
Multiscale Lattice Gauge Theory Algorithms and Software for Exascale hardware
Peter Boyle

Brookhaven National Laboratory
Software: https://www.github.com/paboyle/Grid

• Lattice QCD and muon g-2
• Grid code for structured Lattice Gauge theory calculations, developed under ECP

• Parallelization & portability: covariant programming
• Performance

• Exascale algorithms and SciDAC-5
• Multiple right-hand-side multigrid and GPU tensor units

https://www.github.com/paboyle/Grid

• Why?

Muon g-2 has displayed a persistent 3-4 sigma tension with standard model ‘predictions’
• But the prediction has made use of experimental e+ e- cross-section measurements and is not ab-initio
• More recent lattice results indicate reduced tension with SM

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
t (fm)

ΘSD
ΘW
ΘLD

New ’20 BMW lattice result in tension with r-ratio, reduces tension to muon g-2

New ‘23 CMD-3 e+e- à pp cross section is in tension with Babar, KLOE
reduces tension with SM for g-2

Big need to address theoretical error to maximise impact of Fermilab Muon G-2
experiment

Lattice groups have broken the HVP calculation into short, middle and
long-distance windows in Euclidean time

Makes it easier to compare and check results between collaborations
and confront experiment with robust consensus results.

In future: compare to corresponding R-ratio energy-windows

RBC-UKQCD collaboration has published short and middle-distance windows contributions to HVP
Emerging consensus behind BMW on middle-distance part of HVP with meaningful precision

Working on long distance windows, complete HVP determination and reducing finite volume effects

• How?

Lattice QCD involves numerical evaluation of the Feynman path integral

• Multiple petaflops years calculations, integrate 1010 degrees of freedom

• Matrix “M” represents the Dirac equation on a background quantum fluctuation of the gluon field

• Inversions of “spinor” fields typically use Conjugate Gradients (or multi-level CG).

• Performed at each step of MCMC

• Strong scaled 4D Dirac PDE solver performance on structured grid is critical

Grid QCD code

Design considerations
• Performance portable across multi and many core CPU’s

SIMD⌦OpenMP⌦MPI

• Performance portable to GPU’s
SIMT⌦offload⌦MPI

• N-dimensional cartesian arrays

• Multiple grids

• Data parallel C++ layer : Connection Machine inspired

Started in 2014 as Intel IPCC project
GPU portability studies with USQCD
Adopted as POR by USQCD in DOE Exascale Computing Project

Accelerator.h: Lean internal API to offload: similar ideas to RAJA and Kokkos
• Device lambda capture
• O(1) overhead true LRU data cache on device

Data Layout changes with vector length of architecture: covariant programming

Native interfaces in: “Grid Python Toolkit” (Lehner), “Hadrons” (Portelli)
Used as library by MILC, CPS, Qlat

Also: CUDA and SYCL implementations of internal interface

Future: OpenMP target device, and C++ std parallelism

Internal interface to parallelism gives cross platform portability
(high level code does not see this – use the data parallel API)

Capturing SIMT and SIMD under a single Kernel

The struct-of-array (SoA) portability problem:

• Scalar code: CPU needs struct memory accesses struct calculation

• SIMD vectorisation: CPU needs SoA memory accesses and SoA calculation

• SIMT coalesced reading: GPU needs SoA memory accesses struct calculation

• GPU data structures in memory and data structures in thread local calculations di↵er

Model Memory Thread
Scalar Complex Spinor[4][3] Complex Spinor[4][3]
SIMD Complex Spinor[4][3][N] Complex Spinor[4][3][N]
SIMT Complex Spinor[4][3][N] Complex Spinor[4][3]
Hybrid? Complex Spinor[4][3][Nm][Nt] Complex Spinor[4][3][Nt]

How to program portably?

• Use operator() to transform memory layout to per-thread layout.

• Two ways to access for read

• operator[] returns whole vector
• operator() returns SIMD lane threadIdx.y in GPU code
• operator() is a trivial identity map in CPU code

• Use coalescedWrite to insert thread data in lane threadIdx.y of memory layout.

Covariant programming : capturing the variation between SIMD and SIMT in a single code

• Where?

• GPU optimization for HIP, SYCL, CUDA and OpenMP

• CPU vector optimization for SSE, AVX, AVX2, AVX512; ARM NEON, ARM SVE

• Significant usage on systems with Nvidia, AMD, and Intel GPUs
• USA: Frontier, Summit, Perlmutter, Polaris, Aurora
• Europe & UK: Booster, Lumi-G, Leonardo, Tursa
• Japan: Fugaku

• Important that GPU systems have at least 200Gbit/s network card for each GPU currently to give scalability

• Good performance cross platform:

• 10+TF/s per node on quad A100, quad MI250, and four/six PVC nodes

• 1 – 1.3 TF/s per node on Intel Sapphire Rapids and AMD Genoa two socket CPU nodes

• Runs well on Fugaku / ARM SVE

• How fast?

