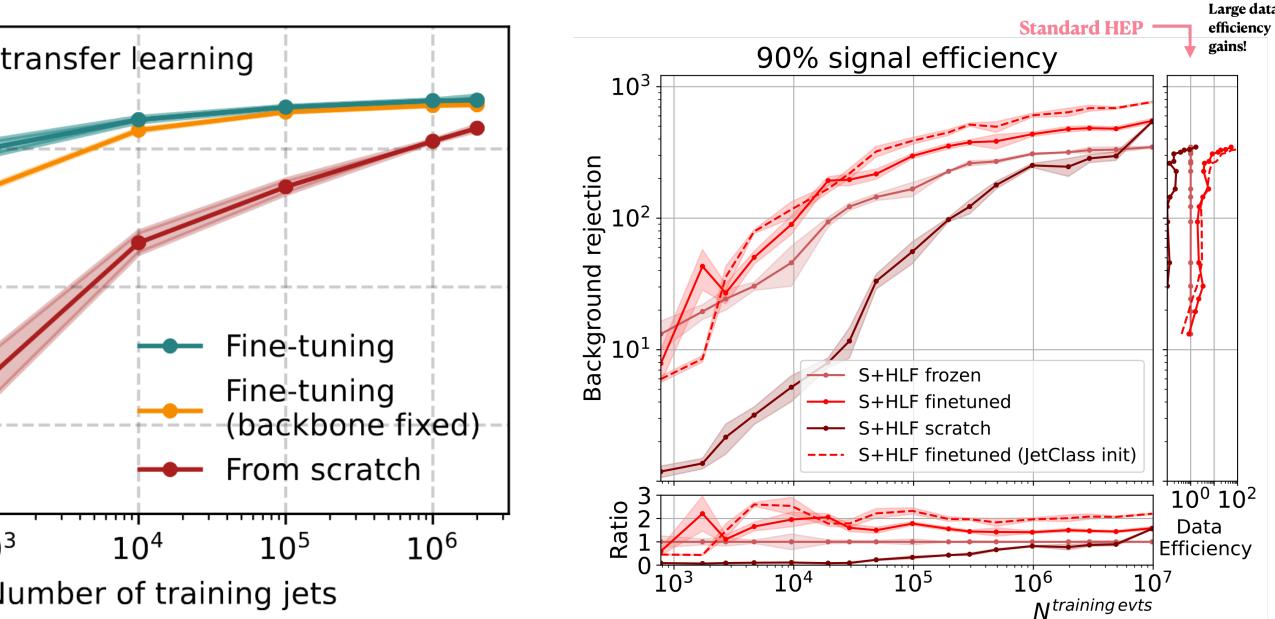
Self-supervised

OmniJet- α transfer learning Model Accuracy Comparison Pre-trained 0.90 0.9 From scratch Accuracy 0.85 0.80 Accuracy 0.75 0.8 0.70 0.7 0.65 10^{4} 10⁵ 10^{6} 10³ 10² 10³ 10⁵ 10^{4} N labeled training samples Number of training jets

