[ZE8

—rET L I'J..'E-'! omi I

DICIS=

Istituto Nazionale di Fisica Nucleare

ACAT2024, Stony Brook, March 11th

Quantum simulation
with just-in-time
compilation

Andrea Pasquale, on the behalf of the QiboTeam

UNIVERSITA rechnolooy
DEGLI STUDI '|'| | nnovation
DI MILANO nstitute

Why people in physics should care about gquantum computing?

Someone is already trying...

e A. Perezetal arXiv:2011.13934

e C. Bravo-Pietro et al, arXiv:2110.06933

e |. Cruz-Martinez et al, arXiv:2308.05657

e F. Rehm et al, arXiv:2307.05253

e M. Robbiati et al, arXiv:2311.05680

Annual CPU Consumption [MHSO6years]

50

40

30

20

10

0

Run 3 (u=55)

Run 4 (1=88-140)

Run 5 (u=165-200)

T 1 I 1T 1 | I~ gl I Il I LI I L I I

ny A'i'l.lAslllz’rlellmlnary

e Conservative R&D
v Aggressive R&D

— Sustained budget model
(+10% +20% capacity/year)

| I [| |

- 2022 Computing Model - CPU

| | 1

»
|||||||||||

> |

| I | I | I |

5020 2022 2024 2026 2028 2030 2032 2034 2036

Year

https://arxiv.org/abs/2011.13934
https://arxiv.org/abs/2110.06933
https://arxiv.org/abs/2308.05657
https://arxiv.org/abs/2307.05253
https://arxiv.org/abs/2311.05680

10)

10)

Introduction to Quantum Computing

H

H X * X

H

3

H

Example of a Grover algorithm

Why do we care about simulating quantum
computers?

|0)

0

|0)

1)

Introduction to Quantum Computing

H

H X * X

H

3

H X X H X —+— X H
H s HH XX H
i D X D

Example of a Grover algorithm

Why do we care about simulating quantum
computers?

e Classical simulation is fundamental to understand and design
gquantum hardware

e To test and verify quantum algorithms before quantum
hardware is ready

|0)

0

|0)

Introduction to Quantum Computing

H s H—XH—e+—XHH
H X —e— X H Y —e— X H
H . Hi— X —+—X H
H & X SV

Example of a Grover algorithm

— Why do we care about simulating quantum
= computers?
—{

e Classical simulation is fundamental to understand and design
gquantum hardware

e To test and verify quantum algorithms before quantum
hardware is ready

Simulating quantum computers is hard

|0)

0

|0)

1)

Introduction to Quantum Computing

3

)

H * H X * X H
H X » X H X * X H
H * H X - X H
H D X D

Example of a Grover algorithm

Why do we care about simulating quantum
computers?

e Classical simulation is fundamental to understand and design
quantum hardware

e To test and verify quantum algorithms before quantum
hardware is ready

Simulating quantum computers is hard

« Memory management
e Operation needs to be optimized
» Needs to explore different architectures

Introduction to Quantum Computing

0 —{z ; b+ - = Why do we care about simulating quantum
0) — o x F—— x HH xF——xHu e — com pute rs?

UE L ! LB 1S g ELS £ A e Classical simulation is fundamental to understand and design
1) — H > X b quantum hardware

e To test and verify quantum algorithms before quantum

hardware is ready
Example of a Grover algorithm

Simulating quantum computers is hard

« Memory management
e Operation needs to be optimized
» Needs to explore different architectures

Therefore, we need a framework that has some “tricks”
to efficiently perform quantum simulation

Qibo

A quantum computing framework for simulation and hardware execution

Stavros Efthymiou et al 2022 Quantum Sci. Technol. 7015018 https://github.com/giboteam/qgibo

https://iopscience.iop.org/article/10.1088/2058-9565/ac39f5
https://iopscience.iop.org/article/10.1088/2058-9565/ac39f5

Qibo

- Language API

Y

Implementation

-[Quantum annealing

o

-[Quantum computing

o

-[Quantum information

o

"

