Detecting Rare Events Using Artificial Intelligence

Aobo Li Halıcıoğlu Data Science Institute **Department of Physics** UC San Diego

ACAT 2024, 03/14/2024

UC San Diego PHYSICS

Generated Event vs. Rare Event

Physics Target

High-Energy Particle Beam 600 million collisions per second

Neutrinoless Double-Beta Decay (NLDBD) Half-life longer than 10²⁶ years

Dark Matter (DM)

Scattering cross section smaller than 10⁻⁴⁶ cm²

Collaboration Experiment

Physics in Rare Event Search

Neutrinoless Double-Beta Decay (NLDBD)

ΔL = 2 lepton number violation process

Explain the matter-antimatter asymmetry in our universe

Explain the **tiny mass** of neutrinos

Has not been observed at $T_{\frac{1}{2}} > 10^{26} yrs$

Dark Matter (DM)

Strong astrophysical evidence, no observation on earth

We don't know which particle makes up dark matter:

- Heavy, particle-like DM candidate: WIMP
- Light, wave-like DM candidate: Axion

WIMP has not been observed at $\sigma < 10^{-46} cm^2$

Why hasn't we observed anything in Rare Event Search?

It is extremely rare! Using NLDBD as an example.

- ${\scriptstyle \bullet}$ We have not seen NLDBD at half life of $T_{\frac{1}{2}}>10^{26}yrs$
- Next-generation experiments typically aims at $T_{\frac{1}{2}} > 10^{28} yrs$
- Correspond to **3-4 event** after **10 years** of data taking

Why hasn't we observed anything in Rare Event Search?

It is extremely rare! Using NLDBD as an example.

- We have not seen NLDBD at half life of $T_{\frac{1}{2}} > 10^{26} yrs$
- Next-generation experiments typically aims at $T_{\frac{1}{2}} > 10^{28} yrs$
- Correspond to 3-4 event after 10 years of data taking

Search for needle in a haystack

As our radiation detector gets more sensitive, we inevitably collect lots of background events

NLDBD

 $T_{1/2} = 10^{28} \text{ yr}$

3-4 events

2040

2060

2020

Why hasn't we observed anything in Rare Event Search?

It is extremely rare! Using NLDBD as an example.

- We have not seen NLDBD at half life of $T_{\frac{1}{2}} > 10^{26} yrs$
- Next-generation experiments typically aims at $T_{\frac{1}{2}} > 10^{28} yrs$
- Correspond to 3-4 event after 10 years of data taking

Search for needle in a haystack

Suppressing these backgrounds is of unparalleled importance in rare event search experiment!

•1 event every 2.5-3.3 year, we need ultra-sensitive radiation detector to capture every event

As our radiation detector gets more sensitive, we inevitably collect lots of background events

Generated Event vs. Rare Event

Physics Target

High-Energy Particle Beam 600 million collisions per second

Neutrinoless Double-Beta Decay (NLDBD) Half-life longer than 10²⁶ years

Dark Matter (DM)

Scattering cross section smaller than 10⁻⁴⁶ cm²

Experiment

Collaboration

~3000 Collaborators Per Experiment

50-300 Collaborators Per Experiment

Landscape of Rare Event Search Experiment

Generated Event Search

Disclaimer: This analogy is intended purely for presentation purposes and is not intended to convey any political stance or bias.

Rare Event Search

Detecting Rare Events Using Artificial Intelligence

"A Guided Tour to Europe"

- Rare Event Search Experiments
- Radiation Detector & Data
- Al Algorithms

"Forging the European Union"

 Foundation Model for Rare Event Search

Monolithic Liquid Scintillator Detector for NLDBD Search

Photomultiplier Tube Detect photon

Spatiotemporal Data

A time series of 2D images, projected onto sphere (A spherical video)

W-

Liquid Scintillator

Generate many isotropic photon

The Physics Behind KamNet

efficiently reject most backgrounds in KamLAND-Zen!

KamNet-enabled New Result

Exposure Before KamNet:

970 kg·yr

APS 2023 Dissertation Awards In Nuclear Physics

KamLAND-Zen Collaboration Phys. Rev. Lett. 130, 051801

A. Li et al, Phys. Rev. C 107, 014323 (2023)

Exposure After KamNet:

1142 kg·yr

Worth \$2.5 million!!! (Based on 2010 Xe price)

KamNet-enabled New Result

Exposure Before KamNet: 970 kg·yr

<u>Apply KamNet to High-Background</u> Period Only:

- Conservative use of KamNet
- Veto critical backgrounds that passes all traditional methods

APS 2023 Dissertation Awards In Nuclear Physics

KamLAND-Zen Collaboration Phys. Rev. Lett. 130, 051801

A. Li et al, Phys. Rev. C 107, 014323 (2023)

Exposure After KamNet: 1142 kg·yr

Worth \$2.5 million!!! (Based on 2010 Xe price)

Official KamLAND-Zen 800 Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

KLZ Combined Official Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.3 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

This result represents the **worlds most stringent limit** on $0\nu\beta\beta$ search!

