
22nd International Workshop on Advanced Computing and
Analysis Techniques in Physics Research

11-15 March 2024

Persistifying the Complex
Event Data Model of the
ATLAS Experiment in RNTuple
Alaettin Serhan Mete1, Marcin Nowak2, Peter Van Gemmeren1
1Argonne National Laboratory, 2Brookhaven National Laboratory

A Brief Introduction to ATLAS and Athena
● ATLAS is a general-purpose detector at the Large Hadron Collider (LHC)
● Athena is the open-source software framework of ATLAS
○ Based on the Gaudi framework, jointly managed by the ATLAS and the LHCb experiments

○ It consists of about 4 (1.5) million lines of C++ (python) code
□CMake for building, python for job configuration, and C++ for the framework and the algorithms

2

Co
lli

si
on

 D
at

a
M

on
te

 C
ar

lo

 Digitization/
 Overlay

 (RDO)

 Simulation
(HITS)

Event Generation
(EVNT)

 Analysis Derivation
 (DAOD)

Reconstruction
(ESD, AOD)

Typical ATLAS Data Processing Chain
Name

(Output Format)

As one moves down the processing chain
the complexity and event sizes go down

(RAW)

https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/Gaudi

A Few Words on the ATLAS Event Data Model (EDM)
● The ATLAS detector consists of many complex sub-systems/groups
○ For successful data processing all of them have to perform in unison

● Thus it is extremely important to ensure that:
○ We have common interfaces and data objects across the experiment
■ Same objects can be used in trigger, event reconstruction, physics analysis etc.

○ We have coherent software that is easy to maintain over many decades

○ We can read/write data in a consistent manner over the lifetime of the experiment

● In a nutshell, the ATLAS Event Data Model (EDM):
○ Provides a collection of C++ classes that define detector/physics objects

○ Allows streamlined and efficient processing of highly complex algorithms
■ Rely on advanced C++ concepts and data structures to accomplish these

● E.g. Tracks (ID and/or MS), Clusters (LAr and/or Tile), Electrons, Photons

3

● The transient data model is used during data processing (in-memory)
○ Athena uses data stores, e.g., EventStore, to maintain the transient objects (cleaned at every event)

○ This can get arbitrarily complex to take advantage of complex programming concepts

○ Not every aspect of the transient model needs to be preserved indefinitely

○ Definitions can change over the course of the experiment

● The persistent data model is used for storing the data permanently
○ The definition can be different than the transient model, almost always simpler

○ One can:
■ Prune the data to minimize the storage footprint

■ Have multiple versions of the persistent data (schema evolution)

The Transient/Persistent Data Model Separation

4

LArRawChannelContainer

LArRawChannelContainer_p0

LArRawChannelContainer_p1

LArRawChannelContainer_p2

LArRawChannelContainer_p3
Convertors

● The main GOOD:
○ Flexibility and performance

● The main NOT-AS-GOOD:
○ More code to write and maintain

In memory Persistent

● During Run 1 (2011-2013) the ATLAS EDM used a fully T/P separated model
○ Allowed to hide the C++ complexity from the storage side and schema evolution

● Parts of the EDM were re-written during Long Shutdown 1 (2013-2015)
○ Now called the xAOD EDM, the primary target was reconstruction and analysis formats

● The xAOD EDM is generally simpler and does not have T/P separation
○ There is, however, a separation between the interface (user) and the payload (data)

○ Most of the underlying data are stored in fundamental types of std::vector (of std::vector)
■ Some data are part of the class definitions (static)

■ Others can be added on-the-fly on-demand at any time during processing (dynamic)

● The xAOD EDM is primarily (but not exclusively) used in the (D)AOD data
○ Some are used in upstream formats, e.g., xAODEventInfo (run number, event number, …)

● The upstream formats, e.g., HITS, RDO, still use T/P separated EDM

… or not

5

The ATLAS Input/Output (I/O) System
● ATLAS’ I/O system is based on the primary LCG POOL concepts
○ The data storage broken down into a structured hierarchy:

○ In a nutshell, objects are stored in containers that reside in databases

○ The API hides the technology specific implementation of the storage service

● Since the beginning of data taking, ATLAS has used ROOT’s TTree
○ This basically means having a ROOT storage service that contains and implements:
■ RootDatabase, i.e., ROOT file-level operations, opening/closing TFile etc.

■ TreeContainer, i.e., ROOT TTree-level operations, creating, filling TTree/TBranch etc.

● The most important aspect is that ROOT API is isolated from the EDM
○ The framework/EDM is not glued to the ROOT API apart from the storage service

6

 Object Container Database File CatalogPOOL Context

https://arxiv.org/pdf/physics/0306129.pdf

RNTuple: The Future of ROOT I/O
● Starting with Run 4 (2029) ROOT’s primary I/O sub-system will be RNTuple
○ TTree will be available in ROOT as legacy support, i.e., functional but no new features

● For better or worse TTree grew organically over the last two decades
○ Well pre-dates recent C++ language standards, shifts in programming paradigms etc.

● In a nutshell, RNTuple is a more modern and efficient approach
○ Adopts some of the latest C++ language features, cleaner memory management etc.

