FAST AND PRECISE AMPLITUDE SURROGATES WITH SYMMETRY EQUIVARIANT NETWORKS

Víctor Bresó Pla
In collaboration with Jonas Spinner, Johann Brehmer, Pim de Haan, Tilman Plehn \& Jesse Thaler

PROBLEMS IN COLLIDER PHYSICS

PROBLEMS IN COLLIDER PHYSICS

Predict the hard process interactions in a fast and precise way

PROBLEMS IN COLLIDER PHYSICS

Identify particle structures at the detector level

PROBLEMS IN COLLIDER PHYSICS

Identify particle structures at the detector level

PROBLEMS IN COLLIDER PHYSICS

Identify particle structures at the detector level

All collider processes are ruled by strict and concrete symmetry laws

Predict the hard process interactions in a fast and precise way

GEOMETRIC ALGEBRA TRANSFORMER

GEOMETRIC ALGEBRA TRANSFORMER

\triangleright Geometric inductive bias

GEOMETRIC ALGEBRA TRANSFORMER

\triangleright Geometric inductive bias

- Symmetry awareness

GEOMETRIC ALGEBRA TRANSFORMER

\square Geometric inductive bias

- Symmetry awareness
- Scalability and flexibility

GEOMETRIC ALGEBRA TRANSFORMER

- Geometric inductive bias

GEOMETRIC ALGEBRA

- Symmetry awareness
- Scalability and flexibility

GEOMETRIC ALGEBRA

\triangle A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$

GEOMETRIC ALGEBRA

\triangle A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$
\triangleright A geometric algebra deals with multivectors, representing both objects and operators

GEOMETRIC ALGEBRA

\triangleright A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$
\triangleright A geometric algebra deals with multivectors, representing both objects and operators
\triangle A general multivector in the Lorentz geometric algebra will be:

$$
\begin{aligned}
x=x_{s}+x_{0} e_{0}+x_{1} e_{1}+x_{2} e_{2} & +x_{3} e_{3}+x_{01} e_{0} e_{1}+x_{02} e_{0} e_{2}+x_{03} e_{0} e_{3}+x_{12} e_{1} e_{2}+x_{13} e_{1} e_{3}+x_{23} e_{2} e_{3} \\
& +x_{012} e_{0} e_{1} e_{2}+x_{013} e_{0} e_{1} e_{3}+x_{023} e_{0} e_{2} e_{3}+x_{123} e_{1} e_{2} e_{3}+x_{0123} e_{0} e_{1} e_{2} e_{3}
\end{aligned}
$$

GEOMETRIC ALGEBRA

\checkmark A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$
\square A geometric algebra deals with multivectors, representing both objects and operators

- A general multivector in the Lorentz geometric algebra will be:

$$
\begin{aligned}
& \text { Scalars } \\
& x=\stackrel{\uparrow}{x_{s}}+x_{0} e_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{01} e_{0} e_{1}+x_{02} e_{0} e_{2}+x_{03} e_{0} e_{3}+x_{12} e_{1} e_{2}+x_{13} e_{1} e_{3}+x_{23} e_{2} e_{3} \\
& +x_{012} e_{0} e_{1} e_{2}+x_{013} e_{0} e_{1} e_{3}+x_{023} e_{0} e_{2} e_{3}+x_{123} e_{1} e_{2} e_{3}+x_{0123} e_{0} e_{1} e_{2} e_{3}
\end{aligned}
$$

GEOMETRIC ALGEBRA

\triangle A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$
\triangleright A geometric algebra deals with multivectors, representing both objects and operators
\triangle A general multivector in the Lorentz geometric algebra will be:

GEOMETRIC ALGEBRA

\triangle A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$
\triangleright A geometric algebra deals with multivectors, representing both objects and operators
\square A general multivector in the Lorentz geometric algebra will be:

GEOMETRIC ALGEBRA

\triangle A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$
\triangleright A geometric algebra deals with multivectors, representing both objects and operators
\triangle A general multivector in the Lorentz geometric algebra will be:

GEOMETRIC ALGEBRA

\triangle A geometric algebra is a vector space that features an extra operation: the geometric product: $x, y \mapsto x y$
\triangleright A geometric algebra deals with multivectors, representing both objects and operators
\square A general multivector in the Lorentz geometric algebra will be:

