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Two starting points

1. Noise and mitigation in QML
2

to ask whether EM methods could address NIBPs. More
generally, one could simply ask: does it help to use error
mitigation during the training process for VQAs? This
question is precisely the topic of our article. We remark
that error mitigation has been successfully implemented
during the VQA training process for a small-scale prob-
lem [44]. However, it is an open question as to whether
or not EM can resolve large-scale trainability issues as-
sociated with cost concentration. This is due to the fact
that even though EM can reverse the concentration of
cost values, it also increases the stochastic uncertainty in
the mitigated quantities. As summarized in Figure 1, this
is a trade-off that should be carefully considered. Thus,
it is a non-trivial question as to whether or not EM im-
proves the resolvability of cost function values which is
a key factor in determining the trainability of the land-
scape.

In this work, we investigate the effects of error mitiga-
tion on the resolvability of the cost function landscape.
First, we consider a broad class of error mitigation proto-
cols and show that, under the class of local depolarizing
noise that is known to cause NIBPs, in order to reverse
exponential cost concentration any such protocol needs to
spend resources (e.g., shot resources or number of state
copies) scaling at least exponentially in the number of
qubits. This suggests that NIBPs are a serious scaling
issue that cannot be simply resolved with error mitiga-
tion.

Second, we study four specific error mitigation proto-
cols in further detail: Zero Noise Extrapolation, Virtual
Distillation, Probabilistic Error Cancellation, and strate-
gies that implement a linear ansatz which includes Clif-
ford Data Regression. We find that Virtual Distillation
can actually decrease the resolvability of the noisy cost
landscape, and impede trainability. Under more restric-
tive assumptions on the cost landscape, we find a sim-
ilar result for Zero Noise Extrapolation. We also show
that any improvement in the resolvability after applying
Probabilistic Error Cancellation under local depolarizing
noise exponentially degrades with increasing number of
qubits. Finally, for strategies that use a linear ansatz
such as Clifford Data Regression, we show that there is
no change to the resolvability of any pair of cost values if
the same ansatz is used. However, we do observe numer-
ically that Clifford Data Regression increases trainabil-
ity in some settings. This last observation provides some
hope that a careful choice of error mitigation method can
be useful. It also suggests that researchers could design
and engineer error mitigation methods to enhance VQA
trainability.

The rest of the manuscript is structured as follows.
Section II introduces the framework and notation for our
work. We present our theoretical results in Section III
and our numerical results in Section IV. Finally, our con-
cluding discussions are presented in Section V. The proofs
for our main results are presented in the Appendix.
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FIG. 1. Error mitigation can impair the resolvability
of cost function landscapes. (a): A central primitive in
training VQAs is the task of comparing two cost function val-
ues (C(θ1) and C(θ2)) on the cost landscape in parameter
space. Ideally (with infinite sampling), these cost values cor-
respond to the mean values of some probability distributions
(left panel). However, in an experimental setup, one only has
a finite shot budget and by collecting measurement statis-
tics one obtains an estimate of the mean values by sampling
from these distributions (right panel). (b): The effect of cer-
tain types of noise models is to concentrate cost function val-
ues. This impedes trainability as any two cost function values
(C̃(θ1) and C̃(θ2)) have small separation and require many
shots to accurately distinguish. (c): Error mitigation can mit-
igate many effects of noise and potentially recover key features
of the noise-free cost function. In an ideal scenario, the sep-
aration of the mitigated cost values (Cm(θ1) and Cm(θ2))
closely resembles that of the noise-free landscape. However,
the caveat is that the variance of statistical outcomes can in-
crease greatly. The effect of this is that the two cost function
points can often require even more shots to resolve accurately,
compared to the unmitigated case.