KamNet-enabled New Result

Exposure Before KamNet: 970 kg·yr

<u>Apply KamNet to High-Background</u> Period Only:

- Conservative use of KamNet
- Veto critical backgrounds that passes all traditional methods

Official KamLAND-Zen 800 Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

APS 2023 Dissertation Awards In Nuclear Physics

KamLAND-Zen Collaboration Phys. Rev. Lett. 130, 051801

A. Li et al, Phys. Rev. C 107, 014323 (2023)

Exposure After KamNet: 1142 kg·yr

Worth \$2.5 million!!! (Based on 2010 Xe price)

Official KamLAND-Zen 800 Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

KLZ Combined Official Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.3 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

This result represents the **worlds most stringent limit** on $0\nu\beta\beta$ search!

Apply KamNet to All Data:

 $T_{1/2}^{0\nu\beta\beta} > 2.7 \times 10^{26} \text{yr} (90 \% \text{ C. L.}) +35\%$

LEGEND HPGe Detector Array Experiment for NLDBD Search **Semiconductor Detector made with ⁷⁶Ge** Waveform

Pulse Shape Parameter

LEGEND HPGe Detector Array Experiment for NLDBD Search Waveform

LEGEND HPGe Detector Array Experiment for NLDBD Search Waveform

LEGEND

LEGEND

Germanium Machine Learning (GeM) Group

Completed Project

Ongoing/Future Project

Data Cleaning

Leverage efficient and interpretable AI to aid all aspects of LEGEND analysis and simulation Leverage resources to educate domestic and international collaborators to gain AI experience

Germanium Machine Learning (GeM) Group

Leverage efficient and interpretable AI to aid all aspects of LEGEND analysis and simulation Leverage resources to educate domestic and international collaborators to gain AI experience.

Completed Project

Ongoing/Future Project

A. Li Develop LEGEND Baseline Model (LBM)

K. Kilgus, A. Li Enhance LBM with Feature Importance Supervision

MC Simulation

N. Zareskii GAN Waveform Simulation

A. Shuetz Neutron Moderator Design Emulation

2 Postdocs, 9 Graduate Students, 2 Undergraduate Students

CPU-Net: Translate Simulation to Data

Unpaired Translation with CycleGAN

Ad-hoc Pulse Shape Simulation using Cyclic Positional U-Net A. Li et al. NeurIPS 22 ML4PS Workshop Outstanding Paper

XENONnT

A 2D flat video

XENONnT AI Projects Tunnell Group @ Rice & Li group @ UCSD

Probabilistic Programming for Event Simulation

J. Qin, submitted to ICML Please check out Dr. Qin's talk at Mar 14, 4:50 PM in Lecture Hall 2!

TextCNN for High Energy Background Rejection Background rejection based solely on the waveforms

TextCNN for High Energy Background Rejection Background rejection based solely on the waveforms

Faithful Decision

Assign score of 0.5 when encounter hardto-classify low energy events

TextCNN for High Energy Background Rejection Background rejection based solely on the waveforms M. Zhong @ UCSD

Faithful Decision

Assign score of 0.5 when encounter hardto-classify low energy events

Powerful Background Suppression

Generalizable to multiple background types based on KamLAND-Zen's experience

Background rejection based solely on the waveforms

Powerful Background Suppression

Generalizable to multiple background types based on KamLAND-Zen's experience

Saliency map shows that TexCNN mostly look at rising/falling edge

Background rejection based solely on the waveforms

<u>ABRACADABRA</u>→ Broadband Axion Dark Matter Search with Toroidal Magnet

Axion-Modified Maxwell's Equation: $\nabla \times B = \frac{\partial E}{\partial t} - g_{a\gamma\gamma}(E \times$ $J_{eff} = g_{a\gamma\gamma} \sqrt{2\rho_{DM}} cos(m_a t) B$

Y. Kahn, B. R. Safdi, and J. Thaler, Phys. Rev. Lett. 117, 141801

$$\langle \nabla a - \frac{\partial a}{\partial t} B \rangle$$

<u>ABRACADABRA</u>⊳ Broadband Axion Dark Matter Search with Toroidal Magnet

Experimental Apparatus Constructed by Winslow Lab at MIT

$$\langle \nabla a - \frac{\partial a}{\partial t} B \rangle$$

Y. Kahn, B. R. Safdi, and J. Thaler, Phys. Rev. Lett. 117, 141801

J. L. Ouellet et al. Phys. Rev. Lett. **122**, 121802 (2019)

C. P. Salemi et al. Phys. Rev. Lett. **127**, 081801 (2021)

Ultra-long Time Series

10 million samples/second

1 millisecond

Benchmarking Dataset for Denoising Tasks

- Huge datasets with billions of samples
- Sample-to-sample correspondence between noisy and clean time series