Zihan Zhao

Self-supervised

Supervised

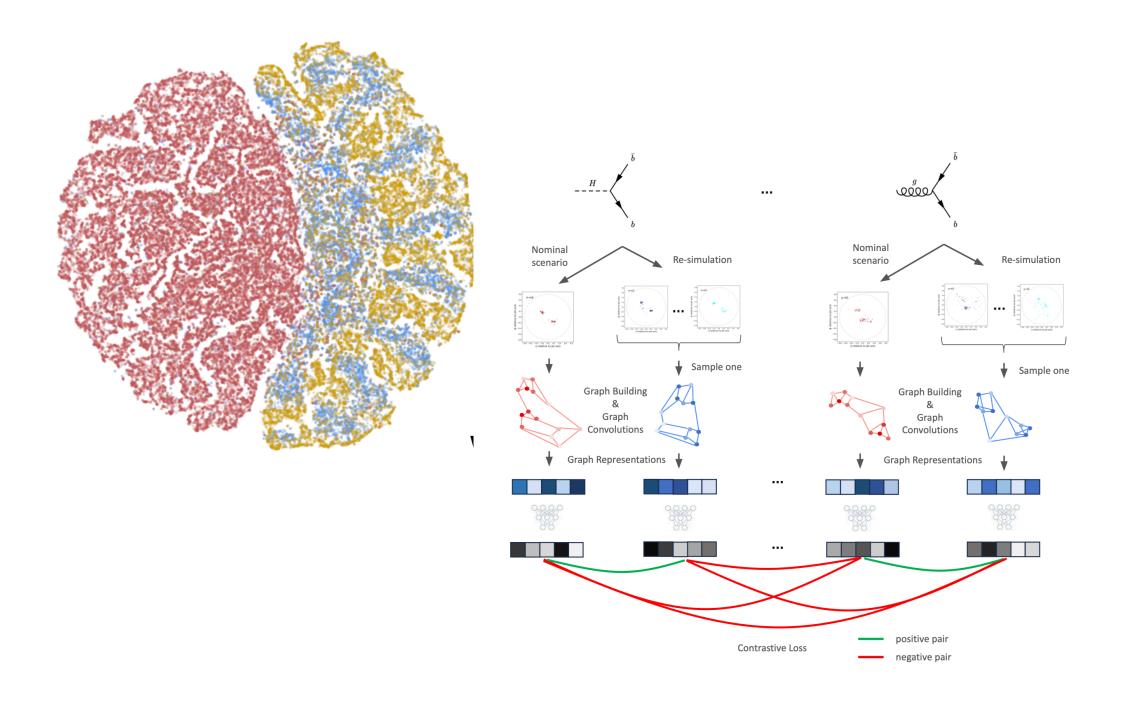


Anna Hallin

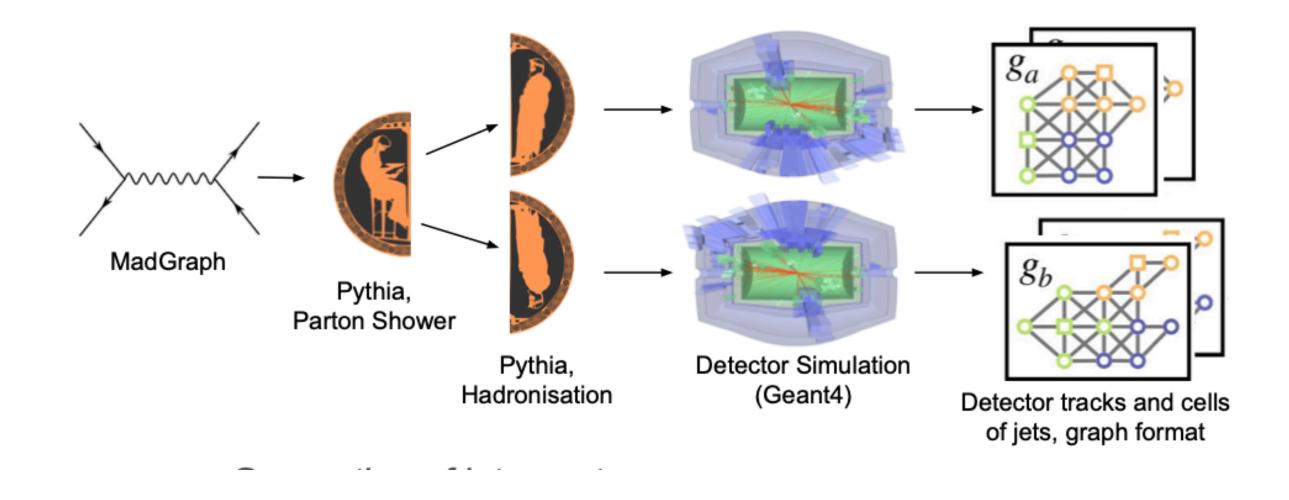
Matthias Vigl

Foundation Models II

Representation Learning & Joint Embedding: Use Simulator to reflect what we actually value & what we consider noise



