Real-time quantum error mitigation in training VQAs

Based on: *a*rXiv:2311.05680

Matteo Robbiati, Alejandro Sopena, Andrea Papaluca, Stefano Carrazza 11 March 2024

Two starting points

1. Noise and mitigation in QML

Credits to 🖉 arXiv:2109.01051

Two starting points

1. Noise and mitigation in QML

Credits to 🖉 arXiv:2109.01051

2. The Qibo project

- </>
 API language with Qibo;
- quantum control with Qibolab;
- calibration with Qibocal.

What is our goal?

Use error mitigation to train on hardware, defining an algorithm which is **effective** and **computationally light**. About noise and error mitigation

Can quantum error mitigation help?

Credits to 🖉 arXiv:2109.01051

Can quantum error mitigation help?

Discussion on QEM

Discussion on QEM

- 1. Let's consider two parameters vectors θ_1 and θ_2 ;
- 2. thus two cost function values $C(\theta_1)$, $C(\theta_2)$;
- 3. noise and QEM affects resolvability;

Credits to 🖉 arXiv:2109.01051

Can quantum error mitigation help?

Discussion on QEM

- 1. Let's consider two parameters vectors θ_1 and θ_2 ;
- 2. thus two cost function values $C(\theta_1)$, $C(\theta_2)$;
- 3. noise and QEM affects resolvability;
- 4. let's define a metric:

$$\chi(\theta_1, \theta_2) = rac{N_{
m shots}^{
m noisy}}{N_{
m shots}^{
m mit}}$$

5. we are happy if $\chi \ge 1!$

Credits to 🖉 arXiv:2109.01051

Credits to 🖉 arXiv:2109.01051

Discussion on QEM

- 1. Let's consider two parameters vectors θ_1 and θ_2 ;
- 2. thus two cost function values $C(\theta_1)$, $C(\theta_2)$;
- 3. noise and QEM affects resolvability;
- 4. let's define a metric:

$$\chi(\theta_1, \theta_2) = \frac{N_{\rm shots}^{\rm noisy}}{N_{\rm shots}^{\rm mit}}$$

- 5. we are happy if $\chi \ge 1!$
- 6. for Clifford Data Regression $\chi = 1$ under Global depolarizing noise given any θ_1 and θ_2 and scaling with qubits.

Good news!

It can help with cost corruption while remaining neutral to cost concentration. A case study

A proper target

• *N*-dimensional fit: y = g(x)

A proper target

• *N*-dimensional fit: y = g(x)

We build an *N*-qubit parametric circuit $\mathcal{U}_{\theta}(x)$

with x_j uploaded twice at layer ℓ through the uploading channel $U(x_j; \theta_i^{\ell})$.

\mathbf{P} Cost function

Considering as output predictor $f_{\theta}(\mathbf{x}) = \langle 0 | \mathcal{U}_{\theta}^{\dagger}(\mathbf{x}) \sigma_{z}^{\otimes N} \mathcal{U}_{\theta}(\mathbf{x}) | 0 \rangle$, we set as cost function:

$$C_{\mathrm{mse}} = rac{1}{N_{\mathrm{data}}} \sum_{i}^{N_{\mathrm{data}}} [f_{\boldsymbol{ heta}}(\boldsymbol{x}^{i}) - g(\boldsymbol{x}^{i})]^{2}.$$

Noise model

Noise model based on

arXiv:2007.14384

We consider local pauli noise and bit-flip readout noise channels.

In particular:

- *PN* channel with probs. $-1 < q_x, q_y, q_z < 1$ on each qubit after each layer;
- X symmetric readout noise \mathcal{M} of single-qubit bit-flip (*BF*) with prob. $(1 q_M)/2$ when measuring.

Noise model based on

arXiv:2007.14384

We consider local pauli noise and bit-flip readout noise channels.

In particular:

- *PN* channel with probs. $-1 < q_x, q_y, q_z < 1$ on each qubit after each layer;
- X symmetric readout noise \mathcal{M} of single-qubit bit-flip (*BF*) with prob. $(1 q_M)/2$ when measuring.