ABRACADABRA Algorithm Design

RNN Sequense-to-Sequence Model for time series denoising

Detecting Rare Events Using Artificial Intelligence

"A Guided Tour to Europe"

- Rare Event Search Experiments
- **Radiation Detector & Data**
- Al Algorithms

"Forging the European Union"

 Foundation Model for Rare Event Search

"Forging the European Union"

1 Self-Supervised Learning Basis for training foundation model

2 LEGEND AI Analysis Chain Link all AI algorithms together with foundation model and fine-tuning

Rare Event Search A single, unified foundation models from all RES experiments

Self-Supervised Learning for LEGEND Task-agnostic representation from Contrastive Learning Algorithm

Self-Supervised Learning for LEGEND Task-agnostic representation from Contrastive Learning Algorithm **Fig.** $A \rightarrow D$: the length of the "band" is the time it takes for waveforms to reach maximum

Self-Supervised Learning for LEGEND Task-agnostic representation from Contrastive Learning Algorithm **Fig.** $A \rightarrow D$: the length of the "band" is the time it takes for waveforms to reach maximum Fig. D vs. Fig E: the width of the "band" represents the number of steps in waveforms

Self-Supervised Learning for LEGEND Task-agnostic representation from Contrastive Learning Algorithm

- **Fig.** $A \rightarrow D$: the length of the "band" is the time it takes for waveforms to reach maximum
- Fig. D vs. Fig E: the width of the "band" represents the number of steps in waveforms
- Fig. F: the "ring island" are slow-rounded-top waveforms caused by passivated surface

From SSL to LEGEND Foundation Model

SSL over specifically-curated dataset

From SSL to LEGEND Foundation Model

SSL over specifically-curated dataset

Foundation Model: SSL over general dataset

Germanium Machine Learning (GeM) Group

Leverage efficient and interpretable AI to aid all aspects of LEGEND analysis and simulation Leverage resources to educate domestic and international collaborators to gain AI experience

Completed Project

Ongoing/Future Project

LEGEND Foundation Model trained over all existing data

MC Simulation

N. Zareskii GAN Waveform Simulation

A. Shuetz Neutron Moderator Design Emulation

E. Leon Autonomous Data Cleaning and Run Monitor

T. Oli LBM Network PSA **T. Ye** GAN denoising Data Quality A. Li, H. Nachman Interpretable BDT Background M. Babciz Transformer-based background rejection Veto Spectrum Fitting . Alexander LBM Dead Layer Fitting L. Paudel LBM Site Energy Reconstruction Réconstruction R. Pitelka LBM Position Reconstruction Detector A. Li, K. Bhimani Cyclic Positional U-Net Response

2 Postdocs, 9 Graduate Students, 2 Undergraduate Students

Large Particle Model for Particle Physics A unified multimodal foundation model for all Rare Event Search experiment!

Simultaneous training on data from different RES experiment Has been difficult to push rare event search experiment to release their data.

Majorana Demonstrator Data Release for AI/ **ML** Applications I.J. Arnquist et al, ArXiv: 2308.10856

Long Time Series Data Release from Broadband Axion Dark Matter Experiment J. T. Fry et al, NeurIPS 2023 ML4PS

Public

Private

Large Particle Model for Particle Physics A unified multimodal foundation model for all Rare Event Search experiment!

Simultaneous training on data from different RES experiment Has been difficult to push rare event search experiment to release their data.

Majorana Demonstrator Data Release for AI/ **ML** Applications I.J. Arnquist et al, ArXiv: 2308.10856

Long Time Series Data Release from **Broadband Axion Dark Matter Experiment** J. T. Fry et al, NeurIPS 2023 ML4PS

Collections of Foundation Models

- Foundation Model: black-box public key
- Detector Data: private key

Detecting Rare Events Using Artificial Intelligence

"A Guided Tour to Europe"

- KamLAND-Zen: KamNet •
- **LEGEND:** GeM AI Analysis Chain
- **XENONNT:** Low & High Level AI Projects •
- **ABRACADABRA:** Data Release for Al lacksquare

"Forging the European Union"

- Self-supervised Learning \bullet
- **LEGEND** Foundation Model
- Large Particle Model for all RES Experiments

Email: aol002@ucsd.edu