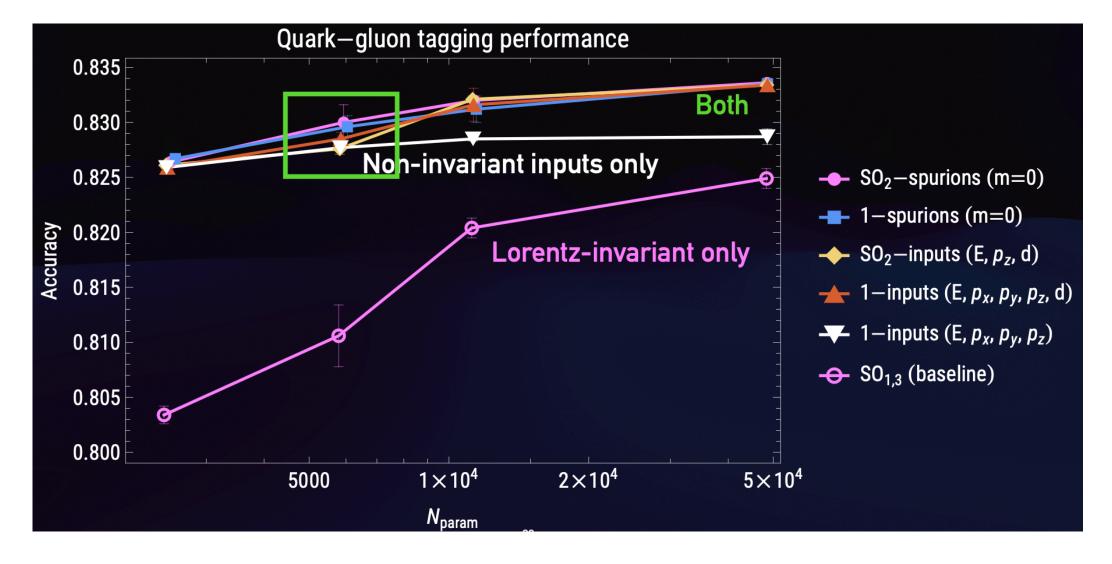
Phil Harris



Patrick Rieck

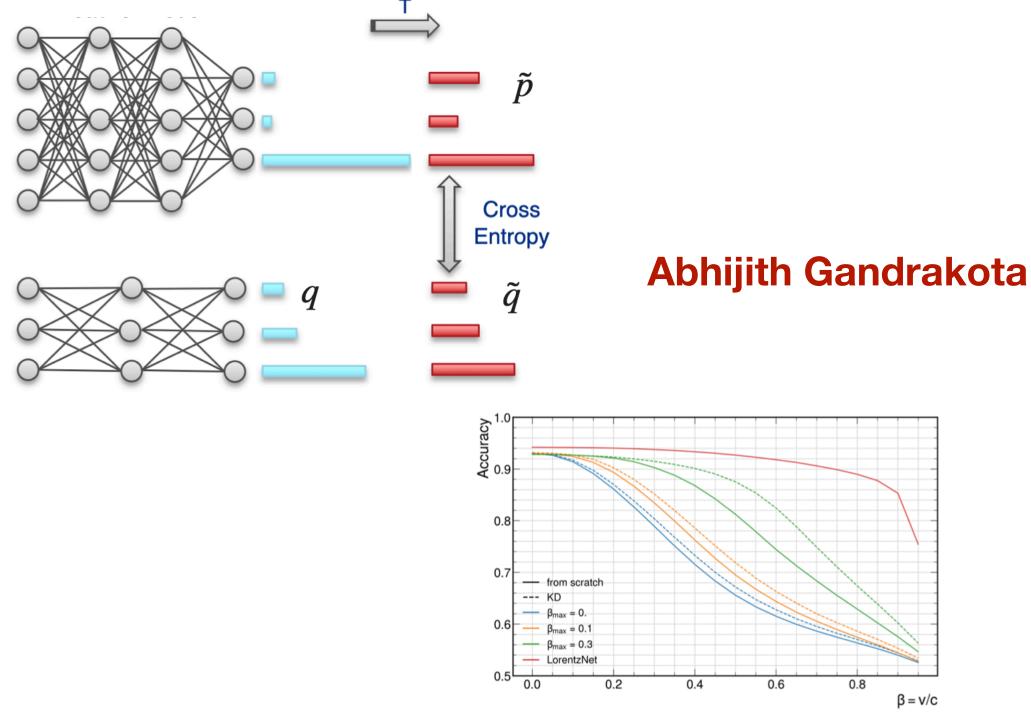
Robustness & Inductive Bias

Inductive Bias is still important, but can also slow down complicate neural networks. Can we resolve this tension?



