

ACAT 2024

McMule – a Monte Carlo generator for low energy processes

Yannick Ulrich

for the McMule team

AEC, University of Bern

14 March 2024

- extract HVP for $g 2 \Rightarrow e^- \mu^{\pm} \rightarrow e^- \mu^{\pm}$ (MUonE) [Broggio, Engel, Ferroglia, Mandal, Mastrolia, Rocco, Ronca, Signer, Torres Bobadilla, Zoller, YU 2]
- luminosity measurements $\Rightarrow e^+e^- \rightarrow e^+e^-$ (Belle, FCC-ee, ...) [Banerjee, Engel, Schalch, Signer, YU 21]
- dark sector searches $\Rightarrow~e^+e^- o \gamma\gamma$ (PADME, also for luminosity...)
- $R \text{ ratios} \Rightarrow e^+e^- \rightarrow \text{stuff} (dapne, cmd3, ...)$
- τ physics $\Rightarrow e^+e^- \rightarrow \tau^+\tau^-$ (Belle) [Kollatzsch, YU 22]
- proton radius $\Rightarrow \ell p \rightarrow \ell p$ and $ee \rightarrow ee$ (P2, PRad, MUSE) [Bucoveanu, Spiesberger 18; Banerjee, Engel, Signer, YU 20; Banerjee, Engel, Schalch, Signer, YU 21; Engel, Hagelstein, Rocco, Sharkovska, Signer, YU 23]
- lepton decays $\Rightarrow \ell \rightarrow \ell' \nu \bar{\nu} + \{ee, \gamma, \gamma \gamma\}$ (MEG, Mu3e, Belle, ...) [Pruna, Signer, YU 16; YU, 17; Engel, Gnendiger, Signer, YU, 18, Banerjee, Coutinho, Engel, Gurgone, Signer, YU 22]

fixed-order NNLO QED framework

- provided: matrix elements by us or others
- output: physical cross section for any physical observable
- $\bullet~\mathrm{McMule:}$ phase space generation, subtraction, stabilisation, integration, etc.
- all leptonic $2 \rightarrow 2$ processes in QED at NNLO (+ a few others)
- integrator & generator
- user defines cuts through arbitrary function that is loaded at run time

Get the code here: https://mule-tools.gitlab.io Read the docs here: https://mcmule.readthedocs.io

MCMULE

process	experiment	physics motivation	order
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO+
$\ell p o \ell p$	P2, Muse, Prad, QWeak,	proton radius and weak charge	NNLO
$e^-e^- \to e^-e^-$	Prad 2	normalisation	NNLO
	MOLLER,	$\sin^2 heta_W$ at low Q^2	
$e^+e^- \rightarrow e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee ightarrow \ell\ell$	VEPP, BES, Daphne,	R-ratio	$NNLO\pm$
	Belle	au properties	
$ee ightarrow \gamma\gamma$	Daphne	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$e\nu ightarrow e\nu$	DUNE	flux & $\sin^2 heta_W$	NNLO-
$\mu ightarrow u ar{ u} e$	MEG	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \rightarrow \nu \bar{\nu} e \gamma$	MEG, Mu3e, Pioneer	background	NLO
$\mu ightarrow u ar{ u} eee$	Mu3e	background	NLO
$ee \to \pi\pi$	VEPP, BES, Daphne,	<i>R</i> -ratio	+
$ee \to \ell\ell\gamma$	VEPP, BES, Daphne,	<i>R</i> -ratio	+

processes in McMule

process	experiment	physics motivation	order
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO+
$\ell p o \ell p$	P2, Muse, Pr	us and weak charge	NNLO
$e^-e^- \to e^-e^-$	Prad 2	on	NNLO
	MOLLER,	low Q^2	
$e^+e^- \rightarrow e^+e^-$	any e^+e^- col \pounds	measurement	NNLO
$ee \to \ell\ell$	VEPP, BES, 📍 🛛 🖓 🍊		$NNLO\pm$
	Belle	5	
$ee ightarrow \gamma\gamma$	Daphne	es	NNLO-
	any e^+e^- col	measurement	
$e\nu ightarrow e\nu$	DUNE	θ_W	NNLO-
$\mu ightarrow u ar{ u} e$	MEG	es	NNLO+
	DUNE goal: world domination filing		
$\mu \rightarrow \nu \bar{\nu} e \gamma$	MEG, Mu3e, Pioneer	background	NLO
$\mu ightarrow u ar{ u} e e e$	Mu3e	background	NLO
$ee \to \pi\pi$	VEPP, BES, Daphne,	<i>R</i> -ratio	+
$ee \to \ell\ell\gamma$	VEPP, BES, Daphne,	<i>R</i> -ratio	+

