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A Brief Introduction to ATLAS and Athena
● ATLAS is a general-purpose detector at the Large Hadron Collider (LHC) 
● Athena is the open-source software framework of ATLAS 
○ Based on the Gaudi framework, jointly managed by the ATLAS and the LHCb experiments 

○ It consists of about 4 (1.5) million lines of C++ (python) code 
□CMake for building, python for job configuration, and C++ for the framework and the algorithms
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A Few Words on the ATLAS Event Data Model (EDM)
● The ATLAS detector consists of many complex sub-systems/groups 
○ For successful data processing all of them have to perform in unison  

● Thus it is extremely important to ensure that: 
○ We have common interfaces and data objects across the experiment 
■ Same objects can be used in trigger, event reconstruction, physics analysis etc. 

○ We have coherent software that is easy to maintain over many decades 

○ We can read/write data in a consistent manner over the lifetime of the experiment 

● In a nutshell, the ATLAS Event Data Model (EDM): 
○ Provides a collection of C++ classes that define detector/physics objects 

○ Allows streamlined and efficient processing of highly complex algorithms 
■ Rely on advanced C++ concepts and data structures to accomplish these 

● E.g. Tracks (ID and/or MS), Clusters (LAr and/or Tile), Electrons, Photons  
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● The transient data model is used during data processing (in-memory) 
○ Athena uses data stores, e.g., EventStore, to maintain the transient objects (cleaned at every event) 

○ This can get arbitrarily complex to take advantage of complex programming concepts 

○ Not every aspect of the transient model needs to be preserved indefinitely 

○ Definitions can change over the course of the experiment 

● The persistent data model is used for storing the data permanently 
○ The definition can be different than the transient model, almost always simpler 

○ One can: 
■ Prune the data to minimize the storage footprint 

■ Have multiple versions of the persistent data (schema evolution)

The Transient/Persistent Data Model Separation
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● During Run 1 (2011-2013) the ATLAS EDM used a fully  T/P separated model 
○ Allowed to hide the C++ complexity from the storage side and schema evolution 

● Parts of the EDM were re-written during Long Shutdown 1 (2013-2015) 
○ Now called the xAOD EDM, the primary target was reconstruction and analysis formats 

● The xAOD EDM is generally simpler and does not have T/P separation 
○ There is, however, a separation between the interface (user) and the payload (data) 

○ Most of the underlying data are stored in fundamental types of std::vector (of std::vector) 
■ Some data are part of the class definitions (static) 

■ Others can be added on-the-fly on-demand at any time during processing (dynamic) 

● The xAOD EDM is primarily (but not exclusively) used in the (D)AOD data 
○ Some are used in upstream formats, e.g., xAODEventInfo (run number, event number, …) 

● The upstream formats, e.g., HITS, RDO, still use T/P separated EDM

… or not
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The ATLAS Input/Output (I/O) System
● ATLAS’ I/O system is based on the primary LCG POOL concepts 
○ The data storage broken down into a structured hierarchy: 

○ In a nutshell, objects are stored in containers that reside in databases 

○ The API hides the technology specific implementation of the storage service 

● Since the beginning of data taking, ATLAS has used ROOT’s TTree 
○ This basically means having a ROOT storage service that contains and implements: 
■ RootDatabase, i.e., ROOT file-level operations, opening/closing TFile etc. 

■ TreeContainer, i.e., ROOT TTree-level operations, creating, filling TTree/TBranch etc. 

● The most important aspect is that ROOT API is isolated from the EDM 
○ The framework/EDM is not glued to the ROOT API apart from the storage service 
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https://arxiv.org/pdf/physics/0306129.pdf


RNTuple: The Future of ROOT I/O
● Starting with Run 4 (2029) ROOT’s primary I/O sub-system will be RNTuple 
○ TTree will be available in ROOT as legacy support, i.e., functional but no new features 

● For better or worse TTree grew organically over the last two decades 
○ Well pre-dates recent C++ language standards, shifts in programming paradigms etc. 

● In a nutshell, RNTuple is a more modern and efficient approach 
○ Adopts some of the latest C++ language features, cleaner memory management etc. 

○ It has a codified specifications (that is not yet finalized but getting there) 

○ However, one important point is that it is not a drop-in replacement of TTree 
■ For example, it does not support raw pointers, polymorphism, etc. 