Alexander Bogatskiy

Inductive Bias Impact

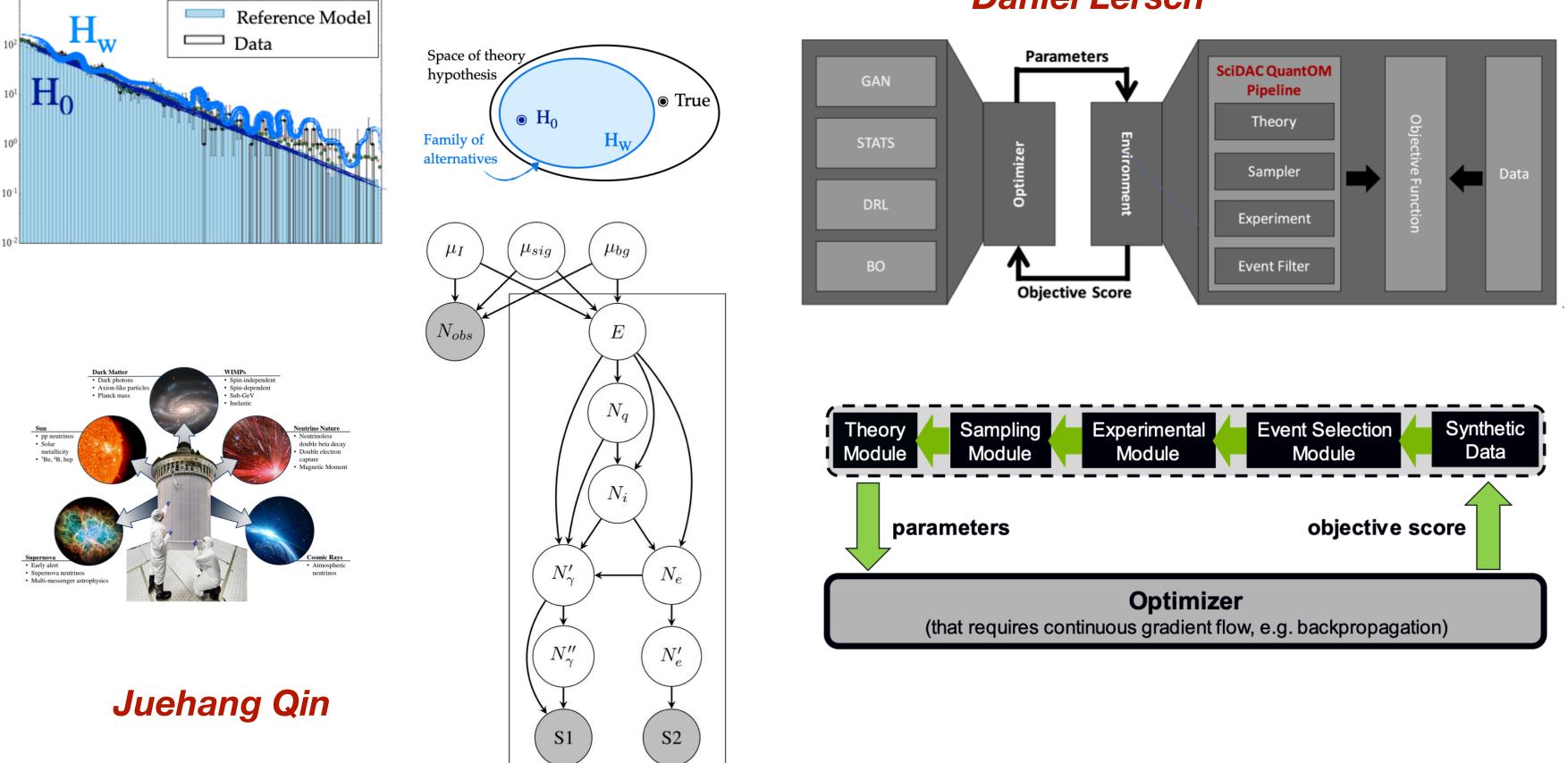


Knowledge Distillation

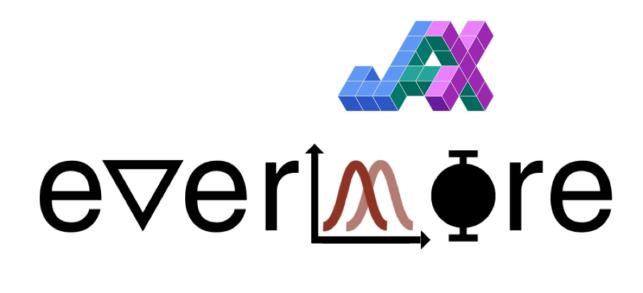
Advanced Inference Methods

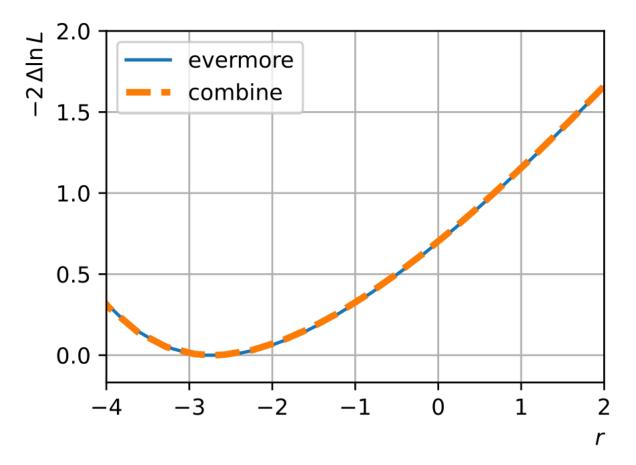
Uptake of new Techniques. Probabilistic & Differentiable Programming, Likelihood Ratio Learning, Bayesian Opt. ...