II. Framework

A. Variational Quantum Algorithms

The main goal of Variational Quantum Algorithms
(VQAs) is to solve an optimization problem by minimiz-
ing a cost function that can be efficiently estimated on
a quantum computer. In this work we consider settings
where the cost function takes the form

C(θ) = Tr
[
U(θ)ρinU

†(θ)O
]
. (1)
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What is our goal?
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What is our goal?
Use error mitigation to train on hardware,

defining an algorithm which is
effective and computationally light.
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to ask whether EM methods could address NIBPs. More
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mitigation during the training process for VQAs? This
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Distillation, Probabilistic Error Cancellation, and strate-
gies that implement a linear ansatz which includes Clif-
ford Data Regression. We find that Virtual Distillation
can actually decrease the resolvability of the noisy cost
landscape, and impede trainability. Under more restric-
tive assumptions on the cost landscape, we find a sim-
ilar result for Zero Noise Extrapolation. We also show
that any improvement in the resolvability after applying
Probabilistic Error Cancellation under local depolarizing
noise exponentially degrades with increasing number of
qubits. Finally, for strategies that use a linear ansatz
such as Clifford Data Regression, we show that there is
no change to the resolvability of any pair of cost values if
the same ansatz is used. However, we do observe numer-
ically that Clifford Data Regression increases trainabil-
ity in some settings. This last observation provides some
hope that a careful choice of error mitigation method can
be useful. It also suggests that researchers could design
and engineer error mitigation methods to enhance VQA
trainability.

The rest of the manuscript is structured as follows.
Section II introduces the framework and notation for our
work. We present our theoretical results in Section III
and our numerical results in Section IV. Finally, our con-
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FIG. 1. Error mitigation can impair the resolvability
of cost function landscapes. (a): A central primitive in
training VQAs is the task of comparing two cost function val-
ues (C(θ1) and C(θ2)) on the cost landscape in parameter
space. Ideally (with infinite sampling), these cost values cor-
respond to the mean values of some probability distributions
(left panel). However, in an experimental setup, one only has
a finite shot budget and by collecting measurement statis-
tics one obtains an estimate of the mean values by sampling
from these distributions (right panel). (b): The effect of cer-
tain types of noise models is to concentrate cost function val-
ues. This impedes trainability as any two cost function values
(C̃(θ1) and C̃(θ2)) have small separation and require many
shots to accurately distinguish. (c): Error mitigation can mit-
igate many effects of noise and potentially recover key features
of the noise-free cost function. In an ideal scenario, the sep-
aration of the mitigated cost values (Cm(θ1) and Cm(θ2))
closely resembles that of the noise-free landscape. However,
the caveat is that the variance of statistical outcomes can in-
crease greatly. The effect of this is that the two cost function
points can often require even more shots to resolve accurately,
compared to the unmitigated case.

II. Framework

A. Variational Quantum Algorithms

The main goal of Variational Quantum Algorithms
(VQAs) is to solve an optimization problem by minimiz-
ing a cost function that can be efficiently estimated on
a quantum computer. In this work we consider settings
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C(θ) = Tr
[
U(θ)ρinU
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]
. (1)
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of the noise-free cost function. In an ideal scenario, the sep-
aration of the mitigated cost values (Cm(θ1) and Cm(θ2))
closely resembles that of the noise-free landscape. However,
the caveat is that the variance of statistical outcomes can in-
crease greatly. The effect of this is that the two cost function
points can often require even more shots to resolve accurately,
compared to the unmitigated case.

II. Framework

A. Variational Quantum Algorithms

The main goal of Variational Quantum Algorithms
(VQAs) is to solve an optimization problem by minimiz-
ing a cost function that can be efficiently estimated on
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to ask whether EM methods could address NIBPs. More
generally, one could simply ask: does it help to use error
mitigation during the training process for VQAs? This
question is precisely the topic of our article. We remark
that error mitigation has been successfully implemented
during the VQA training process for a small-scale prob-
lem [44]. However, it is an open question as to whether
or not EM can resolve large-scale trainability issues as-
sociated with cost concentration. This is due to the fact
that even though EM can reverse the concentration of
cost values, it also increases the stochastic uncertainty in
the mitigated quantities. As summarized in Figure 1, this
is a trade-off that should be carefully considered. Thus,
it is a non-trivial question as to whether or not EM im-
proves the resolvability of cost function values which is
a key factor in determining the trainability of the land-
scape.

In this work, we investigate the effects of error mitiga-
tion on the resolvability of the cost function landscape.
First, we consider a broad class of error mitigation proto-
cols and show that, under the class of local depolarizing
noise that is known to cause NIBPs, in order to reverse
exponential cost concentration any such protocol needs to
spend resources (e.g., shot resources or number of state
copies) scaling at least exponentially in the number of
qubits. This suggests that NIBPs are a serious scaling
issue that cannot be simply resolved with error mitiga-
tion.