Noise effect

The effect of such a noise on our predictor is a cost concentration of the expectation values around zero:

$$|f_{\rm noisy}| < 2q_M^N q^{2l+2} \left(1 - \frac{1}{2^N}\right).$$

About error mitigation

We use the Importance Clifford Sampling (ICS) procedure to learn the noise map ℓ .

- 1. Sample a training set of Clifford circuits S on top of a target C^0 ;
- 2. process them so that their expectation values on Pauli strings is +1 or -1;
- 3. extract mitigation parameter λ_{eff} comparing $\langle \mathcal{O} \rangle_{noisy}$ and $\langle \mathcal{O} \rangle$;
- 4. build a phenomenological noise map:

$$\ell(\langle O
angle | \lambda_{ ext{eff}}) = rac{(1 - \langle \lambda_{\mathcal{C}}
angle_{\mathcal{S}})}{(1 - \langle \lambda_{\mathcal{C}}
angle_{\mathcal{S}})^2 + \sigma^2} \langle O
angle_{ ext{noisy}}.$$

Real-time QEM

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

- 1. consider a Variational Quantum Algorithm trained with gradient descent;
- 2. learn the noise map ℓ every time is needed over the procedure;
- 3. use ℓ to clean up both predictions and gradients.

We don't need to recompute QEM at each iteration!

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

We don't need to recompute QEM at each iteration!

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

 \mathbb{C} we define a metric $D(\langle z \rangle, \ell(\langle z \rangle)) = |\langle z \rangle - \ell(\langle z \rangle)|$ to quantify the distance between a well known expectation value $\langle z \rangle$ and its mitigated value.

if D exceeds some arbitrary threshold ε , then the map ℓ is recomputed.

Static noise scenario

Simulation: one dimensional HEP target, the *u*-quark PDF

- 1. thanks to the RTQEM procedure, we reach a good minimum of the cost function;
- 2. the QEM is not effective is applied to a corrupted scenario (orange curve).

Simulation: multi-dimensional target

Dummy *N*-dim function: $f_{ndim}(\boldsymbol{x}; \boldsymbol{\beta}) = \sum_{i=1}^{N_{dim}} \left[\cos \left(\beta_i x_i \right)^i + (-1)^{i-1} \beta_i x_i \right].$

Job ID	$N_{ m train}$	$N_{\rm params}$	$N_{ m shots}$	MSE_{rtqem}	MSE_{nomit}	Noise
$N_{\rm dim}=4$	30	48	104	0.003	0.043	local Pauli
$N_{\rm dim}=6$	30	72	10^{4}	0.002	0.083	local Pauli
$N_{\rm dim}=8$	30	96	10 ⁴	0.004	0.118	local Pauli

Evolving noise scenario

😎 we use Qibo, Qibolab and Qibocal to run a gradient descent.

Quantum hardware: unmitigated fit

arXiv:2308.06313

😎 we use Qibo, Qibolab and Qibocal to run a gradient descent.

😎 we use Qibo, Qibolab and Qibocal to run a gradient descent.

Quantum hardware: fit with RTQEM

We train on two different devices (and noises!) using the same initial conditions of the previous case.

- qw5q from QuantWare and controlled using Qblox instruments;
- iqm5q from IQM and controlled using Zurich Instruments.

Train.	Pred.	MSE	
qw5q	qw5q	0.0013	
iqm5q	qw5q	0.0037	
qw5q	Exact sim.	0.0016	

All the hardware results are obtained deploying the $\theta_{\rm best}$ on qw5q.

Simulation: RTQEM with different threshold values

We move the *PN* vector with a Random Walk. Namely, each component q_i is evolved each epoch following:

$$q_j^{(k+1)} = q_j^k + r\delta,$$

where $r \sim \{-1, +1\}$ and the step is sampled from a normal distribution $\delta \sim \mathcal{N}(0, \sigma_{\delta})$.

With a limited number of updates we have a considerable advantage!

Takeway messages

- RTQEM is lightweight, especially considering QML tasks!
- if the noise doesn't vary too much over time, a few updates of the noise map are enough.

What now?

- Can we combine various QEM strategies?
- Add extra features to face temporary noise fluctuations.
- Can we exploit classical accelerators to boost the process?

Some references

- ┛ arXiv:2311.05680
- O https://github.com/qiboteam/rtqem.

Thank you!