Gaia Grosso

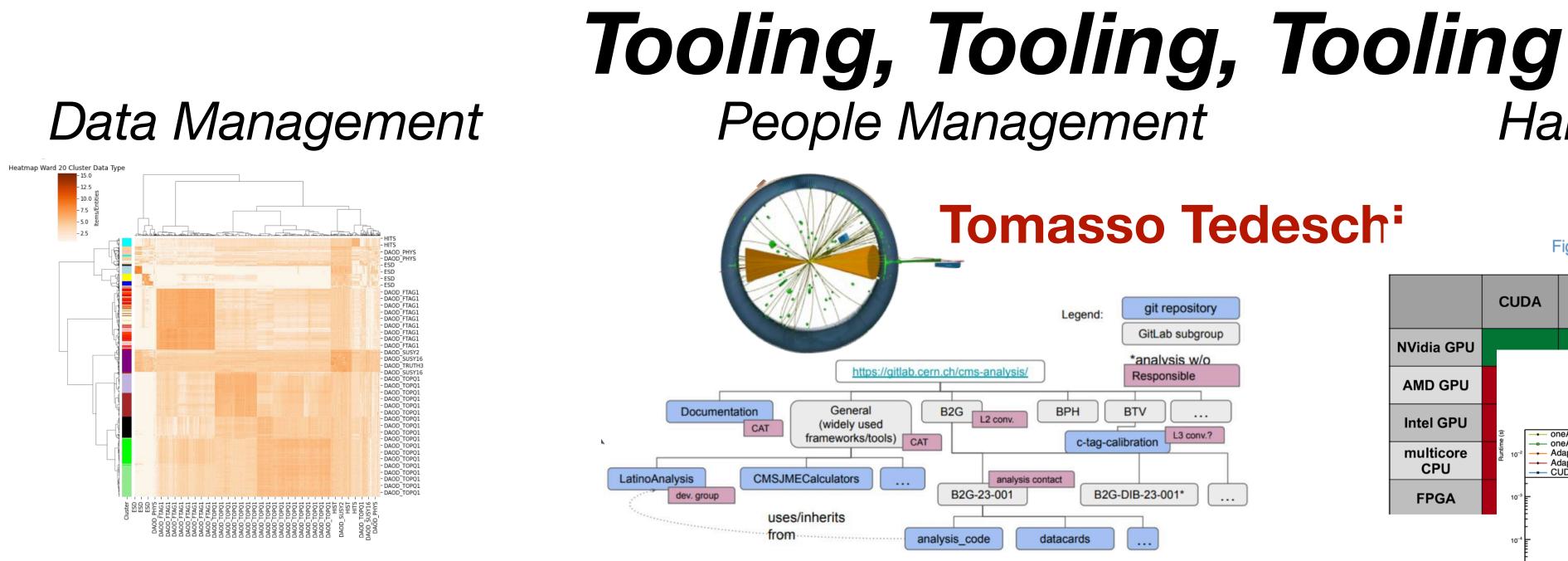


Daniel Lersch





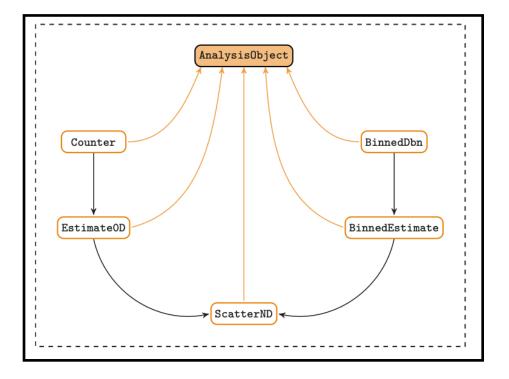
Peter Fackeldey



Qiulan Huang

Histograms

Christian Gütschow

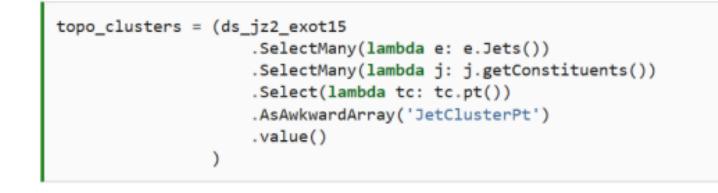


Hardware Managment

Tomasso Tedeschⁱ

OpenMP dpc++ CUDA HIP Kokkos alpaka / SYCL Offload NVidia GPU Figure: A100 hip 4.0.1 / AMD GPU clang Intel GPU prototype oneAPI (BUF - oneAPI (PTR) AdaptiveCPP (BUF) multicore AdaptiveCPP (PTR) CPU - CUDA **FPGA** 10⁸ Number of Particles 10⁵ 10⁶ 10⁷

Declarative Languages



Gordon Watts

Figure: Hardware support of portability layers¹

High Level Thoughts

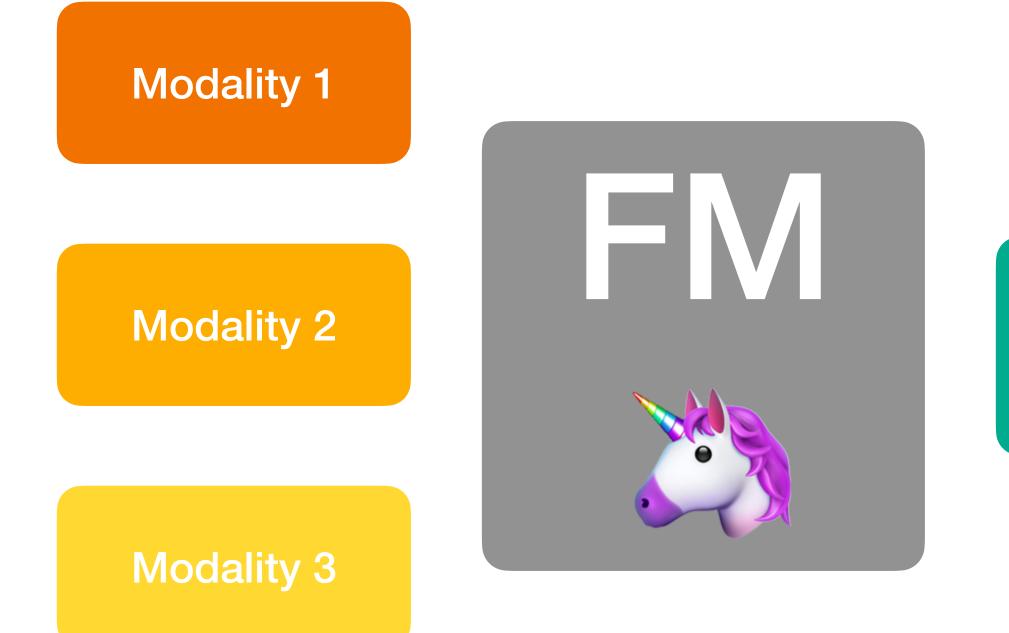
ML is absolutely everywhere. Even in the smallest nooks & crannies. Simple General-Purpose Tool.

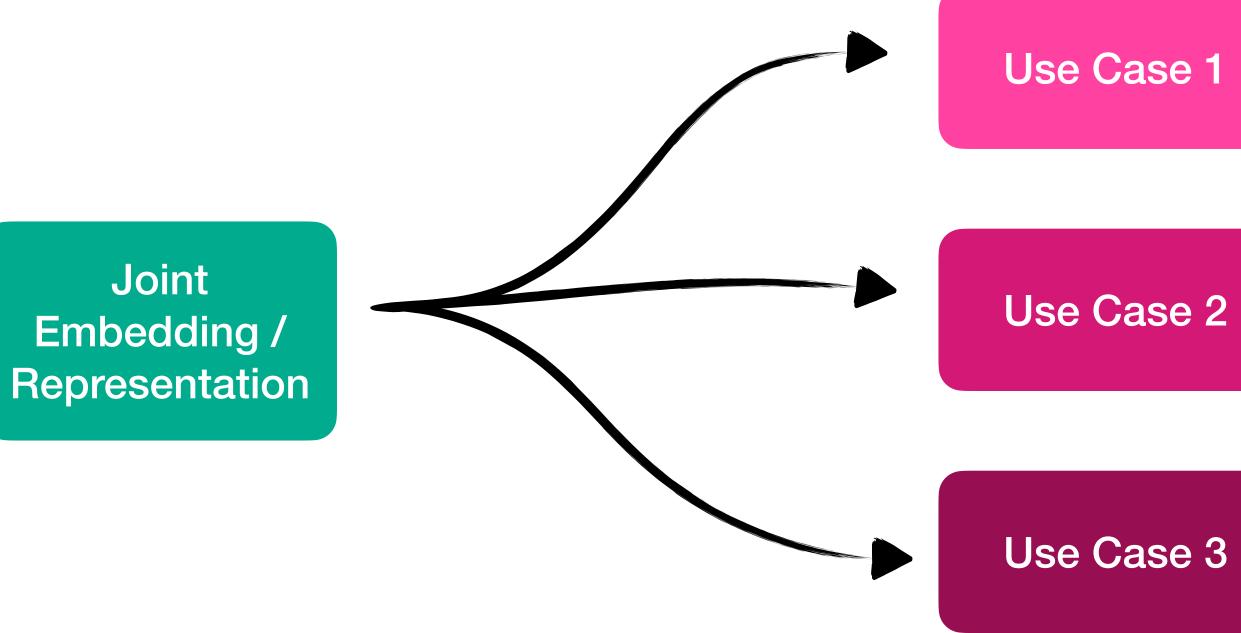
The level of sophistication and speed at which ideas from ML research are integrated is impressive.