HPE Cray EX
AMD MI250X x 4 GPUs nodes
4x Slingshot: 1600Gbit/s per node

0

2

4

6

8

10

12

14

16

1 GPU 1 2 4 8 16 32 64

TF
/s

 p
er

 n
od

e

Nodes

Frontier (ORNL)/Lumi-G (CSC) weak
scaling at 32x32x16x16 per GCD

With comms

ATOS Sequana
Nvidia A100 x 4 GPU nodes
4x HDR IB: 1600Gbit/s per node

0

2

4

6

8

10

12

14

16

1 GPU 1 2 4 8 16 32 64

TF
/s

 p
er

 n
od

e

Nodes

Booster (Juelich) & Tursa (Edinbugh)
weak scaling at 32x32x16x16 per

GPU

With comms

Weak scaling : NB perfect line scaling is displayed as flat as plot performance PER node

Intel PVC GPUs on Aurora at ANL, 3200Gbit/s per node

(ANL caveat: this is based on early software at ANL and subject to further improvement)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 16 32 64 128 256 256 512 512

TF
/s

 p
er

 n
od

e

Nodes

Aurora weak scaling - (flat is perfect scaling)

Halo Communication
and interior

computation overlap perfectltyGather 8
faces

Add exterior
faces

Code has been profiled in detail: kernels execute back-to-back.

Multi-rail infiniband & slingshot exceeds 180GB/s and 90% of bidirectional four rail IB wirespeed concurrent with computation
i.e. 1.6 Tbit/s per node

On Booster, Tursa, Lumi-G, Leonardo, Frontier the communications and computation overlap perfectly

Each of 26 kernels in Dirac matrix are reported by Nvidia at 80% of peak memory speed

• What next?

Adapt our algorithms to the new problems enabled by the Exascale:
more length scales => critical slowing down

Multigrid Dirac solvers:
• Learn near null space of Dirac matrix: non-trivial in gauge theory

• Break these vectors into local wavelet basis chunks
• Determine a representation of Dirac operator within this critical subspace

• Use as a near-null space multigrid preconditioner

New idea:
solve multiple right-hand sides simultaneously and use GPU Tensor hardware.
3-5 TF/s per GPU in double precision ZGEMM and 30x faster !

SciDAC-5 : Multiscale acceleration

• Red-black preconditioned conjugate gradient solves single RHS in 770s

• mrhs-HDCG solves twelve RHS in 1017s

• 9.1x speed up wall clock

• batched BLAS ZGEMM on GPU on red named routines: 30x speedup!

• 17x reduction in fine matrix multiplies (26000 vs. 1500)

• Algorithm required for RBC-UKQCD large volume muon g-2
• Scheduled innovation – and more gain anticipated!

SciDAC-5 multigrid status: physical quark masses, 18 nodes, Frontier

mrhs-HDCG time breakdown

Smoother CoarseSolver FineResidual Linalg

FineToCoarse CoarseToFine Deflate

Total 1017s

FineSmoother 710s

CoarseSolver 159s

FineResidual 100s

FineLinalg 25s

FineToCoarse 6s

CoarseToFine 5s

Deflate 0.3s

1x10-9

1x10-8

1x10-7

1x10-6

1x10-5

0.0001

0.001

0.01

0.1

1

0 5000 10000 15000 20000 25000 30000
re
si
du
al

fine matrix multiplies

mrhs-HDCG
CGNE

• After significant effort, Grid software is portable AND performance portable
• Problem sizes enabled by Exascale require new algorithms

• Order of magnitude gain with bespoke algorithm aimed at muon g-2

• Multigrid: learned compression of QCD Nc=3 into learned wavelet basis
• Use of GPU tensor cores to operate on that basis
• Accelerates convergence as a preconditioner; multiRHS turns problem into fast GEMM operations
• Batched BLAS routines VERY helpful
• Use of ML hardware can be a blend of old and new approaches:

• retains the underlying mathematics of physics that took centuries to understand

Summary

BACKUP

Preprints
https://arxiv.org/abs/2401.16620
https://arxiv.org/abs/2203.17119
https://arxiv.org/abs/2203.06777

Software:
https://github.com/paboyle/Grid
https://github.com/aportelli/Hadrons
https://github.com/lehner/gpt

https://github.com/paboyle/Grid
https://github.com/paboyle/Grid
https://github.com/aportelli/Hadrons
https://github.com/lehner/gpt