Simulation
backends

%{i Qiboml &

g Qibochem

Eﬂ Applications

= Qibosoq

RFSoCs

Cloud
backends

_C IBM
QRC-TII

Hardware
backend

A

Qibojit

Efficient thanks to
custom operators

Numpy

Clifford

Lightweight, fits
any CPU

TensorFlow

Pytorch @

Specialized in
Clifford circuits

Hybrid QML with
automatic
differentiation

Qibotn

TensorNetwork
simulator

Characterization

Qibocal

Validation

Qibolab

Control drivers

Convert gates to pulses

Verification

Compiler

Qibojit

Full state vector simulation with just-time-compilation

https://github.com/giboteam/qibojit

https://iopscience.iop.org/article/10.1088/2058-9565/ac39f5

Full state vector
simulation In a
nutshell

e N qubit system is represented by 2*N complex
numbers

e Deploying a quantum computing algorithms
means to apply unitary operators via matrix
multiplication

e A good simulator corresponds to a good

engine to perform linear algebra operations

Full state vector What can we do to

simulation in a improve
nutshell performances

e N qubit system is represented by 2*N complex » Parallelize using multi threading

e Accelerate through GPUs
numbers

_ _ _ e Operation needs to be optimized
e Deploying a quantum computing algorithms
means to apply unitary operators via matrix

multiplication

e A good simulator corresponds to a good

engine to perform linear algebra operations

AM

Working of JIT Compiler

C# Visual Basic) Script F# \
Compiler Compiler Compiler Compiler
| > Compilation
v
Language Specific Compiler

T - Common Intermediate .exe or
Language (CIL) dll files

|

JIT Compiler ¢——— W

v

Native Code >' Runtime

|

v

Execution _— j

What is just-in-time
compilation?

e A method for improving the performance of
Interpreted languages.

e We can exploit some frameworks in Python to
achieve better performances compared to naive

approaches

njit

|

numba.prange

Fast Binary operations

RawKernel AMD comptability

Custom operators are cuQuantum primitives

\
S

NVIDIA.

Multi GPU

GPU

Some benchmarks

qibojit, gft, double precision

—e— NVIDIA RTX A6000 (cupy)
NVIDIA DGX V100 (cupy)
NVIDIA GTX 1650 (cupy)
AMD Radeon VII (cupy)
—-o—- NVIDIA RTX A6000 (cupy-multigpu)
—— AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)

ek
-
4;

e
-
(OY)

ek
=

Total simulation time (sec)
S
(\)

[
-
-]

5 10 15 20 25 30
Number of qubits

Total simulation time scaling with the number of qubits for
simulating the gft circuit on different devices.

35

[a—
-
=~

[am—
-
W

Total simulation time (sec)

[—
-
)

gft, double precision

(U
-
(\®)

[—
=

numpy

tensorflow cpu

| —®— qibotf cpu

—— qibojit (numba) cpu
tensorflow gpu

—&— qibotf gpu

—— qibojit (cupy) gpu

-¥-: qibojit (cuquantum) gpu

/ /4
7%
=75
o Y ¥ X 17
5 10 15 20 25 30 35
Number of qubits

Total simulation time scaling with the number of qubits for
simulating the gft circuit using different Qibo backends

https://github.com/giboteam/gibojit-benchmarks

https://github.com/qiboteam/qibojit-benchmarks

Comparison with other libraries

30 qubits - double precision

e,
S
m DO- -. ..
L : Gy o g
= g = FHN | . . 5 —
R > B X S w O
% ’ %S | i X ? § 5
© H w2 pEINE f i 0 o
S £ o\ 5 N & oY ¢ X
— ’ > \ \ q |
= § = 5N ’ ::R . ’ 5% ’ : ;:g - ’ ! ! AN
= g = N _ SNG _ NS = NS i .
0! §- N - tzﬁﬁ = S8 7 SR —
RN e ENN B E BN SO A EN
qft variational ~ supremac qv bv

Qibo

Qibo GPU
Qiskit

Qiskit GPU
HybridQ
HybridQ GPU
Qulacs
Qulacs GPU

Total dry run time for simulating different circuits of 30 qubits, using libraries that support single (top) and double (bottom)

precision.

TensorNetworks

Approximate circuit execution using gibotn

https://github.com/qgiboteam/gibotn

https://github.com/qiboteam/qibotn

Tensor Networks

Tensor Networks are a powerful method for
simulating quantum circuits by representing the
state

or operator as a network of smaller tensors.

W) = ATTAT2 AT A oy, L, o)

(T] ,$0 .,(TL

It is an approximate method that enable to simulate
circuits with polynomial complexity.

Quantum
States

The expressive power of neural networks
in quantum physics. Credits to G. Carleo.