Diverse Physics exposes us to different problems and connection points to ML research.

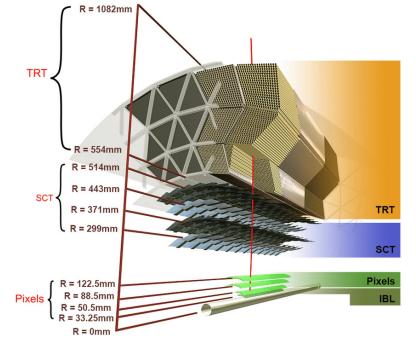
ML is not everything. At the end of the day the work should make contact with the real world and actually be deployed. Tools and Engineering Matter and should get rewarded.

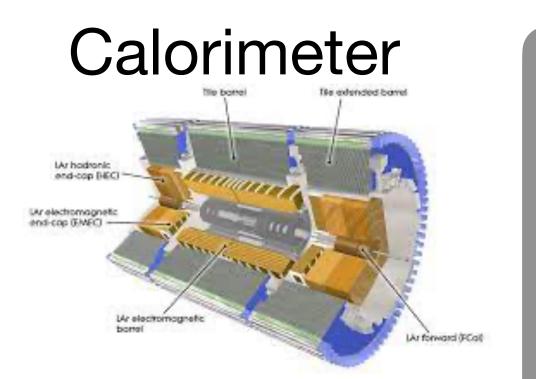
About Foundation Models..





Tracking Data





Muon Data

Cathode strip chambers (CSC)