Second, we study four specific error mitigation proto-
cols in further detail: Zero Noise Extrapolation, Virtual
Distillation, Probabilistic Error Cancellation, and strate-
gies that implement a linear ansatz which includes Clif-
ford Data Regression. We find that Virtual Distillation
can actually decrease the resolvability of the noisy cost
landscape, and impede trainability. Under more restric-
tive assumptions on the cost landscape, we find a sim-
ilar result for Zero Noise Extrapolation. We also show
that any improvement in the resolvability after applying
Probabilistic Error Cancellation under local depolarizing
noise exponentially degrades with increasing number of
qubits. Finally, for strategies that use a linear ansatz
such as Clifford Data Regression, we show that there is
no change to the resolvability of any pair of cost values if
the same ansatz is used. However, we do observe numer-
ically that Clifford Data Regression increases trainabil-
ity in some settings. This last observation provides some
hope that a careful choice of error mitigation method can
be useful. It also suggests that researchers could design
and engineer error mitigation methods to enhance VQA
trainability.

The rest of the manuscript is structured as follows.
Section II introduces the framework and notation for our
work. We present our theoretical results in Section III
and our numerical results in Section IV. Finally, our con-
cluding discussions are presented in Section V. The proofs
for our main results are presented in the Appendix.
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tain types of noise models is to concentrate cost function val-
ues. This impedes trainability as any two cost function values
(C̃(θ1) and C̃(θ2)) have small separation and require many
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A case study



A proper target

û N-dimensional fit: y = g(x)

We build an N-qubit parametric circuit Uθ(x)

· · ·

· · ·

· · ·

· · ·

|0〉 U(x1;θ
1
1) U(x1;θ

L
1 )

|0〉 U(x2;θ
1
2) U(x2;θ

L
2 )

|0〉 U(x3;θ
1
3) U(x3;θ

L
3 )

|0〉 U(x4;θ
1
4) U(x4;θ

L
4 )

with xj uploaded twice at layer ` through the uploading channel U(xj ;θ
`
j ).

Q Cost function

Considering as output predictor fθ(x) = 〈0|U†θ(x)σ⊗N
z Uθ(x)|0〉, we set as cost function:

Cmse =
1

Ndata

Ndata∑
i

[
fθ(x i )− g(x i )

]2
.
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Noise model



Noise model based on � arXiv:2007.14384

We consider local pauli noise and bit-flip readout noise channels.

· · ·

· · ·

· · ·

· · ·

|0〉 U(x1;θ
1
1) PN U(x1;θ

L
1 ) PN BF

|0〉 U(x2;θ
1
2) PN U(x2;θ

L
2 ) PN BF

|0〉 U(x3;θ
1
3) PN U(x3;θ

L
3 ) PN BF

|0〉 U(x4;θ
1
4) PN U(x4;θ

L
4 ) PN BF

In particular:

n PN channel with probs. −1 < qx , qy , qz < 1 on each qubit after each layer;

ç symmetric readout noise M of single-qubit bit-flip (BF ) with prob. (1− qM)/2 when measuring.

Noise effect

The effect of such a noise on our predictor is a cost concentration of the expectation values around zero:

|fnoisy| < 2qNMq2l+2

(
1−

1

2N

)
.

9

https://arxiv.org/abs/2007.14384


Noise model based on � arXiv:2007.14384

We consider local pauli noise and bit-flip readout noise channels.

· · ·

· · ·

· · ·

· · ·

|0〉 U(x1;θ
1
1) PN U(x1;θ

L
1 ) PN BF

|0〉 U(x2;θ
1
2) PN U(x2;θ

L
2 ) PN BF

|0〉 U(x3;θ
1
3) PN U(x3;θ

L
3 ) PN BF

|0〉 U(x4;θ
1
4) PN U(x4;θ

L
4 ) PN BF

In particular:

n PN channel with probs. −1 < qx , qy , qz < 1 on each qubit after each layer;

ç symmetric readout noise M of single-qubit bit-flip (BF ) with prob. (1− qM)/2 when measuring.

Noise effect

The effect of such a noise on our predictor is a cost concentration of the expectation values around zero:

|fnoisy| < 2qNMq2l+2

(
1−

1

2N

)
.