● Therefore, experiments need to (possibly) embrace some changes 
○ This can vary from simply adopting the new API to rewriting (parts of) the EDM
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https://indico.jlab.org/event/459/contributions/11594/
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md


A Simplified Crash Course: TTree to RNTuple
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● An approximate translation from TTree to RNTuple 
○ The internals are completely different, which we don’t dive in here 

● As far as the user is concerned, the real difference lies in the API and the philosophy 
○ Gains due to internal workings of RNTuple are all bonuses!
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RNTuple: ATLAS Requirements
● ATLAS needs a set features: 
○ Plain Old Data (POD), STL vectors (nested), user defined classes/enums 
■ These are fairly experiment independent requirements 

■ As an extension, we need some stdlib types, e.g., std::map etc. 

○ User-defined collection proxies and late model extensions 
■ These features are needed primarily by the xAOD EDM 

○ Type-based user code execution when reading data a.k.a. Read Rules 
■ This feature is needed for initializing (some) data for transient objects and schema evolution 

○ A void* based interface to bind the I/O layer with the rest of the framework 

● Current RNTuple implementation supports all these features
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RNTuple: ATLAS’ Perspective on Adoption
● Two main earlier design choices that eased our adoption process: 
○ A good chunk of the reconstruction EDM was already simplified, i.e., xAOD EDM 

○ More complex parts of the EDM largely adopts the T/P separation that hides the complexity form the storage layer 

○ But more importantly ROOT (API) was kept disjoint from the EDM and only used in the storage layer 

● For the most part, the work was focused on introducing a new POOL technology layer 
○ Introducing a new RNTupleContainer technology and introducing the new Reader/Writer code that goes with it 
■ No changes to the user code, everything is handled in the I/O software… 

○ Possibly the most complex logic was to support on-the-fly dynamic attributes with the xAOD EDM 
■ Once the model extension support was introduced to RNTupleWriter, this became fairly transparent, too 

● There were only a few cases of special ATLAS specific issues, e.g.: 
○ Most of the transient ATLAS data are stored in a specialized class called DataVector<T> 
■ In short, DataVector<T> is a class that acts like std::vector<T*> (note: DataVector pre-dates the latest C++ language extensions) 

■ RNTuple not supporting raw pointers makes storing these as they are a bit problematic 

○ This was one of the few special problems we encountered migrating the upstream formats from TTree to RNTuple 

○ (One) Solution: T/P separate the relevant class and store std::vector<T> instead 
■ This means introducing a new persistent type and a convertor 
□ If reading an old file, simply return the object, if reading a new file, convert the persistent type to transient and return that (or vice versa if writing)
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RNTuple: A Quick Look at DAOD Performance
● Current studies indicate about 20+% storage savings is possible in DAODs 
○ It’s important to note TTree is heavily optimized over the last 20 years 

○ Similar optimization studies will be carried out for RNTuple prior to production 
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Towards Getting Production Ready
● Being able to read/write our data in RNTuple is a great start! 
○ ATLAS can read/write all data formats, i.e., HITS, RDO, ESD, AOD, and DAOD in RNTuple! 

● However, there are many other features that are needed for production 
○ Fast merging of RNTuple objects on-the-fly and custom entry/event indexing 
■ These are primarily needed for the DAOD production workflows 

■ These jobs run in multi-process Athena where a dedicated process merges worker outputs on-the-fly 

○ Having various utilities/tools to peek into, compare, validate, … RNTuples 
■ These are needed for job configuration, input/output validation etc. 

○ Relational RNTuples, a.k.a. friendship 
■ This allows us to use event sample augmentation 

● In addition, detailed optimizations/stress-testing studies need to be done 
○ We need to make sure RNTuple works reliably/efficient in all official ATLAS workflows 

○ We also need to make sure that the data products and the jobs meet production limitations
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https://indico.jlab.org/event/459/contributions/11422/


Conclusions and Outlook
● A Rough RNTuple timeline from ATLAS’ perspective: 

● The current plan is to adopt RNTuple for (at least) the Event Data for Run 4 
○ Discussions on how to handle in-file Meta Data is currently ongoing 

● All in all we’re in a very good position but there is much work ahead of us! 
○ All aspects need to be rigorously tested and validated well in advance of Run 4 
■ Multi-process/thread Athena jobs, complementary tools, benchmarking, and optimizations 

●We’re looking forward to all of the fun ahead!
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