Barrel toroid

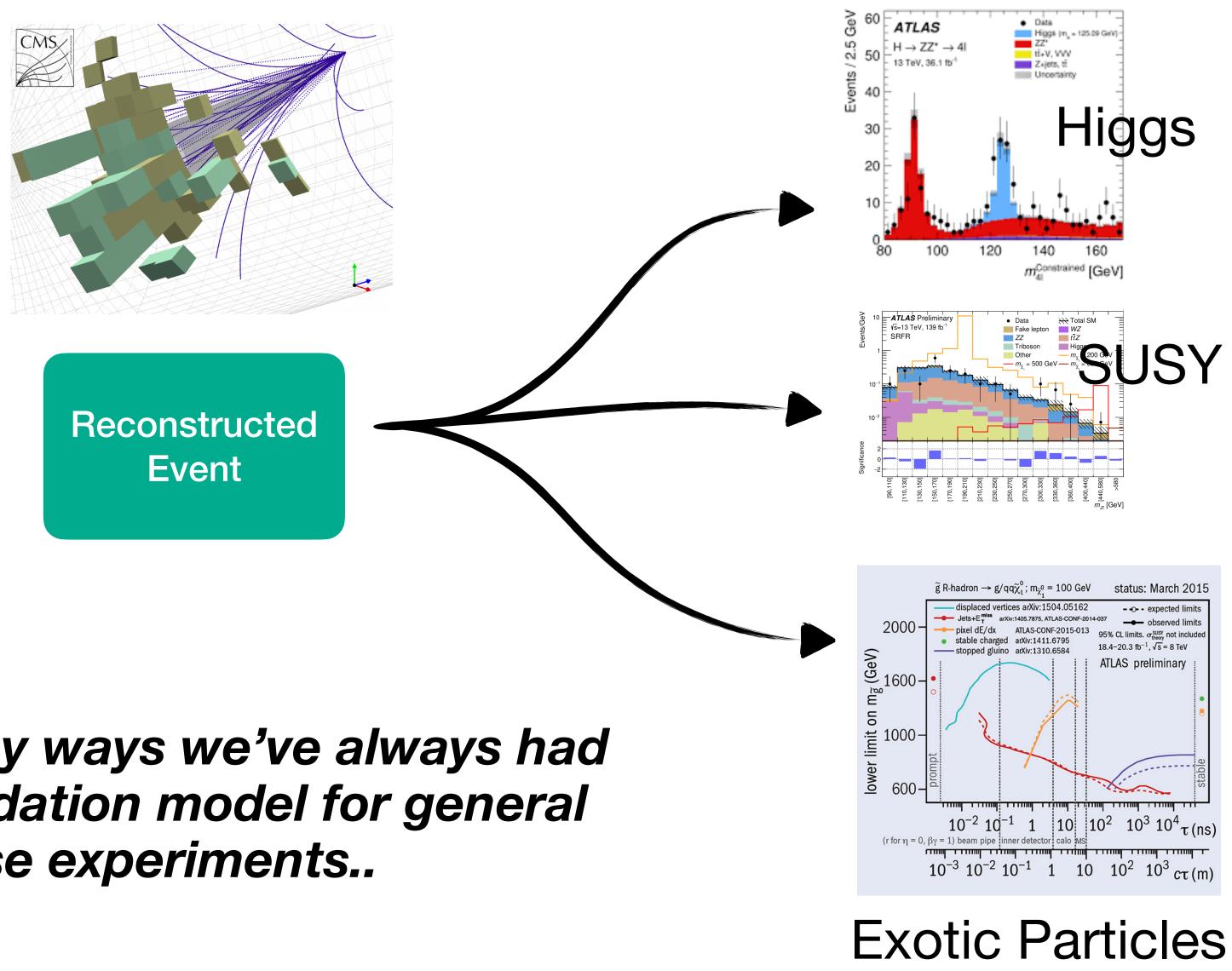
esistive-plate

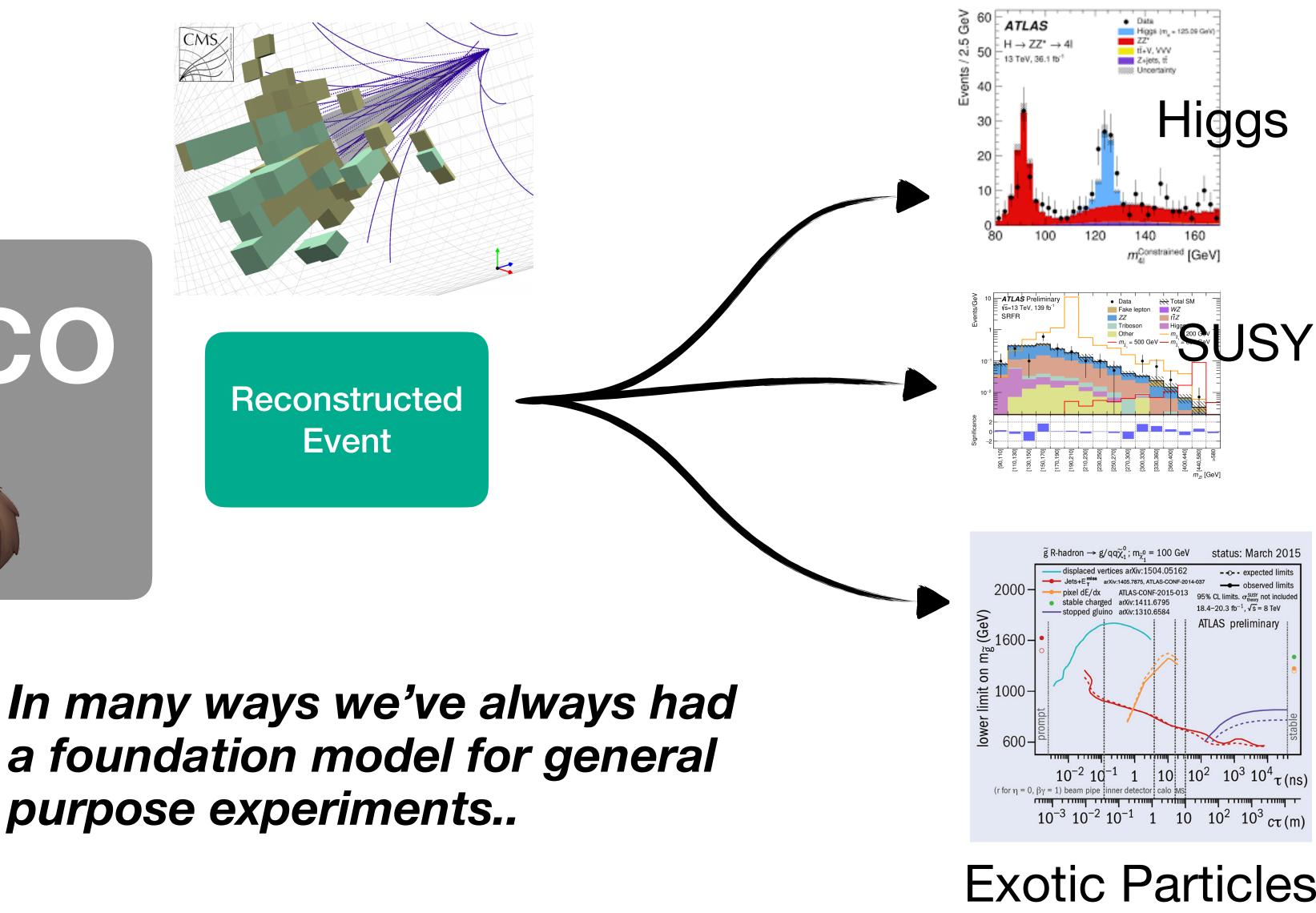
chambers (RPC)

End-cap toroid

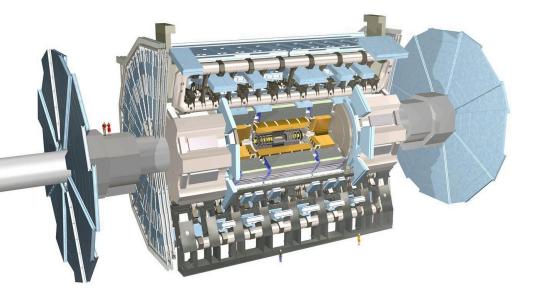
Monitored drift tubes (MDT)