○ It has a codified specifications (that is not yet finalized but getting there)

○ However, one important point is that it is not a drop-in replacement of TTree
■ For example, it does not support raw pointers, polymorphism, etc.

● Therefore, experiments need to (possibly) embrace some changes
○ This can vary from simply adopting the new API to rewriting (parts of) the EDM

7

https://indico.jlab.org/event/459/contributions/11594/
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

A Simplified Crash Course: TTree to RNTuple

8

Bran
ch

 1

Bran
ch

 2

Bran
ch

 3

Entry 1

Entry M

Entry M+1

…

…

Bask
et

TTree

Cluster

Field
 1

Field
 2

Field
 3

Entry 1

Entry M

Entry M+1

…

…

Pag
e

RNTuple

Cluster

…

… …

…

● An approximate translation from TTree to RNTuple
○ The internals are completely different, which we don’t dive in here

● As far as the user is concerned, the real difference lies in the API and the philosophy
○ Gains due to internal workings of RNTuple are all bonuses!

Entry N Entry N

RNTuple: ATLAS Requirements
● ATLAS needs a set features:
○ Plain Old Data (POD), STL vectors (nested), user defined classes/enums
■ These are fairly experiment independent requirements

■ As an extension, we need some stdlib types, e.g., std::map etc.

○ User-defined collection proxies and late model extensions
■ These features are needed primarily by the xAOD EDM

○ Type-based user code execution when reading data a.k.a. Read Rules
■ This feature is needed for initializing (some) data for transient objects and schema evolution

○ A void* based interface to bind the I/O layer with the rest of the framework

● Current RNTuple implementation supports all these features

9

RNTuple: ATLAS’ Perspective on Adoption
● Two main earlier design choices that eased our adoption process:
○ A good chunk of the reconstruction EDM was already simplified, i.e., xAOD EDM

○ More complex parts of the EDM largely adopts the T/P separation that hides the complexity form the storage layer

○ But more importantly ROOT (API) was kept disjoint from the EDM and only used in the storage layer

● For the most part, the work was focused on introducing a new POOL technology layer
○ Introducing a new RNTupleContainer technology and introducing the new Reader/Writer code that goes with it
■ No changes to the user code, everything is handled in the I/O software…

○ Possibly the most complex logic was to support on-the-fly dynamic attributes with the xAOD EDM
■ Once the model extension support was introduced to RNTupleWriter, this became fairly transparent, too

● There were only a few cases of special ATLAS specific issues, e.g.:
○ Most of the transient ATLAS data are stored in a specialized class called DataVector<T>
■ In short, DataVector<T> is a class that acts like std::vector<T*> (note: DataVector pre-dates the latest C++ language extensions)

■ RNTuple not supporting raw pointers makes storing these as they are a bit problematic

○ This was one of the few special problems we encountered migrating the upstream formats from TTree to RNTuple

○ (One) Solution: T/P separate the relevant class and store std::vector<T> instead
■ This means introducing a new persistent type and a convertor
□ If reading an old file, simply return the object, if reading a new file, convert the persistent type to transient and return that (or vice versa if writing)

10

RNTuple: A Quick Look at DAOD Performance
● Current studies indicate about 20+% storage savings is possible in DAODs
○ It’s important to note TTree is heavily optimized over the last 20 years

○ Similar optimization studies will be carried out for RNTuple prior to production

11

Data 2023 - <μ> = 62.9 - 2755 events

Fi
le

 S
iz

e
(M

B)

0

17.5

35

52.5

70

DAOD_PHYS DAOD_PHYSLITE

23

69

18

55
RNTuple
TTree

Sample DAOD_PHYSLITE in RNTuple

Towards Getting Production Ready
● Being able to read/write our data in RNTuple is a great start!
○ ATLAS can read/write all data formats, i.e., HITS, RDO, ESD, AOD, and DAOD in RNTuple!

● However, there are many other features that are needed for production
○ Fast merging of RNTuple objects on-the-fly and custom entry/event indexing
■ These are primarily needed for the DAOD production workflows

■ These jobs run in multi-process Athena where a dedicated process merges worker outputs on-the-fly

○ Having various utilities/tools to peek into, compare, validate, … RNTuples
■ These are needed for job configuration, input/output validation etc.

○ Relational RNTuples, a.k.a. friendship
■ This allows us to use event sample augmentation

● In addition, detailed optimizations/stress-testing studies need to be done
○ We need to make sure RNTuple works reliably/efficient in all official ATLAS workflows

○ We also need to make sure that the data products and the jobs meet production limitations

12

https://indico.jlab.org/event/459/contributions/11422/

Conclusions and Outlook
● A Rough RNTuple timeline from ATLAS’ perspective:

● The current plan is to adopt RNTuple for (at least) the Event Data for Run 4
○ Discussions on how to handle in-file Meta Data is currently ongoing

● All in all we’re in a very good position but there is much work ahead of us!
○ All aspects need to be rigorously tested and validated well in advance of Run 4
■ Multi-process/thread Athena jobs, complementary tools, benchmarking, and optimizations

●We’re looking forward to all of the fun ahead!

13

Long Shutdown 3

20252024… 2023 2026 2027 2028 2029 onward

LHC Run 3 LHC Run 4 (HL-LHC)

Experimental Development Adoption, Testing, Validation Production

We are here!