GEOMETRIC ALGEBRA TRANSFORMER

\square Geometric inductive bias

- Symmetry awareness
- Scalability and flexibility

GEOMETRIC ALGEBRA TRANSFORMER

Δ Geometric inductive bias through geometric algebra representations

- Symmetry awareness
- Scalability and flexibility

GEOMETRIC ALGEBRA TRANSFORMER

\triangleright Geometric inductive bias through geometric algebra representations

- Symmetry awareness through Lorentz equivariant layers
- Scalability and flexibility

GEOMETRIC ALGEBRA TRANSFORMER

\triangleright Geometric inductive bias through geometric algebra representations

- Symmetry awareness through Lorentz equivariant layers
- Scalability and flexibility through dot-product attention

GEOMETRIC ALGEBRA TRANSFORMER

- Geometric inductive bias through geometric algebra representations
- Symmetry awareness through Lorentz equivariant layers
- Scalability and flexibility through dot-product attention
\downarrow Auxiliary scalar representations (for non-geometric data)
\downarrow Positional embeddings
- Axial attention

GEOMETRIC ALGEBRA TRANSFORMER

GEOMETRIC ALGEBRA TRANSFORMER

GEOMETRIC ALGEBRA TRANSFORMER

GEOMETRIC ALGEBRA TRANSFORMER

$$
\operatorname{Attention}(q, k, v)_{i^{\prime} c^{\prime}}=\sum_{i} \operatorname{Softmax}_{i}\left(\frac{\sum_{c}\left\langle q_{i^{\prime} c}, k_{i c}\right\rangle}{\sqrt{8 n_{c}}}\right) v_{i c^{\prime}}
$$

GEOMETRIC ALGEBRA TRANSFORMER

$$
\operatorname{Attention}(q, k, v)_{i^{\prime} c^{\prime}}=\sum_{i} \operatorname{Softmax}_{i}\left(\frac{\sum_{c}\left\langle q_{i^{\prime} c}, k_{i c}\right\rangle}{\sqrt{8 n_{c}}}\right) v_{i c^{\prime}}
$$

GEOMETRIC ALGEBRA TRANSFORMER

AMPLITUDE SURROGATE APPLICATION

- Problem: Build an algorithm that can predict interaction amplitudes from phase space points for multiple processes

AMPLITUDE SURROGATE APPLICATION

- Problem: Build an algorithm that can predict interaction amplitudes from phase space points for multiple processes
- Machine learning approaches struggle for 2 reasons:

1. The output range covers a very large interval
2. There exists a scaling problem. The more particles, the more complicated it is to estimate the amplitude

AMPLITUDE SURROGATE APPLICATION

Problem: Build an algorithm that can predict interaction amplitudes from phase space points for multiple processes
\downarrow Machine learning approaches struggle for 2 reasons:

1. The output range covers a very large interval
2. There exists a scaling problem. The more particles, the more complicated it is to estimate the amplitude

AMPLITUDE SURROGATE APPLICATION

- Problem: Build an algorithm that can predict interaction amplitudes from phase space points for multiple processes
\downarrow Machine learning approaches struggle for 2 reasons:

1. The output range covers a very large interval
2. There exists a scaling problem. The more particles, the more complicated it is to estimate the amplitude

AMPLITUDE SURROGATE APPLICATION

AMPLITUDE SURROGATE APPLICATION

DSI: Deep Sets algorithm with momentum invariant inputs. Our main baseline. GATr joint: GATr model trained with all data sets at the same time

AMPLITUDE SURROGATE APPLICATION

Excellent sample efficiency from GATr

CONCLUSIONS

\square GATr is a Lorentz equivariant model that is able to produce excellent amplitude predictions for complex processes

CONCLUSIONS

\square GATr is a Lorentz equivariant model that is able to produce excellent amplitude predictions for complex processes
\triangleright GATr scales much better than other geometric networks and displays great sample efficiency

CONCLUSIONS

Δ GATr is a Lorentz equivariant model that is able to produce excellent amplitude predictions for complex processes
\triangleright GATr scales much better than other geometric networks and displays great sample efficiency
\square The joint setup allows for the same algorithm to be specialized in multiple processes without significant performance losses

CONCLUSIONS

\square GATr is a Lorentz equivariant model that is able to produce excellent amplitude predictions for complex processes
\triangleright GATr scales much better than other geometric networks and displays great sample efficiency
\square The joint setup allows for the same algorithm to be specialized in multiple processes without significant performance losses

- Outlook:
- NLO amplitude regression
- Other collider physics tasks