- written in Fortran 2008, compiled with meson+ninja, toolkit in python3.9
- links to OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller 19], Collier [Denner, Dittmaier, Hofer 16], handyG [Naterop, Signer, YU 18]
- matrix elements provided as function pointers
- automatic stabilisation for soft emissions at one-loop using the LBK theorem [Engel, Signer, YU 21; Balsach, Bonocore, Kulesza 23]
- automatic IR subtraction using the FKS $^\ell$ scheme [Engel, Signer, YU 19]

- defaults can be overridden if more control is needed
- histogramming can be done in McMule or externally (LHEF, HepMC3)

"garden hose approach": just dump $\{p_i\}$ and w to file

- limited optimisation with vegas
- plenty of negative weights
- large cancellations happen in histogram
- many more points need to propagate through expensive detector simulation
- \Rightarrow prefer early cancellation over late

two observations

- **1** cross section $\sigma = \int_{\mathcal{C}} d\sigma > 0$, irregardless of the size of integration region \mathcal{C}
- 2) experiments have a finite resolution

(we already knew that because we can't see soft photons)

algorithm to remove negative weights [Andersen, Maier 21]

- pick an event with $w_i < 0$
- find nearby events until $\sum_{i \in C} w_i > 0$
- if \mathcal{C} gets too big (events become resolvable), abort (or add more events)
- else $w_i \to \frac{\sum_{j \in \mathcal{C}} w_j}{\sum_{j \in \mathcal{C}} |w_j|} w_i$

we can remove negative weights without biasing physical observables!

we need to define a metric in event space $d(e_1, e_2) \ge 0$

- doesn't really matter how we do this as long as IR safe (events with soft photons are near each other)
- ideally: events that look similar are closer to each other than those that don't
- example for one visible particle $d(e_1, e_2) = \sqrt{\left|\theta_1 \theta_2\right|^2 + \left|\phi_1 \phi_2\right|^2}$
- can add ϕ and/or energy information, depending on analysis

 $r\approx 2\times 10^{-2}\rightarrow 2\times 10^{-5}$, $w_{\rm min}/\langle w\rangle = -10^5\rightarrow -10^{-3}$

iterative cell resampling / subsampling

- track an address for each event (eg. importance sampler cell)
- do a dry run of the resampling
- if a C too big: mark addresses of all $e \in C$ as bad
- after all events are handled: add more samples in all bad addresses
- actually perform the resampling

subsampling changes the distribution of events but can (if properly configured) remove negative events completely

outlook

more processes

- $e\mu
 ightarrow e\mu\gamma$ at NNLO with $m_e^2=m_\mu^2\ll s$
- $\ell N
 ightarrow \ell N$ $(N = {}^{1}H, {}^{2}H, {}^{12}C, ...)$ with improved nuclear models
- $ee \rightarrow \pi\pi$, $ee \rightarrow \pi\pi\gamma$ at (N)NLO
- form factor contributions $ee
 ightarrow \gamma^*$ at NNNLO
- inclusion of EW effects

technical improvements

- direct ROOT interface and/or shims to experimental codes
- more automation, especially at NNLO
- YFS shower for soft resummation

MCMULE mule-tools.gitlab.io

f.I.t.r.: F.Hagelstein (Mainz), A.Coutinho (IFIC), N.Schalch (Bern), L.Naterop (Zurich & PSI), S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), M.Rocco (PSI), T.Engel (Freiburg), V.Sharkovska (Zurich & PSI), Y.Ulrich (Durham), A.Gurgone (Pavia) not shown: P.Banerjee (IIT Guwahati), D. Moreno (PSI), D. Radic (Tubingen)