9

https://arxiv.org/abs/2007.14384


About error mitigation



The chosen error mitigation technique � arXiv:2112.06255

We use the Importance Clifford Sampling (ICS) procedure to learn the noise map `.

1. Sample a training set of Clifford circuits S on top of a target C0;

2. process them so that their expectation values on Pauli strings is +1 or −1;

3. extract mitigation parameter λeff comparing 〈O〉noisy and 〈O〉;
4. build a phenomenological noise map:

`(〈O〉|λeff) =
(1− 〈λC〉S)

(1− 〈λC〉S)2 + σ2
〈O〉noisy.
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Real-time QEM



RTQEM pipeline

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

Data

Cost 
function

Learn noise model 
Noise map

when loses reliability

Gradient 
descent step

Predictions

Gradients
Until convergence

1. consider a Variational Quantum Algorithm trained with gradient descent;

2. learn the noise map ` every time is needed over the procedure;

3. use ` to clean up both predictions and gradients.
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We don’t need to recompute QEM at each iteration!

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

L we define a metric D
(
〈z〉, `(〈z〉)

)
= |〈z〉 − `(〈z〉)| to quantify the distance between a well known

expectation value 〈z〉 and its mitigated value.

î if D exceeds some arbitrary threshold ε, then the map ` is recomputed.

12



We don’t need to recompute QEM at each iteration!

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

L we define a metric D
(
〈z〉, `(〈z〉)

)
= |〈z〉 − `(〈z〉)| to quantify the distance between a well known

expectation value 〈z〉 and its mitigated value.

î if D exceeds some arbitrary threshold ε, then the map ` is recomputed.

12



Static noise scenario



Simulation: one dimensional HEP target, the u-quark PDF

Parameter Ntrain Nparams Nshots MSErtqem MSEnomit Noise

Value 30 16 104 0.008 0.018 local Pauli
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Noisy
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1. thanks to the RTQEM procedure, we reach a good minimum of the cost function;

2. the QEM is not effective is applied to a corrupted scenario (orange curve).
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Simulation: multi-dimensional target

Dummy N-dim function: fndim(x ;β) =
∑Ndim

i=1

[
cos (βixi )

i + (−1)i−1βixi
]
.

Job ID Ntrain Nparams Nshots MSErtqem MSEnomit Noise

Ndim = 4 30 48 104 0.003 0.043 local Pauli

Ndim = 6 30 72 104 0.002 0.083 local Pauli

Ndim = 8 30 96 104 0.004 0.118 local Pauli
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Evolving noise scenario



Quantum hardware: unmitigated fit � arXiv:2308.06313

� we use Qibo, Qibolab and Qibocal to run a gradient descent.
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Iteration
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M
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MSE history

Parameter Ntrain Nparams Optimizer Nshots MSEfinal Texe

Value 30 14 Adam 250 3.6 · 10−3 78′
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Quantum hardware: fit with RTQEM � arXiv:2311.05680

We train on two different devices (and noises!) using the same initial conditions of the previous case.
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x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

u
f

(x
)

Exact simulation

Train on qw5q, exec. on qw5q

Train on iqm5q, exec. on qw5q

Train on qw5q, exact simulation

NNPDF4.0

Qubit’s fidelity f = 0.906

2 qw5q from QuantWare and controlled using Qblox

instruments;

2 iqm5q from IQM and controlled using Zurich

Instruments.

Train. Pred. MSE

qw5q qw5q 0.0013

iqm5q qw5q 0.0037

qw5q Exact sim. 0.0016

All the hardware results are obtained deploying the θbest on qw5q.
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Simulation: RTQEM with different threshold values

We move the PN vector with a Random Walk. Namely, each component qj is evolved each epoch following:

q
(k+1)
j = qkj + rδ,

where r ∼ {−1,+1} and the step is sampled from a normal distribution δ ∼ N (0, σδ).
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8 updates

0 updates

R With a limited number of updates we have a considerable advantage!

18



Summary and outlook

Takeway messages

> RTQEM is lightweight, especially considering

QML tasks!

> if the noise doesn’t vary too much over time, a

few updates of the noise map are enough.

What now?

� Can we combine various QEM strategies?

� Add extra features to face temporary noise

fluctuations.

� Can we exploit classical accelerators to boost the

process?

Some references

� arXiv:2311.05680

� https://github.com/qiboteam/rtqem.
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Thank you!
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