U. Schollwoeck, Rev. Mod. Phys. 77, 259 (2005)
R. Orus, Annals of Physics 349 (2014) 117-158

https://www.sciencedirect.com/science/article/abs/pii/S0003491614001596?via%3Dihub
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.77.259

o NATIONAL
‘§> QUANTUM
COMPUTING HUB
SINGAPORE

Supported Tensor Networks type:
e TensorNet (TN)
e Matrix Product States (MPS)

Supported HPC configurations:
e single-node CPU
e single-node GPU or GPUs
e multi-node multi-GPU with Message Passing Interface (MPI)
e multi-node multi-GPU with NVIDIA Collective Communications Library (NCCL)

5 [— — [S— [—
I))) -
— [— [R%] (o8

Simulation times mean (sec)

p— [a—
- o
VI

10~*

[a—
o
S}

[—
o
[}8]

tittt

[a—
S

Simulation times mean (sec)

qft, double precision

{ —#&— CuQuantum TN NCCL

{ =—— Qibojit cupy z

CuQuantum TN

I == CuQuantum MPS

—4— CuQuantum TN MPI

—4— Q1ibojit numba -

5 10 15 20 25 30
Number of qubits

variational, double precision

[a—
o

[u—
O
=

CuQuantum TN
CuQuantum MPS
CuQuantum TN MPI
CuQuantum TN NCCL
Qibojit numba

Qibojit cupy

o
e _—o 09— M
v
5 10 15 20 25 30

Number of qubits

TN can scale up! e

variational, double precision

Running variational circuits with 102_:

G
400 qubits using A100 GPU *— qibojit-numba

—e— qibotn-tensornet

[S—
=

Total simulation time (sec)

[—
=
()

[—
-
b

0 50 100 150 200 250 300 350 400
Number of qubits

Clifford simulation

Speeding up execution for Clifford circuits

Clifford Simulation

[Submitted on 25 Jun 2004 (v1), last revised 18 Jun 2008 (this version, v5)]

Improved Simulation of Stabilizer Circuits

Scott Aaronson, Daniel Gottesman

The Gottesman-Knill theorem says that a stabilizer circuit -- that is, a quantum circuit consisting solely of CNOT, Hadamard, and phase gates -- can be simulated efficiently on a classical computer. This paper improves
that theorem in several directions. First, by removing the need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a factor-2 increase in the number of bits needed to represent a state.
We have implemented the improved algorithm in a freely-available program called CHP (CNOT-Hadamard-Phase), which can handle thousands of qubits easily. Second, we show that the problem of simulating
stabilizer circuits is complete for the classical complexity class Parityl, which means that stabilizer circuits are probably not even universal for classical computation. Third, we give efficient algorithms for computing the
inner product between two stabilizer states, putting any n-qubit stabilizer circuit into a "canonical form" that requires at most O(n”2/log n) gates, and other useful tasks. Fourth, we extend our simulation algorithm to
circuits acting on mixed states, circuits containing a limited number of non-stabilizer gates, and circuits acting on general tensor-product initial states but containing only a limited number of measurements.

Efficiently simulate gate application and measurements sampling in the stabilizers state representation.

L1 T L1n <11 T <1n | The state is represented by a tableau of binary variables.

: " .) s : : The complexity is:

"Iuﬂ
o
—
-
-
L]
=
-
=
oy
o~
N
—
o~
(-
L]
L]
-
0
""*
o~
-
T
<
.Y
—
—

e O(n) for unitary gates

L(n+1)1 * " L(n+1)n|*(n+1)1 *°° Z(n+1l)n|I'n+1 * O(n?) for measurements

L] . [] [] . L] L]
L] L] L] L] L] L] -
L] - [] [] . L] -

Benchmarks

Simulation of clifford circuits with an
increasing number of qubits (no
measurements). For each point we take the
average over 100 different randomly
generated circuits. Each circuit is generated
following https://arxiv.org/abs/2003.0941,
which guarantees an uniform distribution of
the generated n-qubits clifford operators, but
the depth is not fixed.

Average runtime (s)

Papaluca et al, In preparation (2024)

Clifford Simulator

Qibo - NumPy
Jibo - Numba
Qibo - CuPy
Cirq
Qiskit-Aer

n qubits

Papaluca et al, In preparation (2024)
Benchmarks g i

10 qubits 100 qubits 1000 qubits

1021 —+ qivo-NuwPy —$— cirq _
—4— Qibo - Numba ——— Qiskit-Aer
:_01; —4— Qibo - CuPy]

Average Runtime (s)

depth D depth D depth D

Simulation of clifford circuits with an increasing depth for a fixed number of qubits (no measurements).For each point we take the
average over 100 different randomly generated circuits. We randomly sample circuit moments composed by a single qubit
cliffords layer followed by a two-qubits cliffords one. We sequentially stack up to 10 000 layers constructed this way.