Reco

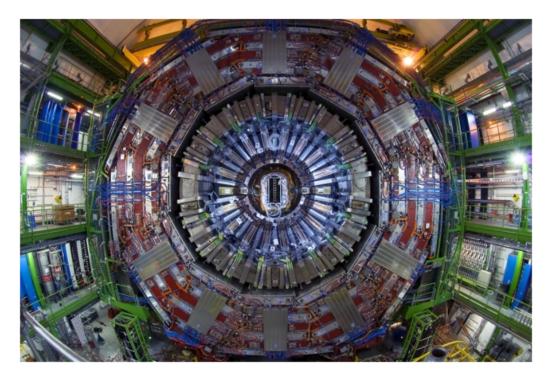




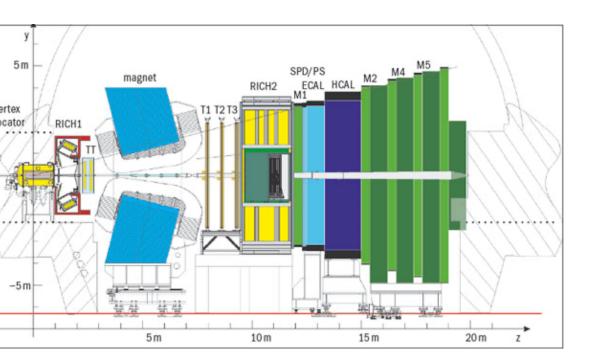
Some more detail here: [Slides]



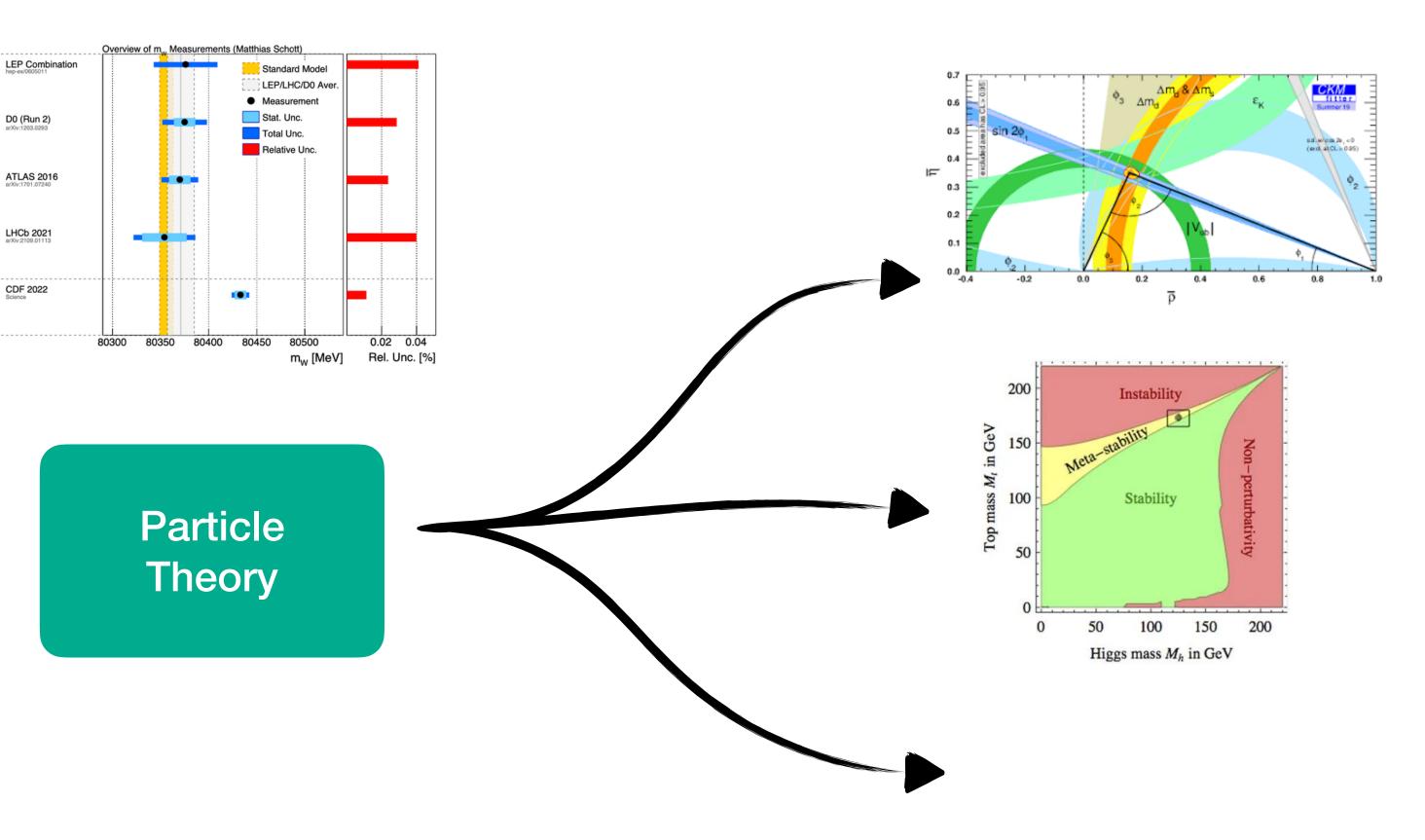
CMS



LHCb



Theory is the "joint emedding" space in which we compare different experiments..



What do we mean by Foundation Models

- Just a common backbone?
- **Does it have to trained unsupervised?**
- How portable should it be?
- Fixed Inputs vs open-ended data streams?
- **Does it have to relate to language models ?**
- Lots of existing questions. We'll see where it takes us.

What do we mean by Foundation Models

This is <u>not</u> to say we shouldn't work on *new, neural* Foundation Models of the current kind !

- The opposite! we see that the way we've always worked is very much aligned with these new technologies
- → a lot of opportunities ahead
- → a bit of care needed to make it mean something and not just the buzzword du jour

ACAT always a great opportunity to catch up with latest developments in the field and see a glimpse of the future

Outlook

Thanks to all the speakers for the great talks and discussion!