Outlook

Quantum simulation summary

3

Numpy CPU/lightweight mmm,
Qibotn -
CPU/GPU high . |0) H *
performance .
Qibojit E
Simulating on . |0} H X ®
classical hardware E
Tensorflow . ‘asd)
Automatic 0) T !
differentiation for QML | /
Pytorch
1) b4 D
b Clifford Specialized
IDO
Q &<
backends
IBM
Q Cloud backends
QRC-TII
~4&> Executing on :
W P/
*%‘ quantum hardware Qibolab

il
Ry

Quantum simulation summary

Qibo

backends

&)

Simulating on
classical hardware

& Cloud backends

Y
A

[

L]

e

>

~ Executing on

> quantum hardware

Numpy CPU/lightweight
Qibotn
CPU/GPU high s
performance
Qibojit
Tensorflow .
Automatic
differentiation for QML
Pytorch
Clifford Specialized
IBM
QRC-TII
Qibolab

variational, double precision

102 I —=— gibojit-numba
_ i —e— qibotn-tensornet
9 B
2 10! .
2 y
S 0 ;
..“IIIIIIIIIIII) ;‘;;: *
: £ 107! !
: S 1072
i :
. 1073
u 0 50 100 150 200 250 300 350 400
= Number of qubits
. - gft, double precision
. numpy
E tensorflow cpu
E 2 1031 —&— qibotf cpu
E % —— qibojit (numba) cpu
: k= tensorflow gpu
: % 102 —&— qibotf gpu
eeed —— qibojit (cupy) gpu
= —=¥-: qibojit (cuquantum) gpu
=
IZRT N
210 7
5] $/
=)4)r)f
10 . e ==
5 10 15 20 25 30 35

Number of qubits

Quantum simulation summary

Qibo

backends

&)

Simulating on
classical hardware

& Cloud backends

Y
A

~4&> Executing on

0.
P> quantum hardware

Numpy

Qibotn

Qibojit

Tensorflow

Pytorch

Clifford

IBM

QRC-TII

Qibolab

CPU/lightweight

CPU/GPU high
performance

Automatic
differentiation for QML

Specialized

1.0F S | iy
0.8]
0.6 F .
0.4 .
0.2 L —— No mitigation on qwbq i

| —— RTQEM on qwbq
Ui]j-——- NNPDF4.0 measurements g
- — Qubit’s fidelity f = 0.906 :
_{)2 by g o | S | e el e S| X sl
16— 10=2 10~2 101 10°

X

arXiv:2311.05680

https://arxiv.org/abs/2311.05680

Quantum simulation summary

Numpy CPU/lightweight
Qibotn
CPU/GPU high
performance
Qibojit
Simulating on
classical hardware
Tensorflow .
Automatic
differentiation for QML
Pytorch
Clifford Simulator
Clifford Specialized inue, 1 9
Ql bO | ". O —4— Qibo - NumPy
backends ' : @l o e
IBM E — —4— Qibo - CuPy
& Cloud backends e 10(], = cirq
= E —i— Qiskit-Aer
QRC-TII : . _E N
: 5 10
P S 9
0.) _
:3: Executing on Qibolab g)ﬂ]-O
X quantum hardware fev] 3
A 10 X
Qv
= 4
<< 10

n qubits

New in v0.2.5 New simulation and cloud hardware backends!

We have presented a fully open
source quantum computing framework.

Qibo is compatible with state-of-the-art
gquantum simulation and offers several

engines:
e qibojit: full-state vector simulation el
Dbl Lo g 'lllll-
e gibotn: tensor-network simulation _ \l Toh #Tw,-rig

e clifford: specialized execution

But Qibo is much more than a quantum QibO: an open-source
mdators: - middleware for quantum

hardware execution and calibration -> Edoardo’s talk

[
e algorithms and error mitigation -> Matteo's talk co m p U tl n g

An end-to-end open source platform for quantum simulation, self-hosted
quantum hardware control, calibration and characterization.

$ pip install qibo [] Documentation

Thanks for listening!

Questions?

Backup slides

qibojit - Dry run vs simulation - supremacy

25- Dry run time
[] Simulation time

<20, B Import time
2 | = numba
o
£ 15/ WEN cupy
5 B cuquantum
2 10-
O
>
aa

5_

___ N H = N
o mom B = u N = s B
22 24 26

Number of qubits

Comparison between import, dry run and simulation times for the three platforms of the gibojit backend.

supremacy, double precision

Running supremacy circuits 102_;
with 400 qubits using A100 GPU '

Total simulation time (sec)

0 50 100 150 200 250 300 350 400

Accuracy comparison: tensor network vs state vector

le-10 QFT Error wrt Qibo Comparison

tie

Tensor Network accuracy is generally high.

3.0

MPS tends to have lower accuracy but acceptable.

0.5 ,u_" T ;
0.0
25

0 5 10 15 20
Number of qubits

|:|_“|.
PAN— Ziz[] |E.-'(__gitm — VQibotn

